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Low-lying resonances and relativistic screening in Big Bang nucleosynthesis
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We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances
in the secondary reactions leading to A = 7 nuclei during the Big Bang nucleosynthesis. In particular, we
investigate and examine possible low-lying resonances in the 7Be (3He ,γ ) 10C reaction and examine the resultant
destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus
is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may
adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to
be relatively small in the standard Early Universe models.
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I. INTRODUCTION

Observation of the accelerated expansion of the Universe,
measurement of the cosmic microwave background radiation
temperature anisotropies, and the observation of the light
elements produced during the Big Bang nucleosynthesis
(BBN) epitomize the current status of the precision cosmology.
In particular the BBN is an ideal tool not only to test aspects
of the standard models of cosmology as well as of nuclear and
particle physics but also to look for new physics beyond those
standard models. (For recent reviews of BBN, see Refs. [1–4]).
In particular new calculations of the light-element abundances
are performed [1] using the recent high-precision 2015
Planck measurement of the baryon-to-photon ratio, helium
abundance, and the effective number of relativistic degrees
of freedom, Neff [5], as well as astronomical observations of
deuterium [6,7]. These calculations find that observations of
the deuterium abundance ratios relative to hydrogen, D/H,
are now more precise than the corresponding theoretical
predictions, but predictions for A = 7 nuclei continue to
disagree with observations. A recent update (NACRE II) of
the compilation of charged-particle-induced thermonuclear
reaction rates for nuclei with mass number A < 16 [8] was
used in the calculations of Refs. [1,2]. These calculations also
provide confidence limits for the production of 6Li, 9Be, 11B,
and carbon, oxygen, and nitrogen (CNO). A precise value
of the CNO/H is not only important for population III star
formation but, as we elaborate in this paper, may also affect
the abundances of A = 7 nuclei.

The purpose of the present paper is twofold. One is to
explore the plasma effects in the BBN more completely. It
was already demonstrated that nonrelativistic screening of
the Coulomb interaction in nuclear reactions taking place
during the BBN epoch does not produce a noticeable impact
on light element abundances [9]. However, the screening
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effects due to the relativistic electron-positron plasma were
not included in the analysis of Ref. [9]. It was recently shown
that electron-positron plasma screening is crucial for neutrino
interactions in the BBN epoch [10]. In the current work we
include the effects of the screening due to the electron-positron
plasma in nuclear reactions during the BBN epoch. A second
purpose is to explore the ramifications of the possible presence
of resonances in relatively unexplored reactions involving
A = 7 nuclei.

II. EFFECTS FROM SCREENING IN A RELATIVISTIC
ELECTRON PLASMA

For a low-density plasma at T ∼ 1 to 2 MeV, nonrelativistic
screening can be neglected as the associated Debye length is
λD ∼ 104 fm (see the appendix) [9]. For example, for Z1 =
Z2 = 2, and temperature of 1 MeV, one gets λD = 104 fm
and the Salpeter correction to the reaction rate fD − 1 ≈ 6 ×
10−4. However, for an electron-positron plasma, as would exist
in the BBN epoch, the temperature is of the same order as
the electron mass, requiring the relativistic expression [given
in the Eq. (A3) of the appendix]. For a vanishing chemical
potential, this Debye length as a function of temperature is
shown in Fig. 1. At higher temperatures, this is much smaller
than the Debye length which was determined for screening by
nonrelativistic electrons alone.

Using this Debye length, we used a BBN nuclear reaction
network to determine the change in mass fractions based on
the screening enhancement factor. Corrections were made to
reaction rates in the network by inserting the Debye length for
a relativistic plasma into Eq. (A5). The reaction network used
is shown in Fig. 2. Reactions up to and including Z = 6 were
included, as well as weak rates and decays.

Mass fractions Xbare were determined using a network with
unscreened rates. These are compared to mass fractions Xscr

from a network employing rates from reactions screened by a
relativistic electron plasma. The change in mass fraction

�X

X
≡ Xscr − Xbare

Xbare
(1)
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FIG. 1. The Debye length for a relativistic electron plasma as a
function of temperature at μ = 0.

is shown in Fig. 3. At early times in the network, the temper-
ature is higher, and the consumption of protons, deuterium,
and helium proceeds at a higher rate for the screened reactions
compared to the unscreened case. The overall net destruction
of these lighter elements is higher in the screened case. While
there is an overall reduction in some of the heavier elements,
the relative change for those is extremely small. Reaction
screening is likely to be small in the regime of zero electron
chemical potential.

A. Nonzero chemical potential

Inclusion of a nonzero chemical potential in Eq. (A3) will
increase the inverse screening length and thus decrease the
Debye length, thus increasing the reaction rate enhancement
factor.

For a nonzero chemical potential, Eq. (A3) was solved
numerically. The Debye length, λD , for various chemical
potentials, μ, as a function of temperature is shown in Fig. 4. A

FIG. 2. The BBN reaction network used up to and including
nuclei Z = 6.
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FIG. 3. Relative change in mass fractions for nuclei in the BBN
network as a function of time.

somewhat large chemical potential is necessary for a reduction
in the Debye length by one order of magnitude, and this occurs
only at low temperature. At higher temperatures, the electron
kinetic energy dominates over the chemical potential, and the
effect of μ is reduced. The resulting enhancement factor,
fD , is shown in Fig. 5 for Z1 = Z2 = 2. From this figure,
one sees that for zero chemical potential the enhancement
factor changes more rapidly at low temperature than at high
temperature. As the temperature approaches the value of the
electron mass, the enhancement factor increases less rapidly.
One also sees that the enhancement factor as a function of
μ changes much less at higher temperatures than at lower
temperatures.

It is customary to relate the chemical potential to the
electron degeneracy parameter:

ξ = μ

T
. (2)

Assuming a constant degeneracy parameter, then the chemical
potential is much lower at lower T , reducing the effect of
μ at lower T . This is shown in Fig. 6. One sees that,
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FIG. 4. Debye length as a function of temperature in an elec-
tron plasma for nonzero chemical potential for various chemical
potentials.
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FIG. 5. Reaction rate enhancement factor as a function of
the electron chemical potential for temperatures T = 0.1 through
0.5 MeV with Z1 = Z2 = 2.

because the chemical potential now is a linear function of
temperature, there is little change in the enhancement factor
with degeneracy.

It is thus concluded that, since the electron degeneracy is
very small, screening from the relativistic electron-positron
plasma has little effect on the final abundance distribution in
the standard BBN.

III. REDUCTION OF 7Be FROM REACTIONS ON 3He

There is significant discrepancy between the observations
and the BBN predictions for A = 7 nuclei, known as the
lithium problem. (For an overview of the current status of the
lithium problem, see Ref. [11]). One alternative mechanism for
the possible reduction of 7Li was proposed in Ref. [12], namely
that the consumption of 7Be (and subsequently 7Li) may
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FIG. 6. The reaction rate enhancement factor as a function of
temperature for various electron degeneracy factors with Z1 = Z2 =
2. In this figure, f = fD(μ �= 0).

occur through a resonant reaction through the 10C compound
nucleus:

7Be +3He → 10C∗ → 10C +γ (3)

→ 9B +p (4)

→ 2α + 2p. (5)

While this reaction has certainly been previously explored
[13], here it is investigated in light of possible resonance struc-
ture in the mirror product 10Be [14], particularly at resonant
energies greater than 0.5 MeV. Prior studies have not found
resonances in the 10C nucleus [13] for relatively large widths
in the range ER < 500 keV. This work examines resonances
both within and outside the energy range and widths previously
investigated where the effects of a relativistic electron-positron
plasma on BBN reaction rates are included. We examine
the possible effects of shifts in the thermonuclear reacstion
rates for resonant and nonresonant reactions from a relativistic
electron plasma.

A. Resonances in 7Be +3He

Taking the resonance structure of 10Be as motivation, a
resonance is assumed for the 7Be +3He reaction. We note
that this reaction and any possible resonances within this
reaction have been shown to have a negligible effect on
BBN [15]. Likewise, there is no experimental evidence for
resonances below 500 keV [13]. The effects of screening in
the hot BBN plasma from electrons and positrons has been
investigated neither on the nonresonant nor resonant rates. Any
possible resonances at ER > 500 keV and their corresponding
strengths are not known. The decay width � of the 10Be
mirror nucleus for the 17.79-MeV state (0.53 MeV above
the reaction threshold) is known to be 110 ± 35 keV [16]
though the entrance channel width has not been experimentally
determined.

We assume a resonance cross section of the form

σ (E) = πλ2ωγ
�total

(E − ER)2 + �2
total/4

, (6)

where

�total = �in + �out, (7)

γ is the reduced width

γ = �in�out

�total
, (8)

λ is the de Broglie wavelength, and ω is the appropriate spin
factor.

In the current study, final BBN mass fractions are deter-
mined for reaction rates based on a single resonance ER of
arbitrary strength ωγ . The mass fractions are determined as a
function of these two parameters.

The partial width for the entrance channel is derived from a
solution to the spherical wave equation at the nuclear potential
radius, and the functional form is [17]

�p(E) = 2PL(E)γL(a)2, (9)
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FIG. 7. The assumed entrance channel width as a function of
incident particle energy for the 7Be(3He ,γ )10C reaction.

where the factor γL is the reduced particle width at a radius a
and is given in the Wigner limit as

γ 2
L(a) = θ2

L(a)γ 2
W (a) = θ2

L

3�
2

2m12a2
(10)

and the penetrability factor PL is given by the regular (FL) and
irregular (GL) Coulomb functions:

PL(a) = ka

F 2
L(ka) + G2

L(ka)
= ρ

F 2
L(η,ρ) + G2

L(η,ρ)
, (11)

where η is the Sommerfeld parameter and ρ ≡ ka. These are
evaluated numerically at the nuclear radius. In this case, only
the L = 0 terms are used, and the single-particle width θ2

L =
0.5 is assumed.

The entrance channel width at lower energies is shown in
Fig. 7 for the 7Be +3He reaction. Near threshold, the particle
width drops precipitously, while above threshold, it increases
to a substantial value. The effect of the energy-dependent
width can be shown in Fig. 8, which shows the integrand
of the thermonuclear rate at T = 1 MeV for a resonance
ER = 500 keV. The high-energy tail of the resonance can have
a large effect on the overall rates.

Relativistic electron-positron screening can adjust the inci-
dent particle energy, effectively shifting the threshold energy
in the cross section. One can see that for near-threshold or
subthreshold resonances, this shift could result in a significant
chance in the cross section, as discussed in the next section.

In addition to the above resonance structure, we determined
BBN abundance distributions for a range of narrow resonances
and strengths. By scanning across strengths and resonance
locations, the relative reduction of 7Be was mapped. The
mapping of the relative mass fraction of 7Be, R, is defined
to be the final 7Be mass fraction for a BBN calculation with a
10C resonance divided by that with no resonance:

R ≡ Xres

Xnr

. (12)
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FIG. 8. The integrand of the thermonuclear reaction rate for the
energy-dependent width of the 7Be(3He ,γ )10C reaction at T = 1
MeV for a resonance located at ER = 500 keV.

IV. RELATIVISTIC ELECTRON SCREENING AND THE
7Be +3He REACTION

Prior to examining resonances in the 7Be +3He reaction, we
proceed with a discussion of the effects of relativistic electron
screening on the same reaction.

While a resonance in 10C may increase the destruction of
7Be, the effect may be magnified by the inclusion of screening
from the electron plasma. The enhancement on the cross
section is described in the appendix. Incorporating screening
into the usual thermonuclear reaction rate (TRR) will create
an energy shift E0 of the reaction system because of the
reduced particle potential. The energy shift E0 is defined in
the appendix.

This shift is small, ∼20 keV for Z1 = 2 and Z2 = 4 at
T ∼ 2 MeV. The values of �E as a function of temperature
are shown in Fig. 9; the trend is nearly linear except at

T (MeV)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

 (
ke

V
)

0
E

0

2

4

6

8

10

12

14

16

18

20

22

T (MeV)
0.02 0.04 0.06 0.08 0.1

 (
ke

V
)

E

0

0.1

0.2

0.3

0.4

0.5

FIG. 9. The energy shift E0 due to relativistic screening as a
function of temperature for Z1 = 2, Z2 = 4, and μ = 0. The high-
temperature limit is as given in Eq. (A9). The inset shows the shifts
at low temperature.
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FIG. 10. The integrand of the reaction rate for a narrow resonance
for three values of the resonance energies for the bare potential (dotted
lines) and the screened potential (solid lines). For the low-lying
resonances, the resonance at 0.1 MeV corresponds to the uppermost
set of lines, while the resonance at −0.05 MeV corresponds to the
lowest set of lines.

low temperature. Its effect on nonresonant TRRs is also
expected to be small, particularly as the cross section is
negligible near E = 0. However, the shift could be significant
for resonant rates, particularly those low-lying resonances near
the threshold, where even a small shift in the energy can result
in a significant change in the cross section.

Another possible effect of this shift is the influence on
subthreshold resonances. A shift to higher energy can result
in a much more significant decrease in the cross section
and total reaction rate as less of the subthreshold resonance
is integrated over. Using this shift, a possible reduction in
the TRR for low-lying resonances is investigated. The result
may be significant because the energy shift results in less of
the resonance tail being included in the TRR. From Fig. 9,
one expects the enhancement to be small, approximately 1%,
and to scale with temperature. This scaling is because as the
temperature decreases the Debye screening length increases,
resulting in a reduced energy shift, which approaches zero.
This is important to note as the effect is most pronounced only
at high temperatures (early in BBN) and in regions where a
significant portion of the resonance may be removed from the
reaction rate—near the threshold. This may be advantageous
as there may be a slight reduction in BBN reaction rates
during the early stages, resulting in a slower progression to the
A = 7 nuclei.

The effect of this shift is shown in Fig. 10 which shows
a resonance (�x = 110 keV, T = 1 MeV) in the 7Be + 3He
reaction times the Boltzmann distribution for six values of
ER . This quantity is the integrand of Eq. (A12). For this
quantity, the particle energy is dictated by the Boltzmann
distribution while the value of the cross section is determined
by the energy shift (to higher energy), effectively shifting the
cross section to lower energy in the particle distribution. We
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FIG. 11. Ratio of screened to bare TRR for the nonresonant
component of the TRR only.

note, of course, that the lowest resonances in this figure have
been eliminated by experiment, but they are shown here to
indicate the relative strengths of the resonance tails and to
emphasize the point that the actual resonance peaks are not
important as the penetrability in the entrance channel at the
lowest energies reduces the cross section to negligible values.

For all resonances shown, the shift to higher energy
shifts the entire integrand towards the high-energy tail of the
resonance. For the low-lying resonances, ER � 500 keV, the
integral is increased slightly as the tail of the integrand is
emphasized. For a higher energy resonance, ER � 500 keV,
only a very small portion of the lower energy tail is cut out of
the integration, as most of the low-energy tail is dominated by
the entrance channel penetrability.

The enhancement for nonresonant rates is exemplified in
Fig. 11 for Z1 = 2 and Z2 = 4. As expected, the enhancement
is small and always greater than unity at nonzero temperature
since the cross section is always monotonically increasing
with energy and a small shift to positive energy results in
a larger cross section integrated into the reaction rate. It was
found that this enhancement varies little with resonance energy
and width. This makes sense considering the integrand of
the reaction rate and the very small energy shift �E. In
any case, essentially the entire cross section is integrated
over, but it is effectively shifted to a higher energy in the
Maxwell-Bolzmann distribution by an amount �E. For a very
small shift, the ratio of rates in Fig. 11 is roughly

Rsc

Rbare
∼ e�E/T , (13)

which is the Salpeter factor.

A. Accuracy of the Salpeter approximation

In the previous section, the exact integration of Eq. (A12)
was used to determine the correction to reaction rates for the
relativistic electron gas. The typical prescription is to use the
Salpeter approximation to determine the width corrections.
This approximation results from the separation of the exponent
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FIG. 12. The correction to the reaction rate from the energy shifts
as studied in this work divided by the Salpeter correction factor for
several resonance energies, indicated in the figure.

containing the Debye length from the integration over energy
and use as an independent coefficient in the reaction rate
without shifting the cross-section energy.

This correction can be evaluated by considering the change
in reaction rates using the exact screening due to the Coulomb
potential in the Yukawa form compared with the Salpeter
approximation. This evaluation is shown in Fig. 12 where we
plot the quantity ( 〈σv〉Yukawa

〈σv〉bare

)/
fD. (14)

In Fig. 12, we take �γ = 110 keV, �p = 2 keV corresponding
to ER ≈ 500 keV, and the difference between the ratio in
Eq. (14) and unity is multiplied by 104. It can be seen that
the relative difference between the correction in Fig. 12 and
the Salpeter correction factor is on the order of 10−4. The
small energy shifts from electron screening induce a difference
ratio nearly equal to the Salpeter correction factor to within
≈0.01%, though it does appear that the difference gets larger
at lower temperatures and lower resonance energies as more of
the resonance falls below the reaction threshold for the energy
shifts induced by screening.

B. Thermonuclear reaction rates (TRRs) for various resonances

TRRs for this reaction are shown in Fig. 13 for several
resonances. For these resonances, we assume a total 10C decay
width �x = 110 keV, a spin degeneracy factor ω = 0.5, and a
single-particle width θ2

L = 0.5. The thermonuclear rates are
shown only for the resonances and must be added to the
nonresonant rate, also shown in the figure. We observe that
the results in Fig. 13 decrease with the decay width. For
decay widths �x � 50 keV, the resonant rates are less than
the nonresonant rate.

It is seen that the rates are similar for all the resonances
in this temperature range. Several factors must be considered.
First, for the energy-dependent widths, a lower resonance may
have a larger particle population in the Maxwell-Boltzmann
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FIG. 13. Thermonuclear reaction rates for the 7Be(3He ,γ )10C
reaction for several resonances for possible particle-decay channels in
the 10C compound nucleus. The dashed black line is the nonresonant
TRR. Assumptions are described in the text.

distribution, but the entrance channel widths are also smaller.
Very roughly, the rate is proportional to the penetrability factor
times the Maxwell-Boltzmann factor. While the penetrability
factor increases with energy, the Maxwell-Boltzmann factor
decreases.

From Fig. 13 one can conclude that resonances in the
energy range of 0 � E � 1 MeV and with �x < 110 keV for
the 7Be +3He reaction are insufficient for reducing the BBN
production of 7Be. This is consistent with prior results [15], and
the additional inclusion of relativistic plasma screening effects
has also been found to be negligible. Thus, the validity of
the previous analysis is maintained. A possible BBN scenario
with a higher density at lower temperatures may result in such
a situation, though one must gauge the effects of the density
increase on other reactions as well.

V. CONCLUSIONS

In this work we explored in detail the consequences of
the screening due to the relativistic electron-positron plasma
on nonresonant and possible resonances on the secondary
reactions destroying A = 7 nuclei during the Big Bang
nucleosynthesis. We found that effects of screening from the
relativistic plasma are small even for the reaction with the
largest Z1Z2, namely 3He +7Be. We note that this reaction
remains to be the least experimentally explored one in the
network of BBN reactions.

We scanned through possible resonance parameters (widths
and resonance energies) in our calculations. The very small
entrance channel widths in any possible resonance render its
effects quite small. BBN reactions would have to overcome
this either by resonances to high spin states—which is very
unlikely, resonances via neutron captures to destroy A = 7
nuclei—which are inhibited by an insufficient neutron abun-
dance by the time A = 7 nuclei are produced, or via resonances
to energy states high above threshold. As the temperature by
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the time A = 7 nuclei are produced in significant abundance
is low (T9 ∼ 1), this last case is also not highly probable.

Even though the effects we find are small, it still is worth-
while to demonstrate how robust our current understanding
of the BBN is to effects not previously considered. This is
especially important since the instruments scheduled to go
online in the future, such as the Thirty-Meter Telescope [18],
will measure the abundances of the light elements resulting
from the BBN with greater precision.
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APPENDIX: SCREENING OF THE COULOMB
POTENTIAL

In a plasma the Coulomb potential between two nuclei is
screened:

V scr
C = Z1Z2e

2

r
exp

(
− r

λD

)
(A1)

where λD is the Debye radius. The nonrelativistic contribution
to the Debye radius is given by

λD =
⎡
⎣ T

4πe2N
(∑

i Xi
Z2

i

Ai
+ ξ

∑
i Xi

Zi

Ai

)
⎤
⎦

1/2

, (A2)

where N is the ion number density, Xi is the mass fraction
of nuclei of type i, and ξ is a factor that accounts for the
electron degeneracy [19]. Equation (A2) is derived using the
nonrelativistic limit, which is appropriate for the nuclei in the
Big Bang. This formula was used in the calculations of Ref. [9].

Contribution to the Debye length from the relativistic
electron-positron plasma can be calculated exactly to all orders
from the Schwinger-Dyson equation for the photon propagator
[20]. It is given as

π2

λ2
D

= e2 ∂

∂μ

∫ ∞

0
dpp2

[
1

e(E−μ)/T + 1
− 1

e(E+μ)/T + 1

]
,

(A3)

where E = √
p2 + m2

e and μ is the chemical potential.
The correction to the reaction rates,

〈σv〉 = 1

πm12

(
2

T

)3/2 ∫ ∞

0
e−E/T Eσ (E)dE, (A4)

due to the plasma effects was first calculated by Salpeter [19].
He found that the rates are enhanced by a factor of

fD = exp

(
Z1Z2e

2

T λD

)
. (A5)

A comparison of different derivations of the Salpeter’s plasma
correction is given in Ref. [21]. Here we outline another
derivation which illustrates the behavior of enhancement in
the presence of resonances. The dynamics of two colliding
nuclei in a plasma below the Coulomb barrier is described
by [22]

H scr� = E�, (A6)

where

H scr = T + VN + V scr
C . (A7)

For r � λD , the screened Coulomb potential of Eq. (A1) can
be expanded as

V scr
C ∼ V bare

C − Z1Z2e
2

λD

= V bare
C − E0. (A8)

In the high-temperature limit, Eq. (A3) yields

E0 = Z1Z2e
3

π

[
μ2 + π2

3
T 2

]1/2

. (A9)

By inserting Eq. (A8) into Eq. (A6) one gets

H bare� = (E + E0)�, (A10)

where

H bare = K + VN + V bare
C (A11)

with K being the kinetic energy associated with the relative
motion of the nuclei and VN is the attractive nuclear potential.
Hence the effect of the screening is to shift the energy by
an amount E0 in the calculations performed using the bare
Coulomb potential. As a result the reaction rate takes the form

〈σv〉 = 1

πm12

(
2

T

)3/2 ∫ ∞

0
e−E/kT Eσ (E + E0)dE. (A12)

After a change of variables E′ = E + E0, the rate then takes
the form

〈σv〉 ∼
∫ ∞

E0

e−(E′−E0)/T (E′ − E0)σ (E′)dE′. (A13)

Since E0 is very small the lower limit of the integral can be
extended to zero and the term linear in E0 multiplying the
cross section can be ignored. In Ref. [23] it was shown that the
correction due to these approximations is indeed very small.
The E0/T contribution to the exponential yields the Salpeter
enhancement of Eq. (A5). Note that Eq. (A12) demonstrates
that a shift away or towards the peak energy can appreciably
alter the reaction rates in the presence of resonances.
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