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Spectral functions of the pseudoscalar D meson in the nuclear medium are analyzed using QCD sum rules
and the maximum entropy method. This approach enables us to extract the spectral functions without any
phenomenological assumption, and thus to visualize in-medium modification of the spectral functions directly.
It is found that the reduction of the chiral condensates of dimension 3 and 5 causes the masses of both D+ and
D− mesons to grow gradually at finite density. Additionally, we construct charge-conjugate-projected sum rules
and find a D+–D− mass splitting of about −15 MeV at nuclear saturation density.
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I. INTRODUCTION

One of the most important problems in hadron physics
is understanding the relation between chiral symmetry and
hadron properties from quantum chromodynamics (QCD)
which describes the strong interaction. Hadrons in nuclear
matter are useful as probes of chiral symmetry at finite density.
For instance, ρ, ω, and φ mesons in nuclear matter have been
studied theoretically and experimentally (see Refs. [1,2] for
reviews). In the future, J-PARC as well as the compressed
baryonic matter (CBM) [3] and PANDA [4] experiments by
Facility for Antiproton and Ion Research (FAIR) at GSI are
expected to investigate the properties of open (D,D̄) and
hidden (J/ψ,ηc) charmed mesons in hot and dense baryonic
matter.

Medium modifications of pseudoscalar D mesons in nu-
clear matter have been investigated in various theoretical
studies. These can be classified into two approaches: theories
based on hadron and those based on quark and gluon degrees
of freedom. The former, described by interactions between
hadrons, includes self-consistent unitarized coupled-channel
approaches with flavor SU(3) [5], flavor SU(4) symmetry,
and a t-channel vector meson exchange (TVME) model [6],
which have been further developed through an improved kernel
and renormalization scheme [7,8], improvement beyond zero
range approximation [9], and a SU(8) spin-flavor symmetric
model implementing heavy quark spin symmetry [10]. There
are furthermore results from a chiral SU(3) model extended to
SU(4) [11–14] and a pion exchange model between D̄ and N
[15]. The second approach includes the quark-meson coupling
(QMC) model [16,17] and QCD sum rules [18–22]. Among
all these, only QCD sum rules are directly based on QCD.

The QCD sum rule method [23,24] is known as a powerful
tool to investigate the properties of hadrons from QCD. It has
also been used to study nuclear modifications of light meson
systems such as ρ, ω, and φ mesons [25–48]. Recently, it
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has become possible to apply the maximum entropy method
(MEM) to QCD sum rules [49], which allows us to extract the
most probable form of the spectral function from the operator
product expansion (OPE) of hadronic correlators without
assuming any specific functional form, e.g., the “pole +
continuum” ansatz. This approach was shown to be successful
in vacuum for the ρ meson [49] and the nucleon with positive
[50] and negative parity [51]. Furthermore, it was used to
investigate spectral modifications at finite temperature for
charmonia [52] and bottomonia [53] channels and at finite
density for the φ meson [46].

Previous QCD sum rule studies of in-medium D mesons
have led to somewhat inconsistent results. In Ref. [19],
Hayashigaki calculated the OPE, including condensates up to
dimension 4, 〈q̄q〉, 〈 αs

π
G2〉, 〈q†i

−→
D 0q〉, and 〈 αs

π
( (vG)2

v2 − G2

4 )〉,
and analyzed the D meson mass. He found that the D
meson mass is shifted by −50 MeV at nuclear saturation
density ρ0. Subsequently, Hilger et al. [20] took further
condensates up to dimension 5, 〈q̄gσGq〉, and q0-odd terms,
〈q†q〉,〈q†−→D 2

0q〉,〈q†gσGq〉 into account. As a result, an
opposite mass shift of +45 MeV at ρ0 was obtained, however,
with a significant ambiguity from phenomenological density
dependence of the threshold parameter. Recent new analyses
[21,22] support the conclusions of [19]. The results of the
present paper, obtained by applying the MEM to the QCD sum
rules, are independent of uncertainties from phenomenological
functional forms and its threshold parameter.

Hilger et al. furthermore evaluated the D+–D− mass
splitting to be −60 MeV at ρ0 [20]. It is important to note
that in contrast to the q0-even terms, the q0-odd terms violate
the charge symmetry of the hadronic correlator and hence
lead to a mass splitting of the D+ and D− states. This
charge-symmetry breaking comes from the asymmetry of the
nuclear medium, which consists only of nucleons (or only
quarks) and not of antinucleons (or antiquarks). The properties
of the D (D+ = cd̄ and D0 = cū) and D̄ mesons (D− = c̄d
and D̄0 = c̄u) can therefore be different at finite density.
To improve the analysis of the D+–D− mass splitting, we
propose in this work the charge conjugate projection as a novel
approach.
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This paper is organized as follows. In Sec. II, we present
QCD sum rules of the D meson in nuclear matter. In Sec. III,
the results of our QCD sum rules and MEM analyses are
reported and their physical interpretation is given. In Sec. IV,
we compare them with the previous QCD sum rule analyses.
Section V is devoted to the conclusion and outlook.

II. FORMALISM

We start by defining the time-ordered hadronic current-
current correlation function:


J (q) = i

∫
d4xeiq·x〈T [jJ (x)jJ †(0)]〉, (1)

where J stands for the channels D+(cd̄), D−(c̄d), D0(cū), or
D̄0(c̄u). In this work, we assume the chiral limit (mu = md =
0) and isospin symmetry (〈ūu〉 = 〈d̄d〉), so that u and d quarks
are not distinguished. We thus only need to examine jD+ =
id̄γ5c and jD− = ic̄γ5d as possible pseudoscalar currents.


J (q) satisfies the dispersion relation in momentum space
given as


J (q2) = 1

π

∫ ∞

0
ds

Im
J (s + iε)

s − q2

≡
∫ ∞

0
ds

ρJ (s)

s − q2
. (2)

We calculate the left-hand side using the operator product
expansion (OPE) in the large Euclidean momentum (Q2 =
−q2 < 0) region, where QCD can be treated perturbatively
thanks to asymptotic freedom. As a next step, one usually
deforms the kernel by transforming both sides of Eq. (2) by
Borel or Gaussian transformations. In this work, we employ the
Gaussian sum rule [54,55], which has a number of advantages
over the conventional Borel sum rule. The Gaussian sum rule
has two controllable parameters, ŝ and τ , while its Borel
counterpart allows only one (the Borel mass). The transformed
kernel of the integral equation can therefore describe various
shapes, depending on both ŝ and τ , so that more patterns
of weight functions can be used to extract spectral functions
from the MEM analysis. With the Gaussian sum rule it
is furthermore possible to decrease some statistical errors
originating from MEM.

A. OPE in vacuum

After the Gaussian transformation, the dispersion relation
becomes

G(ŝ,τ ) = 1√
4πτ

∫ ∞

0
dω ωe− (ω2−ŝ)2

4τ ρ(ω2), (3)

where ω denotes the energy (ω2 = s) and ŝ and τ are the
parameters of the Gaussian transformation. The new kernel
enhances an energy region of the spectral function around the
position ŝ. By tuning ŝ and τ , one can focus on the lowest
peak and suppress the higher energy structures such as excited
states and continuum by the tail of the Gaussian.

The OPE including up to the dimension-5 condensates
was calculated for the pseudoscalar D meson (Jπ = 0−) in

Ref. [56]. Its Gaussian transform is given as

G(ŝ,τ ) = 1√
4πτ

1

π

∫ ∞

m2
h

ds

2
e− (s−ŝ)2

4τ Im
pert(s)

+ 1√
4πτ

e− (m2
h
−ŝ)2

4τ

[
−mh〈q̄q〉 + 1

12

〈
α

π
G2

〉

− 1

2

(
3m2

h − 2ŝ

4τ
− 2

(
m2

h − ŝ
)2

m2
h

(4τ )2

)
mh〈q̄gσGq〉

]
,

(4)

where mh is a general heavy quark mass, which will be set
to the charm quark mass (mc) for the most part of this work.
In Sec. III D, mh will, however, be treated as a free parameter
to investigate the heavy quark mass dependence of the sum
rules. The perturbative term, Im 
pert(s), including first-order
αs corrections, is given by

Im 
pert(s) = 3

8π
s

(
1 − m2

h

s

)2

×
(

1 + 4

3

αs

π
R0

(
m2

h

/
s
))

,

(5)
where

R0(x) = 9

4
+ 2Li2(x) + ln x ln(1 − x) − 3

2
ln

1 − x

x

− ln(1 − x) + x ln
1 − x

x
− x

1 − x
ln x. (6)

B. OPE in nuclear medium

In this work, we choose our reference frame as the rest
frame of the nuclear medium, and we set the spatial momentum
of the meson to zero: q = (q0,0). In the vacuum, the OPE
depends only on q2 because of Lorentz invariance while, at
finite density, we have to take into account the terms of odd
powers of q0. The correlator is hence separated into q0-even
and q0-odd parts:


J (q0) = 
even(q2
0

) + q0

odd(q2

0

)
. (7)

As long as we consider a system at low enough density (such
as nuclear matter), the Wilson coefficients can be assumed to
have no density dependence and it suffices to include density
dependencies of the condensates. The separated q0-even and
q0-odd parts of the D meson OPE at finite density were derived
in Ref. [57]. Additionally, the OPE including dimension-6
condensates in medium was estimated in Ref. [58].

C. Charge conjugate projection


even(q2
0 ) and 
odd(q2

0 ) in momentum space contain infor-
mation from D+ and D− spectra in both positive and negative
energy regions. Namely, each term of the correlator 
D+

(q0)
of Eq. (7), can be rewritten as


even
(
q2

0

) = 1
2 [
+(q0) + 
−(q0)], (8)

q0

odd

(
q2

0

) = 1
2 [
+(q0) − 
−(q0)], (9)

045209-2



D MESON MASS INCREASE BY RESTORATION OF . . . PHYSICAL REVIEW C 93, 045209 (2016)

FIG. 1. Schematic picture of spectral function contributions in

even(q2

0 ) and q0

odd(q2

0 ) of the D+ correlator. The factor 1/2 on the
right-hand side is omitted for simplicity. Spectral functions of the
old-fashioned correlator include only spectra in the positive energy
region.

where 
+(
−) corresponds to the D+(D−) spectrum for
positive energy and the D−(D+) spectrum for negative energy
(see Fig. 1). For 
D−

(q0), the situation is reversed.
To separate D+ and D− from 
J (q0), we will formulate

below the charge-conjugate-projected sum rule, which is
analogous to the parity projection for baryon sum rules
[51,59,60].

In this approach, we define the old-fashioned correlator in
the rest frame (q = (q0,0)):

[
J (q0)]old = i

∫
d4xeiq0x0θ (x0)〈T [jJ (x)jJ †(0)]〉, (10)

where θ (x) is the Heaviside step function which removes the
negative energy contibution from the correlator. Using the
q0-even and q0-odd parts, the new OPE of the charge-
conjugate-projected sum rules is given as


D±
OPE ≡ [
±(q0)]old = [


even
(
q2

0

) ± q0

odd

(
q2

0

)]old
. (11)

Analyticity of the correlation functions connects the pro-
jected spectral functions to the imaginary part of the pro-
jected OPE. Multiplying the Gaussian kernel W (q0,ŝ,τ ) =

q0√
4πτ

exp[− (q2
0 −ŝ)2

4τ
] as a weight function, we obtain the

following integral sum rules:∫ ∞

−∞
dq0

1

π
Im 
D±

OPE W (q0,ŝ,τ )

= G̃even(ŝ,τ ) ± G̃odd(ŝ,τ )

=
∫ ∞

0
dω ρ±(ω) W (ω,ŝ,τ ). (12)

Here, Gaussian-transformed q0-even and q0-odd parts are
defined as

G̃even(ŝ,τ ) =
∫ ∞

0
dq0 W (q0,ŝ,τ )

1

π
Im

[

even

(
q2

0

)]old
,

G̃odd(ŝ,τ ) =
∫ ∞

0
dq0 W (q0,ŝ,τ )

1

π
Im

[
q0


odd
(
q2

0

)]old
.

(13)

With this definition, we reach the final form of the charge-
conjugate-projected OPE for D+ and D− mesons in nuclear
medium:

G̃even(ŝ,τ ) = 1

2
√

4πτ

1

π

∫ ∞

m2
h

ds

2
e− (s−ŝ)2

4τ Im
pert(s)

+ 1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ

[
−mh〈q̄q〉 + 1

12

〈
α

π
G2

〉
− 1

2

(
3m2

h − 2ŝ

4τ
− 2

(
m2

h − ŝ
)2

m2
h

(4τ )2

)
mh〈q̄gσGq〉

+
{

1

9
− 5m2

h

36τ

(
m2

h − ŝ
) +

(
−1

3
+ m2

h

(
m2

h − ŝ
)

6τ

)
ln

μ2

4m2
h

}〈
αs

π

(
(vG)2

v2
− G2

4

)〉

−2

(
1 −

(
m2

h − ŝ
)
m2

h

2τ

)
〈q†i

−→
D 0q〉 − 4

(
3m2

h − 2ŝ

4τ
− 2

(
m2

h − ŝ
)2

m2
h

(4τ )2

)
mh

[〈
q̄
−→
D 2

0q〉 −
〈

1

8
q̄gσGq

〉]]

+ 1

2
√

4πτ

∫ ∞

0
dye− [m2

h
(1+y)2−ŝ]2

4τ

{
−1

3

(1 + y)2

(2 + y)2
− ln y

3τ 2

[
m8

h(1 + y)7 − 2m6
hŝ(1 + y)5 + m4

h(1 + y)3(ŝ2 − (6 + y)τ )

+m2
hŝ(4 + 5y + y2)τ + τ 2]} ×

〈
αs

π

(
(vG)2

v2
− G2

4

)〉
, (14)

G̃odd(ŝ,τ ) = 1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ

[
mh〈q†q〉 + 4

(
− 3

8mh

+
(
4m2

h − 3ŝ
)
mh

4τ
− 2

(
m2

h − ŝ
)2

m3
h

(4τ )2

)〈
q†−→D 2

0q
〉

−
(

− 1

2mh

+
(
m2

h − ŝ
)
mh

2τ

)
〈q†gσGq〉

]
. (15)

We note that perturbative 〈q̄q〉, 〈 α
π
G2〉, and 〈q̄gσGq〉 terms in Eq. (14) agree with the OPE in vacuum of Eq. (4) (times 1/2).

This factor can be understood from the fact that Eq. (4) includes spectra from both D+ and D−, while they are separated in
Eq. (14).
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TABLE I. Numerical values of input parameters and those error bars in this work. ρ is the baryon number density. Renormalization scale for
condensates in vacuum is μ = mc. In-medium condensates are shown values at μ = 1 GeV, where density dependence of 〈q̄q〉 and 〈q̄gσGq〉
is run to μ = mc in our numerical analyses.

Condensates Vacuum value (μ = mc) Density dependence (μ = 1 GeV)

〈q̄q〉 (−0.2685(12)(14) GeV)3 [61] (σπN/(mu + md )) ρ

〈 α
π
G2〉 (0.33 ± 0.04 GeV)4 (−0.65 ± 0.15 GeV) ρ [62]

〈q̄gσGq〉 (0.66 ± 0.17 GeV2)〈q̄q〉 (3 ± 1 GeV2) ρ [62]

〈q†q〉 0 1.5 ρ

〈 αs

π
( (vG)2

v2 − G2

4 )〉 0 (−0.042 ± 0.017 GeV) ρ

〈q†gσGq〉 0 (0.33 GeV2) ρ [20,62,63]

〈q†i
−→
D 0q〉 0 (0.218 ± 0.021 GeV) ρ

〈q̄−→
D 2

0q〉 − 〈 1
8 q̄gσGq〉 0 (−0.011 ± 0.031 GeV2) ρ

〈q†−→D 2
0q〉 0 (−0.033 ± 0.004 GeV2) ρ + 〈 1

12 q†gσGq〉

To extract the spectral functions ρ±(ω) for D+ and D−
mesons from the sum rules of Eq. (12), we employ the MEM
[49]. The procedure of the MEM for Gaussian sum rules is
summarized in Appendix B.

III. RESULTS

A. Spectral functions in vacuum

To extract the spectral function of the vacuum D meson
from the sum rule of Eq. (12), we use the charm quark
pole mass, mc(μ = mc) = 1.67 ± 0.07 GeV [64], and the
strong coupling constant, αs(μ = mc) = 0.337 with �QCD =
0.296 ± 0.013 GeV and the number of active flavors Nf = 4
[65]. The used values of the condensates are shown in Table I.
The error bars of these parameters are important because
they are taken into account as uncertainties in the MEM
analyses.

Next, we have to choose a range (so-called window) for
the Gaussian parameters ŝ and τ , for which the OPE shows
sufficient convergence. At both zero and nonzero densities,
the dimension-3 〈q̄q〉 and dimension-5 〈q̄gσGq〉 terms mostly
dominate the OPE. Additionally, contributions of dimension-6
quark condensates can be expected to be very small [58]
(for a short discussion of this point, see also Sec III E and
Appendix A of this paper). We therefore, in this work, impose
the criterion that the absolute value of the 〈q̄gσGq〉 term
should be less than 30% of the total OPE. As long as this
condition is satisfied, ŝ and τ can be chosen arbitrarily.
As a result, we use 1.67 < ŝ < 3.21 GeV2 and 0.50 < τ <
0.62 GeV4.

Finally, we have to choose an input default model in the
MEM analysis. First, let us note that we will apply the MEM to
the dimensionless function ρ(ω)/ω2 in the present calculation.
In this work, the function of the default model rises from nearly
zero at a low energy to the value of the perturbative term
of Eq. (6) (divided by s = ω2) at high energy. The concrete
form of this function is shown in Fig. 2 as the green dashed
line.

The extracted D meson spectral function in vacuum is
shown as the red solid line in Fig. 2. In vacuum, the D+
and D− spectra are completely degenerate. The first peak

position is found at 1.74 GeV, which has a systematic error
which is typical (∼10%) for QCD sum rule analyses. The
value is thus consistent with the experimental value of the
D meson ground-state mass of 1.87 GeV [64]. In this work,
we are only interested in relative mass shifts, for which the
uncertainties of the absolute mass value largely cancel out.
The large systematic error for the absolute masses therefore
do not prohibit the extraction of the small mass shifts to be
discussed in this work.

Furthermore, the vertical error bar suggests that this peak is
statistically significant. Here, the central value of the error bar,
denoted as 〈ρ〉, represents the value of ρ(ω) averaged over the
energy range ω = 1.47–2.10 GeV which corresponds to the
overall range of the peak. The upper and lower horizontal lines
correspond to 〈ρ〉 ± 〈δρ〉, where the error 〈δρ〉 is determined
by the MEM analysis [49].

To check the default model dependence of the spectral
function, we obtained spectral functions with some functional
forms, which is shown in Fig. 3. From this figure, we find that
although our results depend on the choice of the default model,

 0

 0.01

 0.02

 0.03

 0  1  2  3  4  5

D±(JP=0−) (in vacuum)

ρ(
ω

)/
ω

2  [d
im

en
si

on
le

ss
]

ω [GeV]

D meson
default model

FIG. 2. Spectral function extracted with MEM from the D±

meson sum rule in vacuum. The definition of the error bar at the
peak is given in Ref. [49].
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ρ(
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ω

2  [d
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si

on
le

ss
]

ω [GeV]

default model 2
default model 3
default model 4

FIG. 3. Default model dependence of spectral function extracted
with MEM from the D± meson sum rule in vacuum. Solid and dashed
lines denote spectral functions extracted with MEM and input default
models, respectively.

the D meson peak is always reproduced and its mass is almost
independent of the default models.

B. Spectral functions in nuclear medium

Density dependencies of the vacuum condensates have
been discussed in the past (see, e.g., Refs. [62,66,67]). For
the D meson system, the density dependence of the OPE is
dominated by that of the 〈q̄q〉, 〈q̄gσGq〉, and 〈q†q〉 terms and
our final results are sensitive to the values of the corresponding
parameters. The reduction of the quark condensate 〈q̄q〉
at finite density is to leading order in ρ governed by the
πN sigma term and the light quark masses, which we fix
to σπN = 45 ± 15 MeV and mu + md = 9 ± 1 MeV [64] at
μ = 1 GeV. The behavior of the mixed condensate 〈q̄gσGq〉
at finite density is much less well determined. Here, we
follow the QCD sum rule literature and assume that its density
dependence is proportional to the one of the quark condensate
[62]. 〈q†q〉 on the other hand is nothing but the expectation
value of the quark density operator and its relation to the
Baryon number density is therefore exact.

Next, let us discuss the nonscalar condensates, that show
up only at finite density. As pointed out in Refs. [20,62],
not even the sign of 〈q†gσGq〉 is known with certainty.
Here, we choose the positive sign according to the reasons
given in Ref. [20]. Furthermore, to update the values
of the derivative condensates, we apply the relations
between nucleon matrix elements and moments of parton
distributions as given in Ref. [62]: 〈N | αs

π
( (vG)2

v2 − G2

4 )|N〉 =
− 3

4π
MNαs(μ2)Ag

2(μ2), 〈N |q†i
−→
D 0q|N〉 = 3

8MNA
q
2(μ2),

〈N |q̄−→
D 2

0q|N〉 − 〈N | 1
8 q̄gσGq|N〉 = − 3

4M2
Ne

q
2 (μ2), and

〈N |q†−→D 2
0q|N〉−〈N | 1

12q†gσGq|N〉=− 1
4M2

NA
q
3(μ2), where

MN = 0.939 GeV is the nucleon mass. The values of
A

g
2 = 0.359 ± 0.146, A

q
2 = 0.62 ± 0.06, and A

q
3 = 0.15 ±

0.02 are calculated by numerically integrating the
parton distribution functions given in Ref. [68]. Also,
e
q
2 = 0.017 ± 0.047 is extracted from the recent experimental

 0

 0.01

 0.02

 0.03

 0  1  2  3  4  5

D+(JP=0−)(a)

ρ(
ω

)/
ω

2  [d
im
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on
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ss
]

ω [GeV]

vacuum
0.5ρ0
1.0ρ0
1.5ρ0

 0
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 0.02

 0.03

 0  1  2  3  4  5

D−(JP=0−)(b)

ρ(
ω

)/
ω

2  [d
im

en
si

on
le

ss
]

ω [GeV]

vacuum
0.5ρ0
1.0ρ0
1.5ρ0

FIG. 4. Spectral functions extracted with MEM from D± meson
sum rules in nuclear matter. (a) D+ meson. (b) D− meson. ρ0 =
0.0013[GeV3] is the nuclear saturation density.

data of Ref. [69], following the methods explained in
Ref. [47]. These quantities are averaged over u and d quarks
and are given at a renormalization scale of about 1 GeV.

Discussion 1: Mass increase from chiral symmetry. Our
results of the D± meson spectral functions at finite density
are shown in Fig. 4. For both D+ and D−, the peak
residues gradually decrease as the density increases while
the peak positions are shifted to higher energies. The density
dependencies of the peak positions are shown in Fig. 5. Both
D+ and D− show positive energy shifts. As shall be discussed
in more detail in the next section, we find that the main source
of the mass increase is the density dependence of the chiral
condensate. Namely, the mass enhancements in the D mesons
indicate the partial restoration of the chiral symmetry.

It is interesting to see that the behaviors of the D
meson masses are somewhat different from the light vector
mesons such as ρ, ω, and φ in nuclear matter. Their masses
were predicted to decrease because of the chiral symmetry
restoration in many older works (e.g., Refs. [25,70]). More
recent studies based on effective models, however, rather point
towards a combination of strong broadening and a negative
mass shift (e.g., Refs. [32,34,71]). On the other hand, the
mass enhancement for the D meson may be understood as a
shift towards the degeneracy of the chiral partners (or parity
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FIG. 5. Density dependence of D± meson peak positions. Dashed
lines and shaded areas correspond to errors from uncertainties of
in-medium condensates.

partner), namely pseudoscalar D and scalar D0 mesons. From
this point of view, one would expect the D0 meson mass to
decrease with increasing density. This expectation is consistent
with what one obtains in the OPE, in which the signs of the
Wilson coefficients in front of the chiral-symmetry-broken
condensates, 〈q̄q〉 and 〈q̄gσGq〉, for the D meson channel
[Eq. (4)] are opposite to those for the D0 meson. For the light
vector mesons such as ρ and ω, these terms also have a different
sign from the D meson, but are suppressed by the light quark
mass and do not give a significant contribution. Other terms
are more important for these channels and their mass shifts are
therefore of somewhat different origin.

Our results qualitatively agree with Ref. [20], where the
Borel sum rule with a “pole + continuum” ansatz were
employed and a mass shift of +45 MeV at nuclear saturation
density ρ0 was obtained for the average of D+ and D−.
Moreover, the degeneracy between the heavy-light chiral
partners (D-D0) near the critical temperature (or density) is
discussed from the point of view of effective models [72–75].

Discussion 2: D+–D− mass splitting. In Fig. 5, we see
that the D− meson mass shift (about +38 MeV at ρ0) is
stronger than that of the D+ meson (about +23 MeV at ρ0).
The mass splitting (defined mD+ − mD−) between the D+ and
D− mesons is thus about −15 MeV at ρ0. From the viewpoint
of the QCD sum rule, the D+–D− mass splitting is caused
by the sign of the charge-symmetry-breaking q0-odd terms,
〈q†q〉, 〈q†−→D 2

0q〉, and 〈q†gσGq〉 in Eq. (11). We note that in
Ref. [20], a mass splitting of −60 MeV was obtained.

This behavior can be understood by the following intuitive
physical pictures. The D− meson has one light “quark” which
repulsively interacts with the quarks in the nuclear medium
from Pauli blocking. As a result, the bound state is weakened
and the meson mass increases. On the other hand, the D+
meson has one light “antiquark” instead of one quark, so that
it should be not affected by the Pauli blocking between quarks.
As an alternative picture, we mention the scalar and vector me-
son mean fields as pointed out in Refs. [16,17]. The contribu-
tion from the scalar (vector) mean field has the same (opposite)
sign between a light quark and a light antiquark. As a result, the

vector mean field induces the D+–D− mass splitting. These
are, however, just intuitive pictures, and in reality we have to
take into account also other effects for a full understanding.

Other discussions. Let us here mention the potential effect
of in-medium broadening of the D meson peaks, which was
discussed in works based on hadronic effective theories. The
width broadening may be attributed to some physical origins
such as resonant-hole excitations YcN

−1 of a charmed baryon
Yc and a nucleon hole N−1 [6–10]. As sum rules, however, only
provide integrals of the spectral function, they are generally
not very sensitive to peak widths as long as the width is much
smaller than the mass. This is reflected in our MEM analysis,
which has only a limited resolution and cannot extract detailed
structures of the spectral function. This can be understood, for
instance, from our vacuum spectral function shown in Fig. 2, in
which the relatively large width of the D meson peak can only
be a MEM artifact and has no physical meaning. Furthermore,
it is seen in Fig. 3 that the width moreover depends on the
default model. Therefore, we can in this study not make any
claim about the broadening of the D meson line shapes. We
emphasize, however, that in contrast to the peak width, the
position of the peak can correctly be extracted from the MEM,
even if its width broadens physically [46].

Finally, we comment on the error regions in Fig. 5, which
come from the uncertainties of the in-medium condensates.
The main source of this error is the πN sigma term. To get
a better idea on the precision of our analysis, we will check
the sigma term dependence of the mass shifts in the next
subsection.

C. Sigma term dependence of medium modification

The πN sigma term is defined as the nucleon matrix ele-
ment σπN = mq〈N |(ūu + d̄d)|N〉, with mq = (mu + md )/2.
As mentioned earlier, this is a parameter related to the density
dependence of the chiral condensate as 〈q̄q〉ρ = 〈q̄q〉0 +
σπNρ/(2mq). The still most commonly used value of σπN , ob-
tained from a phenomenological estimation [76], is 45 MeV,
which we employed in the previous subsection. The values
reported in recent lattice QCD and more phenomenological
studies are unfortunately still not consistent and lie roughly in
the range 30–75 MeV [77–87].

In this subsection, we therefore investigate the response
of different sigma term values to our sum rules. Sigma term
dependencies of the D meson mass shifts at nuclear saturation
density are shown in Fig. 6. With a larger sigma term, both
D+ and D− masses exhibit increasing positive mass shifts.
This behavior comes from the density dependence of mc〈q̄q〉
which is proportional to the sigma term. On the other hand,
the D+–D− mass splitting expectedly shows almost no σπN

dependence, as the splitting is caused by the q0-odd terms,
which are not directly related to σπN . Furthermore, it becomes
clear from Fig. 6 that the density dependence of the chiral
condensate indeed is responsible for a large part of the D
meson mass shift.

Thus, the behavior of the D meson in nuclear matter is quite
sensitive to value of σπN , so that a precise evaluation of the
sigma term will be needed to constrain the error regions shown
in Fig. 5.
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D. Heavy quark mass dependence of medium modification

Next, we examine behaviors of the spectra when the heavy
quark mass is artificially changed. In QCD sum rules, what
we need to do is only to replace the charm quark mass with an
arbitrary heavy quark mass. Strictly speaking, we have to take
into account the running coupling constant αs which depends
on the quark flavor and the renormalization point. We, however,
here keep the coupling constant fixed because our purpose is
to investigate the dependencies by the heavy quark mass.

Figure 7 shows the mass shifts of D+ and D− at ρ = ρ0

as a function of the heavy quark pole mass mh, ranging from
mh = 2.0 GeV to the bottom quark mass mb = 4.78 GeV. In
the top panel of this figure, we observe an enhanced D−-meson
mass with increasing the heavy quark mass. This is caused by
the heavy quark mass factor mh in the Wilson coefficient of
the chiral condensate 〈q̄q〉 and the 〈q†q〉 term, which have the
same sign for D− and both have the effect of enhancing the
positive mass shift. On the other hand, the D+ mass seems to
decrease for higher heavy quark masses. This difference can
be explained as follows: Because the OPE of D+ and D− have
a different sign in front of the q0-odd terms, the 〈q†q〉 term will
for the D+ meson suppress the effect of the chiral condensate
and even lead to a negative mass shift. To summarize, the
D−-meson mass is enhanced by the combination of (the heavy
quark mass dependence of) the q0-even and q0-odd terms,
while the reduction in the D+-meson mass means that the
q0-odd terms overcome the q0-even terms.

These results are qualitatively consistent with the B-meson
analysis in Ref. [20], where a mass shift of +60 MeV for the
central value of the B+ and B− masses and a mass splitting of
+130 MeV was obtained at ρ0.

E. Contribution of dimension-6 condensates

In the above analyses, condensates up to dimension-5 have
so far been included. In this subsection, we will investigate
the potential influence of dimension-6 condensates on our
results. In Ref. [58], Wilson coefficients of a large number
of dimension-6 condensates in medium were computed for
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FIG. 7. Artificial heavy quark mass dependence of D meson mass
shifts at nuclear saturation density ρ0. (a) Dependencies of individual
D+ and D− mass shifts. (b) Dependence of mass splitting between D+

and D−, namely the values of m−(mh,ρ = ρ0) − m+(mh,ρ = ρ0).

the pseudoscalar D meson channel. The OPE provided in
[58] contains in total 14 different operators, 〈O1〉...〈O14〉. At
present, it is beyond our ability to give reliable estimates for
the expectation values of all of these operators. Our analysis
should therefore not be considered to be complete and final, but
is rather a first order-of-magnitude estimation of the numerical
magnitudes of these terms. Specifically, we will consider only
five operators, namely, 〈O1〉, 〈O2〉, 〈O8〉, 〈O9〉, and 〈O14〉,
which are defined as

O1 = q̄γ νtAq
∑
f

q̄f γνt
Aqf , O2 = q̄ 	vtAq

∑
f

q̄f 	vtAqf ,

O8 = q̄(iv · ←−D )3 	vq, O9 = q̄tAq
∑
f

q̄f 	vtAqf , (16)

O14 = q̄(iv · ←−D )3q.

Their Gaussian-transformed Wilson coefficients are summa-
rized in Appendix A.

For the four-quark condensates, 〈O1〉, 〈O2〉, and 〈O9〉,
precise evaluations are presently still not feasible. One
method, that at least provides a crude estimate of
these values, is the factorization hypothesis, in which
the four-quark condensates are factorized into two-quark
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condensates. In the linear density approximation this leads
to [58] 〈O1〉 ≈ − 4

9κ1[〈q̄q〉2
0(1 − 2σπNρ/m2

πf 2
π )], 〈O2〉 ≈

− 1
9κ2[〈q̄q〉2

0(1 − 2σπNρ/m2
πf 2

π )], and 〈O9〉 ≈ − 4
3κ3〈q̄q〉0ρ,

with κ1 = κ2/3 = κ3 = 1. Furthermore, the traceless parts of
the dimension-6 derivative condensates, 〈O8〉 and 〈O14〉, can
be estimated by the third moments of the quark parton distri-
bution function (Aq

4) and the twist-3 parton distribution func-
tion (eq

3 ), respectively. The results read 〈O8〉 − 〈O8〉scalar =
〈O8〉 − 1

48g2〈O1〉 ≈ − 5
32m3

NA
q
4 and 〈O14〉 ≈ − 1

2m3
Ne

q
3 , where

A
q
4 = 0.066 ± 0.007 [68] and e

q
3 = (1.4 ± 7.5) × 10−3 [69]

are extracted in the same way as the second moments explained
earlier. Note that the above expressions ignore potential spin-2
and spin-1 contributions to 〈O8〉 and 〈O14〉.

Adding these condensates to our sum rules, we extracted
the D meson spectral functions at nuclear saturation density
and compared them to the ones obtained in the previous
sections. As a result, we found that the dimension-6 terms
give no relevant contribution to the D meson mass shift in
medium. The curves in Figs. 4 and 5 indeed look identical
with and without these terms being taken into account.
Therefore, we can conclude that our results are not likely
to depend much on the condensates shown in Eq. (16). To
reach a definitive conclusion, a full analysis of all possible
dimension-6 condensates will, however, be needed.

IV. COMMENTS FOR PREVIOUS WORKS
IN QCD SUM RULES

In this section, we compare our results with those of
previous works, which are summarized in Table II.

We in particular will comment and shortly discuss the
results of the in-medium D meson masses from QCD sum rules
[19–22]. In Ref. [19], the OPE with in medium condensates up

to dimension-4 was used. However, as pointed out in Ref. [57],
one Wilson coefficient in Ref. [19] was not correct, causing an
erroneous minimum in the lower region of the Borel curve
of the D meson mass in vacuum. The condensates up to
dimension-5 and q0-odd terms were included in Ref. [20].
Additionally, contributions from the dimension-6 four quark
condensates in medium were estimated in Ref. [58]. O(αs)
corrections of the chiral condensate, mcαs〈q̄q〉 term were
calculated in Ref. [22].

As shown in Table II, the sign of the resulting mass shifts
in Refs. [19,21,22] is opposite to that in Ref. [20]. It should
be emphasized that the main reason for this discrepancy lies
in the difference between the choices of the Borel windows.
The approaches of Refs. [19,21,22] relate the spectral function
to the forward D-N scattering amplitude in the limit of
vanishing three-momentum [31]. In this method, the vacuum
and in-medium parts of the correlation function in nuclear
medium are completely separated, so that one can focus only
on the in-medium part. As a result, the window in Ref. [19] is
located in the region 1.73 GeV < M < 2.83 GeV on the Borel
curve of the mass shift. The Borel windows in Refs. [21,22]
correspond to 2.00 GeV < M < 2.83 GeV and 2.10 GeV <
M < 2.32 GeV, respectively. On the other hand, in Ref. [20],
the Borel window was determined as 0.86 GeV < M <
1.14 GeV, which is clearly lower than in Refs. [19,21,22].
The Borel mass M enters the sum rules as a factor e−ω2/M2

,
which strongly suppresses spectral contributions to the sum
rules that lie at energies much above M . This means that only
if M is chosen small enough, the ground state will dominate
the sum rule. Conversely, if M is too large, excited states and
various continuum channels will contribute to the sum rules
with the comparable weight to the ground state and therefore
will contaminate the result. This is why one usually demands

TABLE II. List of D+- and D−-meson mass shifts in nuclear medium at nuclear saturation density ρ0 from various theoretical approaches.
(∗) Reference [5] observed the quasiparticle D+ peak to mix with a resonance structure in nuclear medium. (∗∗) References [19,21,22]
evaluated only the average mass shift of D+ and D−. Reference [20] obtained the average mass shift of +45 MeV and D+-D− mass splitting
of −60 MeV, from which we estimate the individual values of D+ and D−.

δD+ (MeV) δD− (MeV) Ref.

Coupled channel approach [for flavor SU(3)] (∗) [5]

[for flavor SU(4)] −32 +18 [6]

−(12–18) +(11–20) [7,8]

−35 +(27–35) [9]

[for spin-flavor SU(8)] 
 − (20–27) [10]

Chiral model 
 − (30–180) [11]

−81 −30 [12]

−77 −27 [13,14]

Pion exchange model −35.1 [15]

Quark-meson coupling (QMC) model −60 [16]


 − 140 
 + 20 [17]

QCD sum rule (∗∗) −48 ± 8 [19]

+15 +75 [20]

−46 ± 7 [21]

−72 ± 14 ± 9 [22]

+23 +38 This work
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that the so-called “pole contribution” should be above 50%
when defining the Borel window. This criterion is not fulfilled
for the large Borel masses used in Refs. [19,21,22] (see, for
instance, the discussion given in Sec. III of Ref. [22]). It is
therefore plausible that the modifications of the excited states
and the continuum channels at finite density are the reason for
the negative mass shifts of Refs. [19,21,22]. This interpretation
is consistent with the behavior of the mass shift Borel curves
of Refs. [19,22], which indeed approach zero when the Borel
mass is lowered towards M ∼ 1.5 GeV, showing that once the
excited states are removed from the sum rules, the claimed
negative mass shift in fact vanishes (in Ref. [21] the Borel
curve is not shown for such small Borel masses). We therefore
believe that the results obtained from the smaller Borel masses
of Ref. [20] are more reliable.

Our window used as an input into MEM is compatible with
that of Ref. [20]. Here, we stress that our results for the mass
of the ground state do not depend on the threshold parameter
or the density dependence of the continuum, so that we can
focus only on the medium modification of the ground-state
peak. With the higher Borel window used in Refs. [19,21,22],
we cannot reproduce the D meson peak in vacuum from MEM
because of the dominant continuum contribution to the sum
rule.

V. CONCLUSION AND OUTLOOK

We have investigated the pseudoscalar D meson mass in
nuclear medium by using QCD sum rules and MEM. To
separate D+ and D− into independent contributions, we have
constructed the charge-conjugate-projected sum rules. From

these sum rules and MEM, we have obtained the spectral func-
tions for the D+ and D− mesons in nuclear matter. It is found
that both D+ and D− peaks are shifted to a higher energy with
increasing density. This result indicates the enhancement of D
meson mass from the partial restoration of chiral symmetry.
We have moreover observed a D+-D− mass splitting of about
−15 MeV at nuclear saturation density ρ0. This behavior is
attributed to the q0-odd condensates, which break the charge
symmetry. The D meson system is thus found to be useful to
probe the chiral and charge symmetries at finite density.
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APPENDIX A: OPE OF DIMENSION-6 CONDENSATES

In this Appendix, the dimension-6 part of the OPE used
in Sec. III E is briefly summarized. In Ref. [58], the Wilson
coefficients of in medium dimension-6 condensates were
computed for in total 14 different operators. In this work, we
focus on only five of them and neglect the nine condensates
which contain a gluon field. From Eq. (8) in Ref. [58],
by setting v = (1,0,0,0) and p = (1,0,0,0), the OPE in
momentum space can be written as


even
dim6(q0) = 1

3

1(
q2

0 − m2
h

)2

[
1 + 1

2

m2
h

q2
0 − m2

h

− 1

2

m4
h(

q2
0 − m2

c

)2

]
g2〈O1〉

− 1

3

q2
0(

q2
0 − m2

h

)3

[
−9

2
g2〈O1〉 + 8g2〈O2〉

]
+ 1

6

q4
0(

q2
0 − m2

h

)4 [g2〈O1〉 − 48〈O8〉], (A1)


odd
dim6(q0) = −2mh

1(
q2

0 − m2
h

)3 g2〈O9〉 + 8mh

q2
0(

q2
0 − m2

h

)4 〈O14〉. (A2)

Furthermore, performing the Gaussian transformation of Eq. (13), we finally obtain

G̃even
〈O1〉(ŝ,τ ) = g2〈O1〉 1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ
1

288τ 3

[−m10
h + 3m8

hŝ − 3m6
hŝ

2 + m4
h(ŝ3 + 6ŝτ ) − 6m2

h(ŝ2 − 10τ )τ − 48ŝτ 2
]
, (A3)

G̃even
〈O2〉(ŝ,τ ) =

[
−9

2
g2〈O1〉 + 8g2〈O2〉

]
1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ
1

24τ 2

[
m6

h − 2m4
hŝ + m2

h(ŝ2 − 6τ ) + 4ŝτ
]
, (A4)

G̃even
〈O8〉(ŝ,τ ) = [g2〈O1〉 − 48〈O8〉] 1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ
1

288τ 3

[
m10

h − 3m8
hŝ + 3m6

h(ŝ2 − 6τ )

−m4
h(ŝ3 − 30ŝτ ) − 12m2

h(ŝ2 − 4τ )τ − 24ŝτ 2
]
, (A5)

G̃odd
〈O9〉(ŝ,τ ) = g2〈O9〉 1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ
1

4m2
hτ

2

[
m8

h − 2m6
hŝ + m4

h(ŝ2 − 4τ ) + 2m2
hŝτ − τ 2

]
, (A6)

G̃odd
〈O14〉(ŝ,τ ) = 〈O14〉 1

2
√

4πτ
e− (m2

h
−ŝ)2

4τ
1

6m2
hτ

3

[
m12

h − 3m10
h ŝ + 3m8

h(ŝ2 − 5τ )

−m6
h(ŝ3 − 24ŝτ ) − 9m4

h(ŝ2 − 3τ )τ − 9m2
hŝτ

2 + 3τ 3
]
. (A7)
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APPENDIX B: MEM FOR QCD SUM RULES

In this section, we briefly introduce the procedure of the
MEM analysis for QCD sum rules. More technical details are
shown in Ref. [49]. The MEM is based on Bayes’ theorem:

P [ρ|G̃H ] = P [G̃|ρH ]P [ρ|H ]

P [G̃|H ]
, (B1)

where ρ and G̃ correspond to the spectral function and the
OPE in our sum rules [Eq. (12)], respectively. H denotes prior
knowledge on ρ such as positivity and its asymptotic values.
P [ρ|G̃H ] represents the conditional probability of ρ if G̃ and
H are given. On the right-hand side, P [G̃|ρH ] and P [ρ|H ]
stand for the (i) likelihood function and (ii) prior probability,
respectively. P [G̃|H ] is only a normalization constant and
does not depend on ρ. To maximize P [ρ|G̃H ], we have to
estimate P [G̃|ρH ] and P [ρ|H ]:

(i) The likelihood function is written as

P [G̃|ρH ] = e−L[ρ], (B2)

L[ρ] = 1

2ŝ−τ−

∫ ŝmax

ŝmin

dŝ

∫ τmax

τmin

dτ

× [G̃(ŝ,τ ) − G̃ρ(ŝ,τ )]2

σ 2(ŝ,τ )
, (B3)

where ŝ− = ŝmax − ŝmin and τ− = τmax − τmin. Here,
G̃(ŝ,τ ) is obtained from the OPE and corresponds to

the left-hand side in our sum rules, while G̃ρ(ŝ,τ ) is
defined as the right-hand one in Eq. (12). σ (ŝ,τ ) stands
for the uncertainty of G̃(ŝ,τ ) (see Ref. [49]).

(ii) The prior probability is written as

P [ρ|H ] = eαS[ρ], (B4)

S[ρ] =
∫ ∞

0
dω

[
ρ(ω) − m(ω)

−ρ(ω) log

(
ρ(ω)

m(ω)

)]
, (B5)

where S[ρ] is known as the Shannon-Jaynes entropy
and α is introduced as a real positive scaling factor.
m(ω) is called the default model and determines the
spectral function when there is no information from
the OPE.

Using Eqs. (B2) and (B4), we rewrite Eq. (B1) as

P [ρ|G̃H ] ∝ P [G̃|ρH ]P [ρ|H ]

= eQ[ρ], (B6)

Q[ρ] ≡ αS[ρ] − L[ρ]. (B7)

To determine the most probable ρ(ω), we search for the
maximum of the functional Q[ρ] by the Bryan algorithm [88].
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