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Jet fragmentation via recombination of parton showers
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We propose to model hadronization of parton showers in QCD jets through a hybrid approach involving
quark recombination and string fragmentation. This is achieved by allowing gluons at the end of the perturbative
shower evolution to undergo a nonperturbative splitting into quark and antiquark pairs, then applying a Monte
Carlo version of instantaneous quark recombination, and finally subjecting remnant quarks (those which have not
found a recombination partner) to Lund string fragmentation. When applied to parton showers from the PYTHIA

Monte Carlo event generator, the final hadron spectra from our calculation compare quite well to PYTHIA jets that
have been hadronized with the default Lund string fragmentation. Our new approach opens up the possibility to
generalize hadronization to jets embedded in a quark gluon plasma.
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I. INTRODUCTION

Hadron production from jets in high-energy collisions of
hadrons or nuclei is often parametrized through fragmen-
tation functions, using the universality of the process as
given by factorization theorems of quantum chromodynamics
(QCD) [1]. On a microscopic level, hadron production in jets
can be modeled very well through a perturbative evolution
of the parton shower inside the jet using Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) splitting kernels to some
low virtuality cutoff Q0, followed by a nonperturbative
hadronization model like the Lund string model or cluster
hadronization applied to the parton shower. Event generators
like PYTHIA [2] and HERWIG [3] have successfully implemented
such strategies to describe high-momentum-hadron production
in e+ + e−, p + p, and other processes.

In collisions of heavy nuclei at high energy, QCD fac-
torization in jet hadronization is broken up to much higher
hadron momentum, roughly 6 to 8 GeV/c at typical collider
energies, compared with the situation in elementary e+ + e−
and p + p collisions. This can be readily seen from the baryon
enhancement measured in nuclear collisions both in Au + Au
collisions at the Relativistic Heavy Ion Collider (RHIC) [4] and
in Pb + Pb collisions at the Large Hadron Collider (LHC) [5].
It has been suggested that hadron production at intermediate
momenta, i.e., 2 to 8 GeV/c, can be described through
the process of quark recombination or coalescence [6–11].
It is an intriguing idea to combine the concepts of quark
recombination and parton showers because recombination can
be easily generalized to the hadronization of jets in dense
environments as found in relativistic heavy ion collisions. In
fact, quark recombination was applied to hadronization in
jets in the early days of QCD [12–14] and more recently
by Hwa and Yang [15]. However, parton showers in those
early works were not obtained from the sophisticated parton
Monte Carlo generators available today, but rather fit to data
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or determined from specific models. In addition, earlier work
also used event-averaged spectra, ignoring fluctuations coming
from the small number of partons in each jet.

Here we show that essential aspects of hadron production in
jet showers can be reproduced if we replace Lund string frag-
mentation in PYTHIA with an improved recombination model.
We work with quarks and gluons at the end of their perturbative
shower evolution, then let gluons decay into quark-antiquark
pairs, evaluate quark recombination probabilities based on
hadron Wigner functions by Monte Carlo sampling, and finally
reapply Lund string fragmentation to those quarks which have
not found a recombination partner. Finally, we compare our
results to full PYTHIA results which simply hadronize entire
showers by string fragmentation.

This paper is organized as follows: In the next section
we describe how we prepare perturbative parton showers and
extract the constituent quark distributions in phase space. In
Sec. III, we describe the recombination model used in the
present study and our treatment of remnant partons. In Sec. IV,
we discuss our results and compare to full PYTHIA with string
fragmentation. We conclude in Sec. V. Also included is an
appendix to derive the recurrence relation for the overlap
integral between the Gaussian wave packets of partons and the
harmonic oscillator wave functions of hadrons in the Wigner
formalism used in the recombination calculation. Although
in this work we deal strictly with jets in the vacuum, our
motivation derives from the desire to generalize our approach
to jets in a QCD medium later on [16].

II. PARTON SHOWERS

We are not concerned here with the mechanisms involved
in creating parton showers. We use PYTHIA 6.3 [2] as a
tool to create perturbative parton showers as input to our
hadronization procedure. PYTHIA 6.3 also serves as our
benchmark for hadronization when we run pure Lund string
fragmentation on the same ensemble of parton showers. Of
course, another event generator that allows the extraction of
shower partons from a jet before hadronization would work as
well. Unless explicitly stated otherwise, the results presented
here use monoenergetic jets of energy 100 GeV which are
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FIG. 1. Distribution dN/dz of shower partons in terms of the
momentum fraction z of the initial jet momentum at the end of
the perturbative shower evolution for a jet of 100 GeV before
(upper panel) and after (lower panel) forcing gluon decays into
quark-antiquark pairs.

extracted from e+ + e− collisions at a center-of-mass energy
of

√
s = 2Ejet = 200 GeV in PYTHIA 6.3. By setting the cutoff

for the perturbative evolution of the jet to Q0 = 1 GeV, we
extract the final parton configuration before string breaking.
The upper panels of Figs. 1 and 2 show the resulting light
quark (u,d,ū,d̄), strange quark (s,s̄), and gluon (g) spectra as
functions of their longitudinal momentum fraction z in the jet
and as functions of their momentum pT transverse to the jet
axis, respectively. More precisely we define

z = p · Pjet

|Pjet|2 , pT =
√|p|2|Pjet|2 − (p · Pjet)2

|Pjet| . (1)

where p is the three-momentum of the considered parton and
Pjet is the three-momentum of the original parton creating the
jet. The spectra dN/dz and dN/d2pT are for one jet averaged
over an ensemble of 106 PYTHIA jets with Ejet = 100 GeV.

Since recombination models are usually built on the premise
of dominance of the lowest Fock states in hadron wave func-
tions, similar to hadronization in exclusive processes [17,18],
only quarks and antiquarks are considered (see Ref. [19] for a
study on higher Fock states). Successful recombination models
therefore postulate a (nonperturbative) splitting of gluons
into quark-antiquark pairs. In PYTHIA, the final virtuality of
shower gluons is forced to zero when the value becomes
smaller than Q0. Instead of undoing this step, we assume for
simplicity that, at the end of their perturbative evolution, the

FIG. 2. Same as Fig. 1 but for the shower parton transverse
momentum distribution dN/d2pT .

virtualities of gluons are uniformly distributed between 2mu,d

and mmax > 2ms , where mu,d = 0.33 GeV and ms = 0.5 GeV
are constituent quark masses for light and strange quarks,
respectively, as in PYTHIA. We decay gluons isotropically in
their rest frame into qq̄ pairs. The decay chemistry gives equal
weight to uū and dd̄ pairs for gluon virtualities between 2mu,d

and 2ms , while above the strangeness threshold the ratio of
light to strange quarks is simply given by phase space and the
vector nature of the decay as

�(g∗ → uū,dd̄)

�(g∗ → ss̄)
= 2

m2 + 2m2
u,d

m2 + 2m2
s

√
m2 − 4m2

u,d

m2 − 4m2
s

. (2)

We do not consider heavy quarks in this study. For the
value of mmax, we fix it by fitting PYTHIA results from string
fragmentation for the ratio of strange to nonstrange hadrons
and obtain mmax = 1.25 GeV, which is used throughout this
work.

We note that, in reintroducing the nonperturbative gluon
virtuality manually without rebalancing momenta in the last
splitting in PYTHIA, the typical error in total energy of the
shower introduced this way is less than 1% for 100 GeV jets.
The lower panels of Figs. 1 and 2 show the spectra of light
and strange quarks from gluon decays for the same sample of
100 GeV jets used previously, together with the total light and
strange quark spectra. The average number of quark and anti-
quarks in these 100 GeV jet showers after decays is about 13.

In principle, quark recombination could be formulated
completely in momentum space (see Ref. [20] for applications
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to jet showers). However, for future applications in heavy
ion collisions, where thermal partons will have nontrivial
space-momentum correlations, we espouse a formulation of
quark recombination employing Wigner functions with both
momentum and freeze-out information. We are therefore led to
introduce a freeze-out structure of showers. We do this based
on two simple premises: (i) Virtual partons with virtuality
Q have an average lifetime 1/Q in their rest frame before
splitting. This time is then properly boosted into the laboratory
frame. (ii) The centers of wave packets representing partons
move on free classical trajectories given by the velocity p/E
of the parton in the laboratory frame, where E is the parton
energy.

In the jet rest frame the spatial density of its shower
partons depends on the time they are produced. However
their density in momentum space is about 0.025/GeV3 and
significantly smaller than the corresponding value of about
2.5/GeV3 for partons in a quark-gluon plasma at its phase
transition temperature. One can analyze this parton initial state
for hadronization more quantitatively. As we will discuss in
detail in the next section, the decisive physical quantities for
recombination between a particular quark and antiquark pair
to occur are the relative distances y and k between the partons
in space and momentum space measured at a common time
in the rest frame of the pair. In Fig. 3 we show the statistical
distribution of all quark-antiquark pairs we find in 100 GeV
jet parton showers (normalized to one jet) as a function of
their distances y and k in their common rest frame at the time
when the latter parton of a pair is created. We find that this
distribution peaks at y ∼ 0.5 fm and k ∼ 0.3 GeV, although
large tails exist. This points to the existence of a “bulk” of
partons in a jet shower which are quite close in phase space
and amenable to recombination, while another, non-negligible
fraction of partons will be far removed from other partons in
phase space.

FIG. 3. Statistical distribution of quark-antiquark pairs in
100 GeV jet parton shower in terms of relative spatial and momentum
coordinates y and k of the pair. The coordinates are defined in the
common rest frame of the pair at the time the latter parton is created
in the shower.

III. QUARK RECOMBINATION

Instantaneous quark recombination is most conveniently
expressed in terms of an overlap of Wigner functions [11].
The momentum distributions of mesons and baryons formed
from recombination of quarks are generally given by [6]

dNM

d3PM

= gM

∫
d3x1d

3p1d
3x2d

3p2fq(x1,p1)fq̄(x2,p2)

×WM (y,k)δ(3)(PM − p1 − p2), (3)

and
dNB

d3PB

= gB

∫
d3x1d

3p1d
3x2d

3p2d
3x3d

3p3fq1 (x1,p1)

×fq2 (x2,p2)fq3 (x3,p3)WB(y1,k1; y2,k2)

×δ(3)(PB − p1 − p2 − p3), (4)

respectively, if one takes the Wigner functions of quarks
to be δ functions in space and momentum. In the above,
fq(x1,p1) and fq̄(x2,p2) are the phase-space distribution
functions of quarks and antiquarks, and they are normalized
as

∫
d3xd3pfq,q̄ (x,p) = Nq,q̄ , where Nq,q̄ is the quark or anti-

quark number. The Wigner functions of the meson and baryon
(or antibaryon) are denoted by WM (y,k) and WB(y1,k1; y2,k2),
expressed in terms of the relative coordinates and relative
momenta of their valence quarks. For mesons, they are defined
as

y = x1 − x2, k = 1

m1 + m2
(m2p1 − m1p2), (5)

where m1 and m2 are the masses of the quark and antiquark,
respectively. For baryons (or antibaryons), while y1 and k1 are
similarly defined as in Eq. (5), the second relative coordinate
y2 and relative momentum k2 are given by

y2 = m1x1 + m2x2

m1 + m2
− x3,

(6)

k2 = m3(p1 + p2) − (m1 + m2)p3

m1 + m2 + m3
,

with m3 being the mass of the third quark (or anti-
quark). The meson and baryon Wigner functions are normal-
ized as (2π )−3

∫
d3yd3kWM (y,k) = 1 and (2π )−6

∫
d3y1d

3k1

d3y2d
3k2WB(y1,k1; y2,k2) = 1. The factor gM in Eq. (5)

accounts for the probability for the color triplet, spin-1/2 quark
and antiquark to form a given color singlet meson, while gB is
the corresponding factor for three quarks (antiquarks) to form
a given color singlet baryon (antibaryon). In the present study,
the phase space distribution functions of quarks and antiquaks
will be taken from the Monte Carlo jet shower generator, and
we are going to use harmonic oscillator wave functions for
hadrons to evaluate their Wigner functions.

In Ref. [6] for recombination of thermal partons among
themselves and with jet partons, both the color and spin
quantum numbers are treated on a purely statistical basis.
The color flow in the parton shower is in principle tractable,
although not yet implemented here for simplicity. Since the
number of shower partons in a jet is very small, strong
color correlations exist and the probability for colored shower
partons to form color singlet hadrons is thus much larger than
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given by a statistical factor for colored thermal partons. For
the present study we will neglect the statistical factors due to
the color degrees of freedom and only include those due to
the spin degrees of freedom. However, we prohibit the quark-
antiquark pair from a forced gluon decay to recombine into
a color-singlet meson. This approximation can be solidified
by either invoking local color neutrality arguments [3,21],
as also used for cluster hadronization in HERWIG, or the
color evaporation approach, similar to the one used in heavy
quarkonium production in nuclear reactions where the quark
and antiquark pair’s wave function is assumed to be readjusted
to a color singlet through soft gluon emission prior to forming
a bound state [22–24]. Of course this could be improved in the
future by following color flow in the parton shower simulation.

Because of their large relative momenta, shower partons
are quite likely to recombine into excited hadron states.
Wigner functions can have negative values, which makes them
unsuitable for direct Monte Carlo evaluation. Instead we have
to sample the quantum-mechanical overlap integrals of the
hadron Wigner functions with the Wigner functions represent-
ing the wave packets of shower partons, which we take to
be Gaussians here. The resulting quantum-mechanical overlap
integral, which is guaranteed to provide a positive definite
probability density that can be sampled, is approximately
equivalent to a Gaussian smearing of the Wigner functions
in Eqs. (3) and (4), i.e., replacing WM by [25]

WM (y,k) =
∫

d3x′
1d

3k′
1

(2π )3

d3x′
2d

3k′
2

(2π )3

×Wq(x′
1,k

′
1)Wq̄(x′

2,k
′
2)WM (y′,k′). (7)

In the above, Wq(x′
1,k

′
1) and Wq̄(x′

2,k
′
2) are, respectively,

the Wigner functions of the quark and antiquark with their
centroids at (x1,k1) and (x2,k2), respectively. The formula for
baryons is analogous.

We can evaluate Eq. (7) with the help of some mathematics
worked out in the Appendix. The result for a meson in the
nth excited state in the center-of-mass frame of the quark-
antiquark pair is

WM,n(y,k) = vn

n!
e−v, (8)

with

v = 1

2

(
y2

σ 2
M

+ k2σ 2
M

)
, (9)

where σM is the width of the harmonic oscillator wave function
for the relative motion of the quark-antiquark pair.

Similarly, the Gaussian smeared Wigner function for a
baryon, with a wave function in the n1th excited state in one
relative coordinate and in the n2th excited state in the other
relative coordinate, is given by

WB,n1,n2 (y1,k1; y2,k2) = v
n1
1

n1!
e−v1

v
n2
2

n2!
e−v2 , (10)

with

vi = 1

2

(
y2

i

σ 2
Bi

+ k2
i σB2

i

)
, i = 1,2. (11)

Since the wave functions of quarks and/or antiquarks in
a hadron are always given in the rest frame of the hadron,
we evaluate the relative coordinates and momenta in Eqs. (5)
and (6) by using the parton coordinates and momenta given at
constant rest frame time [26,27] in terms of their equal-time
coordinates in the hadron rest frame. To this end, for each
candidate parton to be treated, their phase-space coordinates
have to be Lorentz transformed from the laboratory frame
to their common rest frame, and subsequently the partons
produced earlier in the parton shower are propagated like
free particles to the time at which the last candidate parton is
produced and available for hadronization. We have checked
that an algorithm that rather takes the distance of closest
approach for the candidate partons has not much influence
on the results as the parton shower is rapidly expanding.

The two width parameters σB1 and σB2 in the baryon Wigner
function are related to each other by

σB2 = σB1

(
μ1

μ2

)1/2

, (12)

where the two reduced masses are defined as [28]

μ1 = m1m2

m1 + m2
, μ2 = (m1 + m2)m3

m1 + m2 + m3
. (13)

The width parameters of the harmonic oscillator wave
function can be related to the measured size of the formed
hadron. More precisely, for a meson consisting of quark and
antiquark of masses m1 and m2 and charges Q1 and Q2, its
mean-square charge radius is related to σM by [28]

〈r2〉M = |〈Q1(x1 − X)2 + Q2(x2 − X)2〉|

= 3

2

∣∣Q1m
2
2 + Q2m

2
1

∣∣
(m1 + m2)2

σ 2
M, (14)

where X = (m1x1 + m2x2)/(m1 + m2) is the center-of-mass
coordinate.

Similarly, the width parameter σB1 in the Wigner function
of a baryon consisting of three quarks of masses m1, m2, and
m3, and charges Q1, Q2, and Q3 are related to its mean-square
charge radius is by [29]

〈r2〉B = |〈Q1(x1 − X)2 + Q2(x2 − X)2 + Q3(x3 − X)2〉|

= 3σ 2
B1

2(m1 + m2 + m3)

[
m2(m2 + m3)

m1 + m2
Q1

+ m1(m3 + m1)

m1 + m2
Q2 + m1 + m2

m3
Q3

]
, (15)

where X = (m1x1 + m2x2 + m3x3)/(m1 + m2 + m3) denotes
the center of mass of the three quarks.

We use measured charge radii for charged pions, protons,
and charged kaons to determine the width parameters σπ , σK ,
and σN in the pion, kaon, and nucleon Wigner functions. The
same width parameters are used for their isospin partners and
their antiparticles as well as their spin resonances ρ, K∗, N∗,
and �. Since � and �̄ have no charge, their width parameters
are determined instead from the matter radius, which is given
by an equation similar to Eq. (15) after setting Q1 = Q2 =
Q3 = 1/3 and assuming that their size is the same as that of a
proton. Excited states of these hadrons are then accounted for
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TABLE I. Empirical charge radii Rc (from Ref. [30]), width
parameters σM or σB1, and spin statistical factors g for hadrons used
in the calculation.

Hadron Rc [fm] σM or σB1 [fm] g

π 0.67 1.09 1/4
ρ 1.09 3/4
K 0.56 0.84 1/4
K∗ 0.84 3/4
N 0.88 1.24 1/4
N∗ 1.24 1/4
� 1.24 1/2
� 1.21 1/4

by the excited states of the harmonic oscillator wave functions
by using the same width parameters. In Table I we summarize
the charge radii, width parameters, and spin statistical factors
for all stable hadrons and resonances included here.

Equations (8) and (10) can now be used to determine the
recombination probability for a given quark-antiquark pair or a
triplet of quarks or antiquarks. For a given shower, the relative
coordinates in the common rest frame are evaluated for all
possible hadron candidates which are subsequently accepted
for recombination, or rejected, by Monte Carlo methods.

Some quarks might have quite small probabilities for
recombination with any other parton in the same shower. In
that case, there is a large probability that the Monte Carlo
algorithm will not find a recombination partner. Such quarks
are typically far removed from others in phase space, making
all Wigner function overlap integrals small. The reason for
this to occur is the lack of confinement in what is essentially
a perturbative shower evolution. Of course isolated partons
have to be connected by strings to another color charge and
Lund string fragmentation can take care of their hadronization.
We deal with such partons far removed in phase space by
reconnecting them to other partons by QCD strings. This
also includes undoing the nonperturbative gluon splitting
introduced earlier, if none of the daughter quarks has found a
recombination partner. We thus form short strings of the types
(q,q̄), (q,g,g, . . . ,q̄), (q,qq), and (q,g,g, . . . ,qq), where qq
denotes diquark, and then hand them over to PYTHIA 6.3 for
hadronization.

We end up with the following picture: Final hadron
spectra are a mixture of hadrons from recombination (from
quarks close in phase space to other quarks) and from string
fragmentation (for quarks isolated in phase space or otherwise
leftover). Typically, high-z partons are both rare and far
removed in phase space. They are unlikely to recombine with
other partons in the shower (or partons from a surrounding
medium if one would consider such). This can be seen in
Fig. 4 where the probability of quarks to find a recombination
partner is plotted as a function of parton momentum fraction z
for 100 GeV jets. Thus in our model moderate to high-z partons
still preferentially hadronize by string breaking. On the other
hand, we indeed find the existence of a bulk of jet partons at
lower z in which quarks are close enough in phase space so that
they prefer recombination. Recall that our main motivation is

FIG. 4. Probabilities of light and strange quarks to recombine
into hadrons as functions of their momentum fraction z for 100 GeV
jets.

to establish a hadronization model which naturally generalizes
to jets in a medium. It is now straightforward to see how our
formalism can be applied to that more general case [16].

Excited states will be important channels for recombina-
tion. Excited mesons and baryons up to n = 5 are known
experimentally [30]. However, here we include the contri-
butions from excited meson states up to n = 8 and excited
baryon states up to n1 + n2 = 8, which can be easily done
with harmonic oscillator wave functions. We allow excited
states to decay to multiple pions in the case of light quark
mesons, to kaon and pion in the case of light and strange
mesons, to (anti)nucleon and pion in the case of light flavor
(anti)baryons, and to � and pion in the case of baryons with
strangeness ±1. For decays into multiple pions, we determine
their relative probabilities through the available phase space
according to [31]

Pl(M) ∼
[

1

6π2

(
M

mπ

)3]l (4l − 4)!(2l − 1)

(2l − 1)!2(3l − 4)!
. (16)

Here l is the number of pions, M is the mass of the excited
state or the invariant mass of the light quark-antiquark pair.
The pion mass mπ in the above equation comes from taking
the radius of the emitting source to be that of the inverse of
the pion mass [31]. In the present study, we replace 1/mπ

by the distance between the recombined quark and antiquark
and consider its decay to at most four pions. The momentum
distribution of these pions is then determined from phase-
space considerations. An excited nucleon N∗ or � decays to
a nucleon and l pions if its invariant mass is between mN +
lmπ and mN + (l + 1)mπ with mN being the nucleon masses.
Again, we include at most four pions in the decay and use
phase-space considerations to determine their momenta. An
excited kaon or � is assumed to decay to a kaon or � and
multi-pions in a similar way.

IV. RESULTS

In the following, we compare results from our hadroniza-
tion model applied to parton showers from PYTHIA 6.3 to
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FIG. 5. Longitudinal-momentum-fraction spectrum dN/dz of
pions (upper-left panel), kaons (upper-right panel), nucleons and
antinucleons (lower-left panel), and � and �̄ (lower-right panel)
from our calculation. Shown separately are contributions from the
recombination of shower partons (stars) and fragmentation of remnant
partons (circles). Also shown are the total contribution (dashed lines)
and the results from PYTHIA string fragmentation (solid lines).

calculations of PYTHIA with string fragmentation applied to
the same parton showers.

First, we test the longitudinal structure of jets by comparing
the spectra dN/dz as functions of the momentum fraction z
longitudinal to the jet axis for our sample of 100 GeV jets. In
Fig. 5, we show the spectra of pions (upper-left panel), kaons
(upper-right panel), nucleons and antinucleons (lower-left
panel), and � and �̄ (lower-right panel) from 100 GeV quark
jets. We show separately hadrons from recombined shower
partons (stars), from the fragmentation of remnant hadrons
(circles) and their sum (dashed line). The solid line indicates
the result from PYTHIA 6.3 string fragmentation applied to
the same sample of jet parton showers. We also show the
recombination only through the ground state of the harmonic
oscillator wave functions (n = 0). As expected, we see that
recombination spectra fall off faster with z than the string
fragmentation contribution. String fragmentation dominates
at intermediate and high z while recombination becomes the
leading channel below z ∼ 0.1, where the bulk of the hadron
production resides.

We note that recombination proceeds mainly through
excited hadron states and not directly into n = 0 ground-state
hadrons. The n = 0 channel includes direct production of pion,
kaon, nucleon, and � as well as production from the decay of
n = 0 spin-excited states ρ, K∗, N∗, and �. The inclusion
of excited states n > 0 makes the recombination spectra
considerably harder. Overall we find that the results from our
model are consistent with spectra created by PYTHIA from
pure string fragmentation. We also note that the comparison
to string fragmentation—another model—only makes sense
on a qualitative level. Precision tuning of our model would
have to involve fits to data, which is outside the scope of

FIG. 6. Same as Fig. 5 but for the transverse-momentum spectra.

this work. We compare the transverse momentum spectra
of jets in Fig. 6. Again, results obtained from our hybrid
recombination and fragmentation model compare well to pure
string fragmentation.

Finally, we check our approach to hadronization with jets of
a smaller jet energy and find again that our results reproduce
pure string fragmentation reasonably well. The spectra for
Ejet = 25 GeV jets are shown in Figs. 7 and 8 for the
longitudinal- and transverse-momentum spectra, respectively.
The recombination probability depends on the absolute dis-
tance of partons in phase space. Hence we expect the range
in z in which recombination competes with remnant string
fragmentation to decrease with rising Ejet. On the other hand,
at smaller jet energies recombination stays more competitive
out to larger z at least for mesons, while for baryons the reduced
number of partons in lower-energy jets can lead to the opposite
effect.

FIG. 7. Same as Fig. 5 but for jets of energy Ejet = 25 GeV.
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FIG. 8. Same as Fig. 6 but for jets of energy Ejet = 25 GeV.

V. SUMMARY AND DISCUSSIONS

We devised a model to hadronize perturbative parton
showers in jets based on a hybrid of quark recombination
and string fragmentation. Our algorithm reproduces results
from pure string fragmentation and can be easily generalized
to include partons from an ambient medium.

We turn perturbative parton showers into showers of con-
stituent quarks and antiquarks by gluon decay. We then apply
Monte Carlo methods to recombine quarks and antiquarks
by using probabilities given by their overlap integrals with
respect to meson and baryon Wigner functions. The width
parameters in these Wigner functions are fixed by hadron
charge radii. Remnant quarks and antiquarks, which are not
used for recombination, are connected by strings and subjected
to the usual string fragmentation procedure in PYTHIA. We find
that decays of excited states from recombination make the most
important contributions to spectra of pions, kaons, nucleons,
and �.

We checked that both the longitudinal and transverse
momentum structures of hadron showers reproduce the re-
sults from PYTHIA string fragmentation. The only adjustable
parameter that we have kept is the mass cutoff for gluon
decays into quark-antiquark pair, which is set by the strange-
to-nonstrange-hadron ratio. However, other quantities which
are not very well known, such as the width parameters in the
Wigner functions for excited states of hadrons, can in principle
be used as parameters for further fine tuning of results.

Our hybrid approach essentially keeps string dynamics
intact for the high-z tail of the jet and replaces string dynamics
with recombination for the bulk of the jet where O(10) quarks
with a few GeV/c momentum can be found close enough
together in phase space to recombine.

In the presence of a quark-gluon plasma produced in
relativistic heavy ion collisions, we suggest that our approach
can be generalized by sampling the ambient medium (e.g.,
provided by a fluid dynamics simulation into which the
jet is embedded) for thermal partons. Recombination would

be delayed if the ambient temperature is above the critical
temperature Tc. At Tc, jet partons would be allowed to
recombine with thermal partons, and remnant jet partons could
also be allowed to connect to thermal partons by strings. This
process, like other jet-medium interactions, would allow the
exchange of energy and momentum. Details of an in-medium
algorithm will be provided in a forthcoming manuscript.
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APPENDIX: OVERLAP INTEGRAL OF QUARK AND
HADRON WIGNER FUNCTIONS

In this appendix, we discuss in detail the calculation of
the overlap integral of hadron Wigner functions with quark
Wigner functions, specifically for the case that the hadron
Winger functions are obtained from the harmonic oscillator
wave functions and the quark Wigner functions are obtained
from Gaussian wave packets. In this case, we call the overlap
integral the “Gaussian-smeared Wigner function” of hadrons.
Let us start by noting that both the Gaussian wave packets
and the harmonic oscillator problem factorize into the three
spatial directions. We can thus solve the corresponding one-
dimensional problem and then readily find the solution in three
dimensions.

We start with the well-known harmonic oscillator basis in
one dimension [32],

ψn(x) =
(

mω

π�

)1/4 1√
2nn!

Hn(ξ )e−ξ 2/2, (A1)

where ξ = √
mω
�

x, Hn(ξ ) are Hermite polynomials and ω is
the oscillator frequency. The Wigner transformation of the
harmonic oscillator wave functions, defined by

Wn(x,k) =
∫ ∞

−∞
dηeikηψn

(
x + η

2

)
ψn

(
x + η

2

)
, (A2)

leads to [33]

Wn(u) = 2(−1)nLn(u)e−u/2, (A3)

where u = 2( x2

σ 2 + σ 2k2) with the width σ = ( �

mω
)1/2, and the

Ln are Laguerre polynomials.
We would like to calculate the overlap integral

Wn(x,k) =
∫

dx ′
1dk′

1

(2π )3

dx ′
2dk′

2

(2π )3

×W (x ′
1,k

′
1)W (x ′

2,k
′
2)Wn(x ′,k′) (A4)
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of the hadron Wigner function Wn(x ′,k′), where x ′ = x ′
1 − x ′

2
and k′ = (k′

1 − k′
2)/2, with the quark Wigner functions

W (x ′
i ,k

′
i) = 2e−(x ′

i−xi )2/δ2
e−δ2(k′

i−ki )2
, i = 1,2 (A5)

of width δ around centroids xi and ki in space and momentum.
The latter are obtained from taking the quark wave functions
to be Gaussian wave packets, i.e.,

φi(yi) = 1

(πδ2)1/4
exp[ikiyi − (yi − xi)

2/(2δ2)]. (A6)

In Eq. (A4), x = x1 − x2 and k = (k1 − k2)/2, and the result
will only depend on the relative position and momentum of
the centroids of parton Wigner functions.

By using the generating function for Laguerre polynomi-
als [34],

1

1 − t
e− tx

1−t =
∞∑

n=0

tnLn(x), (A7)

it is straightforward to see that Eq. (A3) leads to the generating
function for the oscillator Wigner functions

2

1 + t
exp

(
− 1 − t

2(1 + t)
u

)
=

∞∑
n=0

tnWn(u). (A8)

Carrying out the integrals from Eq. (A4) on both sides of
above equation, we obtain the following generating function
for the Gaussian-smeared Wigner function Wn:

2

(1 + t)(1 + aα)1/2(1 + aα−1)1/2

× exp

(
− ax2

(1 + aα)σ 2
− ak2σ 2

1 + aα−1

)
=

∞∑
n=0

tnWn(x,k),

(A9)

where a = 1−t
1+t

and α = 2δ2/σ 2. By Taylor expanding the left-
hand side in t and comparing coefficients of the same powers
in t on both sides, we obtain the following recurrence relation
for the Wn:

Wn+5 = − 1

�5
(�4Wn+4 + �3Wn+3 + �2Wn+2 + �1Wn+1 + �0Wn), (A10)

where �i (i = 0,1, . . . ,5) are given by

�0 = −[(1 + α)2 + n](1 − α)2,

�1 = [α(1 − α) + 2(x/σ )2 + 2α2(kσ )2 + n + 1](1 − α)2x,

�2 = [(1 − α)(α2 + 4α + 1) − 2(x/σ )2(3α + 1) − 2α(kσ )2(−α2 + 3α + 2) − 2(n + 2)(1 + α)2(1 − α)](1 − α),

�3 = α(1 − α)2 + 2(x/σ )2(3α2 − 2α − 1) + 2α(kσ )2(α3 − 3α2 + 9α − 7) − 2(n + 3)(1 + α)2(1 − α)2,

�4 = [2(x/σ )2 + 2α2(kσ )2 − (n + 4)(1 − α)2](1 + α)2,

�5 = −(n + 5)(1 + α)2. (A11)

Taking α = 2δ2/σ 2 = 1 for simplicity reduces Eq. (A10)
to

Wn+1 = v

n + 1
Wn, (A12)

with

W 0 = exp(−v) and v = 1

2

(
x2

σ 2
+ k2σ 2

)
, (A13)

or, equivalently,

Wn = vn

n!
e−v. (A14)

The Gaussian-smeared Wn has the form of a Poisson distribu-
tion with the normalization

∞∑
n=0

vn

n!
e−v = 1, (A15)

which is similar to that of a coherent state [35].

In three dimensions, the Gaussian-smeared Wigner function
is thus given by

Wn(x,k) =
∑

nx+ny+nz=n

Wnx
(x,kx)Wny

(y,ky)Wnz
(z,kz)

=
∑

nx+ny+nz=n

vnx
x

nx!
e−vx

vnx
y

ny!
e−vy

v
nz
z

nz!
e−vz

= 1

n!
e−v

∑
nx+ny+nz=n

n!

nx!ny!nz!
vnx

x v
ny

y vnz
z

= vn

n!
e−v, (A16)

with

v = vx + vy + vz = 1

2

(
x2

σ 2
+ k2σ 2

)
. (A17)

The fourth equality in Eq. (A16) follows from using the
trinomial expansion formula∑

nx+ny+nz=n

n!

nx!ny!nz!
vnx

x v
ny

y vnz
z = (vx + vy + vz)

n = vn.

(A18)
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