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We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-
meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops
at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent
constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu–Jona-Lasinio model.
We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure
of the quark self-energy. Our results for the ratios η/s and ζ/s, where s is the entropy density (also determined
in the Nambu–Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the
literature obtained from different models and techniques. In particular, our result for η/s has a minimum very
close to the quantum lower bound, η/s = 1/4π .
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I. INTRODUCTION

A high-temperature, weakly interacting medium is natu-
rally expected to be produced in heavy ion collision (HIC)
experiments at high energies because the constituents of the
medium (quarks and gluons) should become almost free
according to the asymptotic freedom property of quantum
chromodynamics (QCD). However, the experimental finding
of elliptic flow in HICs at the Relativistic Heavy Ion Collider
(RHIC) leads to the interpretation that the medium produced in
the collisions is actually a strongly interacting liquid, instead of
a weakly interacting gas. This interpretation comes, first, from
the ability of hydrodynamics to describe the RHIC data with
a small value of the ratio of shear viscosity to entropy density,
η/s [1–8]. The shear viscosity coefficient η of a medium
represents the ability of its constituents to transfer momentum
over a distance comparable to their mean free path. When
the interparticle coupling is strong, momentum transfer takes
place easily and, therefore, the shear viscosity of the matter is
small. Several theoretical studies have estimated the ratio η/s,
at weak and strong couplings and for different temperature
regimes; a set of such studies is represented by Refs. [9–41].
For earlier studies, see, e.g., Refs. [42–45]. An interesting
feature of the results in Refs. [15,16,21,28] is that η/s reaches
a minimum in the vicinity of a phase transition; the smallness
of this minimum is significant in connection with a conjectured
lower bound, η/s = 1/4π , known as the Kovtun-Son-Starinet
(KSS) bound, obtained in the context of anti-de Sitter and
conformal field theory (AdS-CFT) correspondence [46].

Similar to the shear viscosity, another transport coefficient
is the bulk viscosity, ζ . It is defined as the proportionality
constant between the nonzero trace of the viscous stress tensor
and the divergence of the fluid velocity, and usually it appears
to be associated with processes accompanied by a change
in fluid volume or density. The bulk viscosity has received
much less attention than the shear viscosity in hydrodynamical
simulations because its numerical value is assumed to be very

small, as it is directly proportional to the trace of the energy-
momentum tensor which generally vanishes for conformally
symmetric matter. However, lattice QCD simulations [47,48]
have shown that the trace of the energy momentum tensor
of hot and dense QCD might be large near the QCD phase
transition, which in turn indicates a nonzero and possibly large
value of ζ as well as of ζ/s near the transition temperature.
In the framework of pure-gauge lattice QCD, ζ/s near the
transition temperature is estimated in Ref. [49]. Analytical
calculations employing different techniques and models have
been used for estimating ζ of strongly interacting matter; see
[26,34,50–60], some of which [50–52] indicate a divergent
behavior for ζ near the transition temperature.

In this work we employ the two-flavor Nambu–Jona-
Lasinio (NJL) model [61] to evaluate the temperature depen-
dence of the shear and bulk viscosities in the vicinity of the
crossover temperature. The NJL model is a very useful model
for studying many aspects of the chiral structure of QCD in
vacuum and at finite temperature and baryon density [62].
The model has also brought a great deal of insight into the
problem of viscosities of strongly interacting matter [26,34–
36,41,44,60]. A practical and transparent way to evaluate the
contributions of quark-meson fluctuations to viscosities is to
evaluate one-loop quark self-energy diagrams to obtain the
quark relaxation time or, equivalently, the quark thermal width
[35,36]. Adopting this method, we first analyzed the detailed
Landau cut structures of the quark self-energy for quark-π and
quark-σ loops, where the temperature dependence of the quark
and meson masses and their couplings plays an important
role in its on-shell contributions. The present work explicitly
demonstrates the nontrivial contributions of the temperature
dependence and momentum dependence of the quark thermal
width to the viscosities, in the kinematic domains where the
quark pole remains within the regions of the Landau cut.
The new aspect explored in the present work relates to the
contributions of quark-σ and quark-π fluctuations to η and
ζ , which become the main sources of dissipation beyond
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temperatures where pion decay into on-shell quark-antiquark
pairs becomes possible. This temperature is commonly known
as the Mott temperature (TM ), above which the threshold
condition of pion dissociation, i.e., mπ (T ) > 2MQ(T ), is
satisfied. In a very recent work [63], the NJL model was used
to investigate the role played by quark-meson fluctuations on
the shear viscosity. Our work is complementary to that one, as
we use a different formalism to evaluate viscosities, consider
also the bulk viscosity, use different quark-π and quark-σ
couplings reflecting dynamical chiral symmetry breaking, and
make a detailed study of the Landau cut structure of the quark
self-energy.

The paper is organized as follows: In the next section, we
address the formalism of computing shear and bulk viscosities
in terms of the quark thermal width, which is deducted from
the quark self-energy diagram in the framework of real-time
thermal field (RTF) theory. Next, in the results section,
the analytic structure of the quark self-energy is rigorously
discussed and its contribution to shear and bulk viscosity
coefficients of quark matter is also discussed. A summary
and conclusion are presented in the last section.

II. FORMALISM

In the Kubo formalism [64,65], the shear and bulk vis-
cosities are defined in the Lehmann spectral representation of
the two-point correlation functions of operators involving the
components of the energy-momentum tensor Tμν [66]:

(
η
ζ

)
= lim

q0,|q|→0+

1

q0

(
1

20Aη(q0,q)
1
2Aζ (q0,q)

)
, (1)

with the spectral functions Aη(q) and Aζ (q) given by

Aη(q) =
∫

d4x eiq·x 〈[πij (x),πij (0)]〉β, (2)

Aζ (q) =
∫

d4x eiq·x 〈[P(x),P(0)]〉β, (3)

where

πij (x) = T ij (x) − 1
3δijT k

k , (4)

P(x) = − 1
3T i

i (x) − c2
s T 00(x). (5)

In the above equations, c2
s is the sound velocity and 〈(· · · )〉β

denotes an appropriate thermal average. We note here that the
second term in the expression for P(x) is necessary to account
for energy conservation in a quasiparticle description of the
medium, an approximation we use in the present paper; a clear
discussion of this issue can be found in Ref. [10].

We use the NJL model to obtain the above correlation
functions. The Lagrangian density of the model for u and
d flavors is of the form

L = ψ(i∂/ − mQ)ψ + G[(ψψ)2 + (ψiγ 5τψ)2], (6)

where mQ = (mu,md ) is the current quark mass matrix and
τ = (τ 1,τ 2,τ 3) are the flavor Pauli matrices. The energy-
momentum tensor is given in terms of the Lagrangian density

by

T μν = −gμνL + ∂L
∂(∂μψ)

∂νψ = gμνL + iψγ μ∂νψ. (7)

The model will be treated in the quasiparticle approximation
or, equivalently, in the leading-order approximation in the
1/Nc expansion, where Nc = 3 is the number of colors, which
is also equivalent to the traditional Hartree approximation of
many-body theory. In this approximation, the thermal spectral
functions can be expressed in terms of the quark propagator.

We use the formalism of real-time thermal field (RTF)
theory to obtain the correlation functions. In RTF theory, the
two-point function of any field-theoretic operator has a 2 × 2
matrix structure reflecting the time ordering with respect to a
contour in the complex plane [67]. The relevant matrix can
be diagonalized in terms of a single analytic function, which
determines completely the dynamics of the corresponding
two-point function. In particular, the retarded correlation
functions needed for the evaluation of Aη(q) and Aζ (q) can
be written in terms of the 11 component of the corresponding
two-point functions; see Ref. [68] for details. For example,
ignoring for the moment quark-meson fluctuations, Aη(q) can
be written as

Aη(q) = 2 tanh

(
βq0

2

)
Im 
11(q), (8)

with


11(q) = iNcNf

∫
d4k

(2π )4
N (q,k)D11(k)D11(q + k), (9)

where D11(q) is the scalar part of the 11 component quark-
propagator matrix (in the zero-width case):

D11(k) = −1

k2
0 − (

ωk
Q

)2 + iε
− 2πiωk

Q nQ(k)δ
(
k2

0 − (
ωk

Q

)2)
.

(10)

The nQ(k) in Eq. (10) is the Fermi-Dirac distribution

nQ(k) = 1

1 + eβωk
Q

, (11)

with ωk
Q = (k2 + M2

Q)1/2, and

N (q,k) = 32
3 k0(k0 + q0)k · (k + q)

− 4
[
k · (k + q) + 1

3 k2(k + q)2
]
. (12)

Figure 1(a) shows this quark-quark loop diagram, which can
be considered as a schematic representation of shear viscosity
coefficient at the zero frequency and momentum limit. The
quark mass MQ is the solution of the gap equation

MQ = mQ + 4NcNf GMQ

∫
d3k

(2π )3

1 − 2nQ(k)

ωk
Q

. (13)

The temperature-independent part of the integral above is
ultraviolet divergent, while the temperature-dependent part,
which contains the Fermi-Dirac distribution function nQ(k), is
finite. We use an ultraviolet cutoff � to regularize the divergent
integral, with � fitted (together with the other parameters of
the model, mQ and G) to obtain reasonable values for the quark
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FIG. 1. The diagram (a) represents a schematic one-loop diagram
of the quark correlator, which can be obtained from the two-point
function of the viscous-stress tensor for the quark constituents. The
double-dashed lines for the quark propagators indicate that they have
some finite thermal width which can be derived from the quark self-
energy diagrams (b) for quark-meson loops (for π,σ meson).

condensate, pion leptonic decay constant, and the pion mass
in vacuum. The finite integral is integrated without a cutoff.

To proceed with the evaluation of the viscosities, we include
the dissipative processes due to quark-meson fluctuations. The
fluctuations introduce an imaginary part in the quark self-
energy, giving a thermal width �Q to the quarks; as it stands,
with no finite imaginary part in the quark propagator, Eq. (9)
leads to divergent viscosities. Adding an on-shell, momentum-
dependent thermal width �Q(k) in the quark propagator, one
obtains [68] for the shear viscosity the expression

η = 4NcNf

15T

∫
d3k

(2π )3

k4 nQ(k)[1 − nQ(k)](
ωk

Q

)2
�Q(k)

. (14)

This expression for η is identical to the one obtained from
the standard relaxation time approximation [28,42]. For bulk
viscosity, from Eq. (3) we obtain

ζ = 4NcNf

T

∫
d3k

(2π )3

nQ(k)[1 − nQ(k)](
ωk

Q

)2
�Q(k)

×
[(

1

3
− c2

s

)
k2 − c2

s

d

dβ2

(
β2M2

Q

)]2

, (15)

which is also identical to the one obtained in Ref. [28] which
uses the relaxation time approximation.

We evaluate the quark thermal width �Q(k) from the quark-
meson (QM) loop contributions to the quark self-energy,
pictorially represented in Fig. 1(b). We need the meson masses
and quark-meson couplings. We assume the couplings of the
mesons to the quarks are of Yukawa type [69]:

LQQπ = igQQπψγ 5τ · πψ, (16)

for the π coupling, and

LQQσ = gQQσψσψ, (17)

for the σ coupling. Note that the couplings gQQσ and gQQπ are
not bare couplings; they incorporate the effects of dynamical
chiral symmetry breaking and are therefore different from each
other. At high temperatures, when chiral symmetry is restored,
they become equal to each other, as we discuss in the next
section. The meson masses mM and quark-meson couplings
gQQM are calculated from well-known expressions of the NJL

model [62]:

1 − 2G
M

(
ω2 = m2

M

) = 0, (18)

g2
QQM =

[
∂
M (ω2)

∂ω2

]−1

ω2=m2
M

, (19)


M (ω2) = 2NCNf

∫
d3k

(2π )3

1 − 2nQ(k)

ωk
Q

FM (ω2),

(20)

with

Fπ (ω2) =
(
ωk

Q

)2

(
ωk

Q

)2 − ω2/4
, (21)

Fσ (ω2) =
(
ωk

Q

)2 − M2
Q(

ωk
Q

)2 − ω2/4
, (22)

where MQ is the solution of the gap equation in Eq. (13).
The integrals in Eq. (20) are to be understood as principal-
value integrals when ω2 > 4M2

Q. As with the gap equation,
the temperature-independent part of the integral for 
M (ω2)
is divergent, and we use the same cutoff � as in the gap
equation.

Given the meson masses and quark-meson couplings, the
quark thermal width is obtained from the imaginary part of
the loop diagrams shown in Fig. 1(b). The off-shell quark
self-energy contains four branch cuts on the energy axis, but
on shell only the Landau cut contributes [68], and the result
can be written as

�Q =
∑

M=π,σ

�Q(QM)

=
[∫

d3l
(2π )3

δ
(
k0 + ωl

Q − ωu
M

) nQ(l) + nM (u)

4ωl
Qωu

M

×LQ(QM)
(
k0,k; l0 = −ωl

Q,l
)]

k0=ωk
Q

, (23)

where u = k − l , nM (k) is the Bose-Einstein distribution

nM (k) = 1

eβωk
M − 1

, (24)

with ωk
M = (k2 + m2

M )1/2, and

LQ(Qπ)(k,l) = 3
4g2

QQπ

MQ

(
M2

Q − k · l
)
, (25)

LQ(Qσ )(k,l) = 4g2
QQσ

MQ

(
M2

Q + k · l
)
. (26)

Note that use of an on-shell quark thermal width is consistent
with the quasiparticle approximation we are using to describe
the system.

The last input needed is the sound velocity cs , which is
required for the evaluation of the bulk viscosity in Eq. (15). It
can be obtained from the pressure P and energy density ε as

c2
s =

(
∂P

∂ε

)
s

= s

cV

, (27)
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FIG. 2. (a) Temperature dependence of �Q (solid line) for k =
0.5 GeV and the individual contribution from π - (dashed line) and
σ -quark loops (dotted line). (b) Temperature dependence of quark
mass (solid line), the pion (dotted line), and the sigma (dashed line)
meson masses and quark-meson couplings (g2

QQπ/4π : dash-dotted
line; g2

QQσ /4π : dash-double-dotted line). The straight vertical red
line denotes the Mott temperature (TM = 0.187 GeV).

where s is the entropy density and cV the specific heat at
constant volume:

s = ε + P

T
, cV = T

(
∂s

∂T

)
V

. (28)

The pressure P and energy density ε are given in the
quasiparticle approximation to the NJL model as(

P
ε

)
= 4NcNf

∫
d3k

(2π )3
nQ(k)

(
k2/3ωk

Q

ωk
Q

)
. (29)

We note that the use of the quasiparticle approximation for
the thermodynamic quantities is consistent with the large Nc

counting [63]. Inclusion of meson loop contributions requires
care with respect to thermodynamic consistency.

III. NUMERICAL RESULTS AND DISCUSSION

The free parameters in the NJL model are the current
quark mass mQ, the coupling G, and the cutoff mass �
that is required to regularize vacuum loop diagrams. They
are fixed to obtain reasonable vacuum values for the quark
condensate 〈ūu〉, pion leptonic decay constant fπ , and the pion
mass mπ . With mQ = mu = md = 5 MeV, G�2 = 2.14, and
� = 653 MeV, one obtains 〈ūu〉 = (−252MeV)3, fπ = 94
MeV, and mπ = 142 MeV. The vacuum value of the constituent
quark mass is MQ = Mu = Md = 328 MeV mass and of the
σ mass is mσ = 663 MeV.

We start our numerical discussion from the on-shell quark
thermal width �Q(k,T ), which we present in the top panel of
Fig. 2 for a specific value of the momentum, k = 0.5 GeV.
Also shown are the individual contributions from the π - and
σ -quark loops. In the lower panel of the figure, we show the
temperature dependences of the quark-meson couplings and
quark, π and σ masses. The straight vertical red line in the
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0.04

0.06

Γ Q
(Q

M
)(M

) 
(G

eV
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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(c)

FIG. 3. Invariant mass distribution of the quark thermal width
from the Qπ (solid line) and Qσ (dotted line) loops for |k| =
500 MeV for temperatures (a) T = 0.180 GeV, (b) 0.190 GeV, and
(c) 0.200 GeV. The curve for �Q(Qσ )(M) has been multiplied by −1.

figure denotes the Mott temperature TM , at which mπ (TM ) =
2MQ(TM ). For the parameter values used in the present paper,
TM = 0.187 GeV. Here one should notice that the numerical
strengths of the pion and sigma modes are opposite in sign
[36,69], but the magnitude of the pion mode is approximately
three times larger than the magnitude of the sigma mode in the
temperature range T > TM . In the lower panel of the figure,
one should notice that, at sufficiently high temperatures, the
gQQπ � gQQσ as well as mσ � mπ , a feature due to the chiral
symmetry restoration at high temperatures.

It is instructive to examine the invariant-mass M depen-
dence of the individual contributions �Q(Qπ) and �Q(Qσ ) to �Q;
M is given by M2 = (k0)2 − k2. Results for k = 0.5 GeV and
three different temperatures are shown in Fig. 3. The Landau-
cut regions for quark-pion (Qπ ) and quark-sigma (Qσ ) loops
of the quark self-energy are respectively 0 < M < |mπ − MQ|
and 0 < M < |mσ − MQ|; they are identified by the nonzero
values of the corresponding �QQM (M)’s, as indicated in
the figure. Clearly, the Landau cut is very sensitive to the
temperature as it is determined by the temperature-dependent
quark mass MQ and meson masses mπ and mσ . The strengths
of the �QQM are essentially controlled by the quark-meson
coupling constants; please note the different scales in the
vertical axes of the different panels. Also, while the threshold
condition (mσ − 2MQ � 0) for the Qσ loop is satisfied for all
temperatures, the corresponding threshold condition for the
Qπ loop (mπ − 2MQ � 0) is only satisfied beyond the Mott
temperature TM = 0.187 GeV. This last feature explains the
fact that the quark-mass pole, indicated by the vertical dashed
lines in the figure, lies outside of the Landau cut for the Qπ
loop at T = 0.180 GeV.

Next we examine the temperature dependence of �Q and of
it inverse, the collisional time τQ = 1/�Q, for three different
values of momentum; the results are shown in Fig. 4. The
peak position and strength of the temperature dependence of
�Q is strongly momentum dependent, a feature that reflects
the absorption and emission processes of the quark interacting
with mesonic modes; recall that �QQM physically means the

045205-4



SHEAR AND BULK VISCOSITIES OF QUARK MATTER . . . PHYSICAL REVIEW C 93, 045205 (2016)

0

0.5

1

1.5

2

2.5

3

Γ Q
 (

G
eV

)

k=1 GeV
k=0.5 GeV
k=0

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
T (GeV)

0

0.5

1

1.5

τ Q
 (

fm
)

(a)

(b)

FIG. 4. (a) Temperature dependence of the quark thermal width
�Q and (b) collisional time τQ = 1/�Q for three different values of
momentum: k = 0 (dashed line), 0.5 GeV (solid line), and 1 GeV
(dotted line). The vertical red line indicates the Mott temperature.

on-shell probability of forward and inverse scattering between
a quark Q and the mesonic modes M [70]. In forward
scattering, Q may be transformed to a thermalized M by
absorbing a thermalized antiquark Q̄, while in the inverse
process an off-equilibrated Q may be regenerated via M →
QQ̄ dissociation. We should note as well that �Q decreases and
ultimately goes to zero for large temperatures; the temperature
for which it tends to be numerically zero depends of course
on k and is determined by the temperature-dependent quark
and meson masses and couplings. The implication of �Q

decreasing with T for large T has the implication that η and ζ
will increase with T , and again the value of T where it starts
to increase and the rate of increase depend on the parameters
of the model.

When considering the collisional time, shown in the lower
panel of Fig. 4, one can compare time scales of dissipation
with the typical evolution time �τ of the matter produced
in a HIC, which is �τ � 1–10 fm. One can clearly identify
well-defined temperature ranges for which τQ < �τ , i.e., for
which the propagating quark in the medium suffers sufficient
dissipation by scattering with the thermalized constituents of
the medium.

Before using the full temperature- and momentum-
dependent �Q(k) in Eqs. (14) and (15), we have calculated
the temperature dependence of η and ζ for a constant value
of τQ = 1/�Q. Although the temperature and momentum
dependence of �Q will modify somewhat the results for the
viscosities, the calculation with a constant �Q will bring
insight regarding the integrands in Eqs. (14) and (15) when
�Q can be taken out of the integrals. In Fig. 5 we show the
corresponding results for η and η/s, for different values of τQ.
While η is a monotonically increasing function of T , the ratio
η/s exhibits two different rates of increase in two different
temperature domains, which are associated with two different
phases.

The observed change in the rate of increase of η/s with
the temperature can be understood from the temperature

0
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FIG. 5. (a) Temperature dependence of η and (b) η/s for different
values of constant collisional time: τQ = 5 fm (dashed line), 1 fm
(solid line), and 0.2 fm (dotted line). The straight horizontal red line
indicates the KSS bound, η/s = 1/4π .

dependence of s, normalized by the Stephan-Boltzmann (SB)
limiting value:

sSB = 4NcNf

(
7

2

)(
π2

90

)
T 3. (30)

One observes in Fig. 6(a) that the rate of increment in s/sSB

mainly changes around T ≈ 0.175–0.185 GeV; above this
temperature, the entropy density of quark matter becomes al-
most identical with the SB limiting value, which is denoted by
the straight horizontal dotted line in the figure. It is important
to note that we are taking into account the contributions of
the quarks only in the expression for sSB ; including gluon
degrees of freedom will increase sSB by a factor roughly equal
to 1.75 (for Nf = 2). Being proportional to the slope of s,
the specific heat cV is magnifying the transition by exhibiting
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FIG. 6. (a) The temperature dependence of entropy density,
normalized by Stephan-Boltzmann (SB) limiting value sSB , given
in Eq. (30). (b) The squared speed of sound c2

s as a function
of the temperature. Straight horizontal dotted lines stand for the
corresponding SB limits.
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values of constant τQ. In the lower panel, also shown are results from
the literature: Ref. [40] (filled circles and squares), Ref. [53] (open
circles), Ref. [52] (stars).

a smooth hump structure around T ≈ 0.175–0.185 GeV, as
shown in Fig. 6(a). Such behavior of cV has been obtained also
in other recent calculations employing the NJL model, as, e.g.,
in Refs. [34,71,72]. Note, however, that the maximum of cV is
still well below the corresponding SB limit in QCD, which, of
course, includes gluon degrees of freedom and is thereby 1.75
larger than the pure-quark SB limit. This is a welcome feature
as lattice QCD simulations [47] show no indication that the
specific heat exceeds the QCD SB limit at any temperature.
For calculating the bulk viscosity, we have obtained c2

s using
Eq. (27); its temperature dependence is shown in Fig. 6(b).
Assuming the system is not very far from equilibrium, all
thermodynamical quantities are obtained for a noninteracting
system of quark matter, although a finite (not zero) probability
of quark-meson interaction has to be considered for getting
nondivergent values of transport coefficients.

Fig. 7 shows results for the temperature dependence of ζ
and ζ/s, for different constant values of τQ. A nonmonotonic
temperature dependence of ζ is obtained, with a distinctive
two-peak structure at temperatures T ≈ 0.150–0.160 GeV and
T ≈ 0.210–0.220 GeV. A similar double-peak structure for ζ
was obtained in Ref. [57]. Note that the first peak is located
at a temperature below the Mott temperature and will not be
seen (Fig. 10) when using the full temperature and momentum
dependence of �Q(k,T ).

The double-peaked structure is clearly the result of a com-
petition between the two conformality breaking terms in the
integrand of Eq. (15): 1/3 − c2

s and d(β2M2
Q)/dβ2. The first is

associated with c2
s �= 1/3 and the second is associated with the

bulk mass transport [28]. To get a graphical understanding of
the competition, let us define auxiliary quantities containing
these terms: A = 1/3 − c2

s , B = d(β2M2
Q)/dβ2, C = A k2,

D = c2
s B and E = (C − D)2. These quantities are plotted in

the different panels in Fig. 8.
The key feature here is that the C (with any fixed momen-

tum) and D curves intersect each other at three different points;
therefore, E = (C − D)2 possesses three nodes (minima) and,
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FIG. 8. Temperature dependence of the auxiliary quantities de-
fined in the text. (a) A = 1/3 − c2

s (solid line) and B = d(β2M2
Q)/dβ2

(dashed line). (b) C = A k2, for |k| = 0.5 GeV (solid line) and |k| =
0.3 GeV (dashed line), D = c2

s B (dotted line). (c) E = (C − D)2 for
|k| = 0.5 GeV (solid line) and |k| = 0.3 GeV (dashed line).

of course, two maxima along the T axis. These two maxima
remain when E = E(k) is integrated over k in Eq. (15) and
the two-peak structure is clearly understood in these terms.
Of course, if MQ is temperature independent, then one has
only one peak, as the lower peaks in Figs. 7 and 8(c) will not
appear. Likewise, as seen in the lower panel of Fig. 7, the ratio
ζ/s also presents a nonmonotonic behavior. For the sake of
comparison, Fig. 7(b) also displays results from the literature.

Finally, we present results for the viscosities and viscosity
to entropy density ratios with the full momentum dependence
of the quark thermal width �Q(k). It is important to reiterate
that our results have physical significance only within a limited
range of temperatures, approximately TM < T < 0.240 GeV.
The lower limit is due to the fact that in the NJL model,
when using the on-shell thermal width, finite viscosities are
obtained for temperatures T larger than the Mott temperature
TM because �Q(k) is nonzero only for T > TM in this case. As
discussed earlier, the off-shell quark self-energy contains four
branch cuts on the energy axis, but on-shell only the Landau
cut contributes. The upper limit is not a precise limit, but it is
related to the lack of asymptotic freedom in the NJL model;
it is known that the large temperature behavior of viscosities
in QCD, particularly of bulk viscosity, is very different from
the one derived from a nongauge, contact-interaction model
[10]. Given this proviso, we discuss next our results for the
temperature dependence of η and η/s, and of ζ and ζ/s; they
are presented respectively in Figs. 9 and 10.

First of all, one notices in Figs. 9 and 10 that the use of the
full temperature dependence of �Q(k) restricts the domain
of temperatures where finite viscosities are obtained. Our
numerical values of η and η/s within the temperature range
TM < T < 0.240 GeV are quite close to some earlier estimates
in Refs. [26,28,32,34,36,44]. Similarly, Fig. (10) shows fair
agreement of our calculation of ζ/s with some earlier results
of Refs. [28,34,52,57].
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FIG. 9. (a) Temperature dependence of η and (b) η/s using
the full momentum dependence of the quark thermal width �Q(k).
Comparison with results from the literature: Ref. [26] (filled circles),
Ref. [44] (open circles), Ref. [34] (open squares), Ref. [28] (filled
squares), Ref. [32] (triangles), Ref. [36] (stars).

The interesting two-peak structure in ζ shown in Fig. 7 is
not visible here because, as discussed above, the first peak
is below the Mott temperature. In addition, the figures show
that the viscosities have a rapid increase with temperature
for T � 0.235 GeV. This is due to the fact that, for high
temperatures, the contributions from quark-meson fluctuations
to �Q(k) decrease rapidly for large T , as shown in the top panel
of Fig. 2. At higher temperatures, quark-quark and quark-gluon
scatterings will become more important than quark-meson
scattering. To include such processes, one would probably
need a model that incorporates asymptotic freedom, as already
mentioned in the previous paragraph. As our focus of interest
in the present is on the contributions from quark-meson
thermal fluctuations, we reserve for a future publication the
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FIG. 10. (a) Temperature dependence of ζ and (b) ζ/s using
the full momentum dependence of the quark thermal width �Q(k).
Comparison with results from the literature: Ref. [57] (circles),
Ref. [28] (squares), Ref. [52] (triangles), Ref. [34] (stars).
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FIG. 11. η/s (a) and ζ/s (b) in the high temperature domain.
HTL (circles) and FRG (stars) estimations of η/s by Arnold et al.
[9] and Christiansen et al. [73] are compared with η/s of Eq. (14) at
τQ = 4.5 fm (dashed line) and τQ = 0.75 fm (solid line). The HTL
(circles) estimation of η/s by Arnold et al. [10] is compared with ζ/s

of Eq. (15) at τQ = 0.3 fm (dashed line) and τQ = 5 fm (solid line).

investigation of the contributions of quark-quark and quark-
gluon processes to viscosities.

We conclude with a discussion of the high-temperature
behavior of η/s and ζ/s by contrasting results from the
literature and what one would obtain from our Eqs. (14)
and (15) when using finite values for the collisional time
τQ. Figure 11 shows results for these ratios for T > 0.240
GeV from hard thermal loop (HTL) calculations [9,15,21] and
from a functional renormalization group (FRG) calculation
for pure Yang-Mills theory [73]. For η/s we note that the
HTL and FRG results are markedly different. The FRG result
is almost identical to the one obtained from Eq. (14) with
τQ = 0.75 fm, and seems to match very well with our result
shown in Fig. 9(b) from temperatures around T = 0.23 GeV.
On the other hand, for ζ/s there are qualitative and quantitative
differences between the HTL results from those from Eq. (15)
for the two values of τQ used; there are no FRG results available
for ζ/s. The discrepancies are significant, and clearly further
studies are required.

IV. SUMMARY AND PERSPECTIVES

In summary, we have investigated the temperature depen-
dence of the quark-matter shear η and bulk ζ viscosities and
their ratios to the entropy density s. The focus of interest
was on the contributions from Qπ and Qσ fluctuations to
the on-shell quark thermal width �Q, a crucial ingredient in
the calculation of viscosities. We calculated �Q(k,T ) from
the imaginary part of the quark self-energy arising from Qπ
and Qσ loops using temperature-dependent quark and meson
masses and quark-meson couplings. We have investigated in
detail the Landau-cut structure of the quark self-energy using
real-time thermal field theory. The temperature dependences
of masses and coupling constants were obtained in the NJL
model in the quasiparticle approximation. The entropy density
and the speed of sound, which is needed to calculate ζ ,
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were also obtained in the NJL model within the quasiparticle
approximation.

The temperature dependence of the masses and quark-
meson couplings nontrivially influences the Landau-cut struc-
ture of the quark self-energy. The quark thermal width, cal-
culated from the on-shell quark self-energy, becomes nonzero
and non-negligible within a range of temperature and momen-
tum where the quark pole is situated well inside the Landau cut.
When using a temperature- and momentum-independent quark
thermal width �Q, a monotonically increasing shear viscosity
as a function of temperature was obtained, whereas the bulk
viscosity exhibits a two-peak structure near the phase transition
temperature, reflecting the competition between conformality
breaking terms related to the speed of sound in the medium
and the bulk mass transport. On the other hand, when the full
temperature- and momentum-dependent thermal width is used,
finite viscosities are obtained only for temperatures larger than
the Mott temperature TM = 0.187 GeV. In addition, for high
temperatures, due to rapidly increasing mesonic masses and
decreasing constituent quark mass, the probability of quark-
meson fluctuations become negligible, the viscosities increase
considerably, and other processes not related to quark-meson
processes take place. Between the two extremes, our results
for η/s and ζ/s are in fair agreement with results from the
literature, although marked differences can be observed.

Future work includes the investigation of viscosities at
high temperatures by the introduction of quark-quark and
quark-gluon processes. Of course, agreement with standard
perturbative QCD results are expected when using interactions
that incorporate the property of asymptotic freedom of QCD.
At low temperatures, when the medium is dominated by pions
and low-mass resonances [37], the NJL model can be used
to obtain pure meson-meson interactions, deduced, e.g., via
the bosonization technique of the NJL model, and results
are expected to be very close to the standard results for the
viscosities of hadronic matter.
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