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Probing short-range nucleon-nucleon interactions with an electron-ion collider
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We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off
a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state.
This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD);
the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We
perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow
the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based
on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike”
and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering.
With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as
elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future
Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities,
suggest that center-of-mass energies sNN ∼ 12 GeV2 of the neutron-proton subsystem can be accessed. We
argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range
quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions
in light and heavy nuclei.
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I. INTRODUCTION

The finite range of the strong force ensures that the nucleon-
nucleon interaction plays a vital role in the structure of atomic
nuclei. There is a spatial separation of the nucleon-nucleon
potential into three parts which is often captured in distinct
theoretical treatments. The long-range part of the nuclear force
is described by pion exchange and is well understood within
the framework of effective field theories. At intermediate
distances, two-pion exchange, tensor interactions, and vector
meson exchange contributions become important, which are
harder to capture in the framework of effective field theories. At
short distances, the nucleon-nucleon interaction has a strong
repulsive core, which is essential for the stability of matter.
There has been much recent progress from lattice gauge
theory in first-principles simulations of the nucleon-nucleon
potential [1]. Because the virtuality of the exchanged particles
at short distances is large, it is natural to consider to what extent
the short-distance contributions to nucleon-nucleon scattering
can be described directly in terms of the fundamental quark
and gluon degrees of freedom in quantum chromodynamics
(QCD).
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There has been a significant amount of work in trying
to understand short-range contributions to nucleon-nucleon
(NN) collisions using quark and gluon degrees of freedom.
For a nice recent review, we refer the reader to Ref. [2] and
references therein. The interest in short-range nucleon-nucleon
correlations has been rekindled by the discovery at Jefferson
Lab of the strong dominance of short-range proton-neutron
correlations over neutron-neutron and proton-proton correla-
tions [3] based on expectations from quark-gluon dynamics
anticipated more than two decades ago [4]. Remarkably, the
systematics of such short-range correlations appear to be
empirically correlated with the nuclear modifications first
observed in deeply inelastic scattering (DIS) experiments by
the European Muon Collaboration [5–8] (the EMC effect).
It has also been argued that such short-range nuclear forces,
and their parton interpretation in particular, have significant
implications for the neutron-star equation of state [9,10].

In this paper, we address the possibility that a high-
luminosity, high-energy, electron-ion collider (EIC) can pro-
vide novel information on short-range nucleon-nucleon inter-
actions. The construction of such a machine is a prominent
recommendation of the nuclear physics community in their
recent Long Range Plan [11]. Detailed discussions of the
science case for such a machine in either the US or at CERN
can be found in Refs. [12–14]; a brief overview can be found
in Ref. [15]. In all EIC proposals, Bjorken x < 10−2 and
momentum transfer squared Q2 � 10 GeV2 are achieved for
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light and heavy nuclei. This high-energy kinematics allows
for a clean separation of the current fragmentation region of
the virtual photon projectile from the fragmentation region of
the nuclear target. In particular, in diffractive processes where
no net color charge is exchanged between the current and
nuclear fragmentation regions, the quark and gluon degrees
of freedom from the former can cleanly probe relatively
low-energy nucleon-nucleon interactions in the latter. The
precise kinematics of such experiments, the ability to vary
the size and nature of the probe, and the availability of a range
of nuclear targets (including polarized light nuclei) have the
potential to open up a new window into the parton structure of
nuclear forces. It is therefore a problem of considerable interest
to estimate whether the rates necessary for a comprehensive
study of the nuclear fragmentation region can be achieved with
the luminosities projected for an EIC. The peak luminosities
are estimated to be 100 to 1000 times larger than the peak
luminosity for electron-proton DIS at the Hadron-Electron
Ring Accelerator (HERA) at DESY collider.

We consider here, for specificity, the exclusive process
e + D −→ e + J/ψ + n + p, namely, the electroproduction
of J/ψ mesons in coincidence with a proton and a neutron
produced with relative transverse momenta of 1 GeV or
larger from the disintegration of the struck deuteron. The
exclusive electroproduction of heavy quarkonia has long
been known to be a sensitive probe of the QCD degrees
of freedom in a hadronic target. The hard scale introduced
by the mass of a heavy vector meson like the J/ψ ensures
that the process is sensitive to short-distance physics, and is
therefore perturbatively calculable [16–18]. Real or virtual
photon-hadron scattering in Regge kinematics, in which the
center-of-mass energy

√
s is much larger than any other

kinematic scale, is characterized by the fluctuation of the
photon into a quark-antiquark dipole which then scatters from
the target by exchanging gluons [19–22]. Thus, the exclusive
production of heavy vector mesons is directly sensitive to
the gluon distribution in the target state [17,23,24]. When
the diffractive gluon exchange transfers net momentum to
the hadronic target, the process couples the dipole to the
generalized parton distribution (GPD) Hg of gluons (see,
for instance, the review [25]); when the target is a proton,
in the forward limit, the dipole couples to the integrated gluon
distribution xG(x,Q2) [17,23,24].

The above-mentioned “dipole picture” works because (in
Regge kinematics) there is a separation of multiple scales
between the physics of the projectile and the physics of the
deuteron target. It is important that the virtual momentum
squared of the photon Q2, or equivalently, the invariant mass of
the vector meson that the quark-antiquark pair hadronizes into,
be very large compared to the intrinsic QCD scale. Then the
transverse dipole size is small enough that two-gluon exchange
in a color-singlet “pomeron” configuration is the dominant
process in the scattering off the deuteron target. Furthermore,
in a comoving frame with the dipole, the time scale over which
this exchange occurs is nearly instantaneous because the target
is Lorentz contracted to a scale which is suppressed by the
DIS center-of-mass energy. As a consequence of these short
times, the two gluons exchanged with the target can probe a
number of Fock configurations of the deuteron bound state

whose lifetimes are relatively large. What is novel about the
particular kinematics we consider is that the outgoing proton
and neutron have large relative transverse momenta and are
therefore sensitive to the short-range components of these Fock
configurations.

The interaction of the two gluons with the deuteron target
can be expressed most generally in terms of a novel gluon
transition generalized parton distribution (T-GPD) [26]. This
object is the expectation value of an operator corresponding
to the product of the color field strengths of the two gluons1

acting on the Fock state of the deuteron on one side and the
product of the proton and neutron Fock states on the other.
Because the probability that the deuteron can be found in
a two-nucleon configuration is significant on the time scale
of the gluon exchange, in this case the T-GPD reduces to the
two-gluon exchange operator sandwiched between the product
of the nucleon states and is therefore much closer in spirit
to the usual GPD distribution [25]. A significant difference
is that the former now depends on two momentum transfer
scales: one momentum scale T = �2, the square of the four-
momentum transferred to the vector meson, comes from the
projectile, and the new scale t = (p′

1 − p)2, the square of the
four-momentum transferred to the struck nucleon, is contained
wholly within the target. The T-GPD therefore tells us about
the short-distance structure of the target when t is large.

When the final-state proton and neutron have low relative
transverse momentum (less than or of the order of the typical
Fermi momentum they possess in the deuteron bound state)
the leading-order process corresponds to the two gluons being
exchanged with either the proton or the neutron; the other
nucleon acts as a spectator, albeit it may exchange soft gluons
with the other nucleon. However, if one detects the final-state
nucleons with larger pT than the momentum transfer T from
the projectile dipole, p2

T � |T |, this extra transverse momen-
tum must have originated from the interactions between the
nucleons themselves. If this momentum is perturbatively large,
p2

T � �2
QCD (where �QCD is the intrinsic QCD scale), the

nucleon-nucleon interaction should be mediated by quark and
gluon degrees of freedom.

Despite the high energy
√

s of the γD system, the center-
of-mass energy of the interacting nucleons is much lower:
sNN ∼ 4p2

T . In such events, the disintegration of the deuteron is
sensitive to the nucleon-nucleon scattering amplitude at these
lower energy scales. One is therefore using very high-energy
DIS to probe nucleon-nucleon interactions at much lower
energies, sNN � s.

A further interesting possibility suggested by diffractive
DIS at an EIC is the potential to distinguish between differing
parton models of the elastic nucleon-nucleon scattering as
a function of sNN . One such model is the “geometric”
or “independent quark scattering model” whereby collinear
quarks from one nucleon each individually exchange a gluon
with a quark from the other nucleon. Another is a “pointlike
scattering model,” in which all the valence quarks of the
colliding nucleons participate in a single short-distance hard

1As we will elaborate, these are dressed with “gauge links” to ensure
the operator is gauge invariant.
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scattering. From perturbative power counting, the former
“Landshoff” mechanism [27] predicts cross sections that fall
as s−8

NN , while the latter “quark counting” mechanism [28,29]
predicts that the cross sections should fall as s−10

NN . This
latter dependence is what is seen in data, albeit significant
differences are seen at low values of sNN .

The energy dependence of the nucleon-nucleon interaction,
as extracted in diffractive DIS, could add a different twist to this
picture; owing to the external gluon probe, the power counting
may differ from that extracted in nucleon-nucleon elastic
scattering. For instance, there are both color-singlet as well
as color-octet Landshoff exchanges feasible in the deuteron
disintegration process. Further insight into such parton-based
mechanisms of short-range correlations is highly likely at an
EIC because, as we will show, the rates estimated for the
exclusive deuteron photodisintegration are very sensitive to
the energy dependence of the nucleon-nucleon cross section.
The potential of the EIC to polarize light nuclei will add
equally important insight to the study of spin-dependent
nucleon-nucleon interactions; we leave such a study for future
work.

The deuteron can also, in principle, fluctuate into exotic
“hidden color” bound color-octet–color-octet configurations
which the instantaneous gluon exchanges with the projectile
are capable of resolving [30,31]. The hidden color nucleons
can be liberated if struck by hard back-to-back gluons from
the projectile dipole, projecting them onto back-to-back
nucleons in the final state with a characteristic transverse
momentum dependence. While a very intriguing possibility,
this mechanism to directly access hidden color configurations
breaks the factorization between projectile and target. In a
parallel investigation, we nevertheless estimated the rates for
such hidden color states; we find these to be prohibitively
small even at the high luminosities of EIC. It is conceivable,
though, that other similar channels to access such states may
exist.

This paper is organized as follows. In Sec. II, we begin with
an outline of the kinematics of an EIC and why they may be
favorable to elucidate key aspects of the short-range structure
of nuclear forces. We then discuss quarkonium production
in the kinematics of high-energy DIS. As a warmup, we
first consider exclusive J/ψ production off the proton before
generalizing our results to the deuteron case. In particular,
we obtain an explicit expression for the cross section for the
exclusive electroproduction of vector mesons off a deuteron
target accompanied by the breakup of the deuteron. When
either the photon virtuality or vector meson mass is a hard
scale, the result is proportional to the gluon T-GPD. We
compare and contrast this object with the GPD probed in the
proton case and argue that if the proton and neutron fly off
back-to-back, each with pT � �QCD, the T-GPD extracted
from experiments at the EIC will contain novel information
about short-range nucleon-nucleon interactions.

In Sec. III, we discuss the simplifications of this T-GPD
that occur when there is a large relative momentum between
the proton and the neutron. In this case, a factorization
appears to occur between the nonperturbative wave function
of the deuteron and the final-state interactions between the
neutron and the proton. We perform an explicit “toy model”

computation (with the proton and the neutron replaced by
valence quarks) that explicitly illustrates this factorization and
establishes a baseline for semiquantitative estimates for the
photodisintegration cross section. We next discuss how the toy
model computation generalizes to the realistic case. The issues
are strongly related to the extensive literature on large-angle
nucleon-nucleon scattering and the insight they provide on
the parton configurations contributing to short-range nuclear
forces. We exploit these lessons to make an ansatz for
the cross section for exclusive J/ψ photodisintegration of
the deuteron: The result can be expressed as the product
of the deuteron wave-function times the cross section for
exclusive photoproduction of J/ψ mesons off the proton times
the elastic nucleon-nucleon cross section.

In Sec. IV, we use the results of the previous section
to estimate the rates for this process at an EIC. We find,
for conservative estimates of the EIC luminosity, that rates
comparable to those used to extract the precise HERA data
on exclusive photoproduction of J/ψ can be achieved for
center-of-mass energies of the proton-nucleon subsystem of
up to sNN ∼ 12 GeV2. The extension of the cross section
out to significantly higher sNN with increasing luminosity
will be be challenging if the energy dependence of the
cross section is close to those measured in nucleon-nucleon
scattering. Nevertheless, the range covered should be sufficient
to provide considerable insight into the transition from hadron
to parton degrees of freedom in the description of short-
range nuclear forces. We conclude with a discussion of open
issues and prospects for future work. The Appendix contains
some details of the deuteron wave function employed in our
estimates.

II. EXCLUSIVE J/ψ PRODUCTION
IN HIGH-ENERGY DIS

We will begin our discussion in Sec. II A by considering
the relevant parameters at an EIC for the process of interest.
We then in Sec. II B derive the well-known expression for
exclusive J/ψ production in high-energy DIS off the proton. In
light-front perturbation theory (LFPT) the natural separation of
time scales is made explicit, whereby the scattering amplitude
can be factorized into the amplitude of the virtual or real photon
to fluctuate into a quark-antiquark pair which is relatively long
lived, and the amplitude of the dipole to scatter off the target
nucleus before recombining into the heavy quarkonium state.
The latter time scale is much longer than the time scale of the
interaction of the elastic scattering of the quark-antiquark pair
off the target. We show that the forward matrix element of the
quark-antiquark interaction with the target is proportional to a
generalized parton distribution (GPD).

In Sec. II C, we extend our analysis to the problem of
interest: the exclusive production of J/ψ in DIS off the
deuteron, accompanied by the proton and neutron that are
produced back to back. We compute the cross section and show
that, in analogy to the proton case, it is proportional to a novel
gluon transition generalized parton distribution (T-GPD). As
with the discussion of the separation of the time scales in the
dipole projectile, we argue that a similar factorization of time
scales occurs in the T-GPD of the target when the relative
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transverse momentum of the final-state proton and the neutron
is large. In this case, the T-GPD can be factorized into the
deuteron wave function convoluted with a matrix element that
is sensitive to the parton structure of the short-range nuclear
force.

A. Insights into nuclear structure from an EIC

At a future electron-ion collider (EIC) project in the
US [13], high-energy electrons will collide with nuclei
at center-of-mass energies around

√
s ∼ 100 GeV/nucleon;

significantly higher energies will be feasible with the proposed
Large Hadron electron Collider (LHeC) at CERN [14]. In this
work, for specificity, we make estimates for EIC alone; these
can easily be extended to studies with LHeC kinematics. High
rates of J/ψ production occur when the virtuality Q2 becomes
small, approaching the photoproduction limit as Q2 → 0. In
this regime, the EIC will access values of x below ∼10−3, well
into the domain of Regge kinematics x � 1.

The diffractive J/ψ photoproduction cross section is a
steeply falling function of the exchanged momentum |T |, so
it is advantageous to look for events in which the J/ψ is
produced with fairly low transverse momentum (relative to the
photon) of a few hundred MeV or so. Events of this class have
already been observed on proton targets at HERA [32] with
adequate statistics. Because an EIC would have a luminosity
orders of magnitude higher (∼1033–34 cm−2 s−1 compared
to the peak luminosity ∼1031 cm−2 s−1 at HERA), low-pT

diffractive J/ψ photoproduction should be relatively easy to
observe at an EIC.

The high-pT disintegration of the deuteron in the process
of interest here, γ + D → J/ψ + p + n, only occurs in a
subset of the diffractive events. To isolate it, an additional cut
on the pT of the detected nucleons must be imposed: The
nucleons should emerge nearly back to back, with pT much
larger than the T -channel momentum seen in the J/ψ . In this
regime, an additional nucleon-nucleon (NN ) scattering must
have occurred, with a relative center-of-mass energy squared
set by the transverse momentum sNN ∼ 4p2

T . If the nucleon
pT is larger than a GeV or so, then the NN rescattering takes
place over “perturbatively” short distances where it should
be mediated by quark and gluon degrees of freedom. These
events are rarer than the diffractive J/ψ photoproduction
events observed at HERA. However, because of the increase
in luminosity at an EIC, they may be measured with rea-
sonable statistics. We explore this question quantitatively in
Sec. IV.

The study of the final state proposed here utilizes the
interplay of several scales—hard and soft—to access the NN
interaction in a novel way:

s
(∼100 GeV)2

� p2
T

(∼ 1 GeV)2

� |T |
(∼few 100 MeV)2

(1)
M2

J
(∼3 GeV)2

� �2
QCD

(∼200 MeV)2

.

The photon-deuteron center-of-mass energy
√

s is the hardest
scale in the process. It ensures that the projectile-deuteron
interaction is effectively instantaneous, providing a snapshot
of the deuteron wave function. The mass MJ of the J/ψ is

another hard scale which makes the instantaneous diffractive
exchange calculable within perturbative QCD (pQCD). The
invariant momentum transfer |T | between the projectile and the
deuteron is a soft scale which maximizes the diffractive cross
section. The nucleon recoil momentum pT is an intermediate
scale; it is hard enough to guarantee that the nucleons emerge
back to back (and that the rescattering is perturbative), yet still
small relative to the center-of-mass energy.

Thus, the EIC, a machine designed to access high-energy
nuclear physics at energies on the order of

√
s/A ∼ 100 GeV,

can also be used to study physics relevant for nuclear structure
at much lower energies

√
sNN ∼ few GeV. This convergence

of nuclear physics from both sides of the energy spectrum
provides an opportunity to learn unique information about the
NN potential at short distances and is wholly complementary
to the conventional approaches which measure NN scattering
directly. We only consider unpolarized scattering here; similar
exclusive processes off polarized light nuclei will offer
additional unique opportunities to explore the spin-dependent
nature of such short-range correlations.

B. Dipole picture of heavy quarkonium production
in high-energy DIS off the proton

Photon-hadron scattering in Regge kinematics (small x)
is intuitively described in terms of the infinite-momentum
scattering formalism of Refs. [33,34]. For an ultrarelativistic
system moving along the x+ axis,2 one quantizes the theory
at a fixed x+. The resulting light-front perturbation theory
(LFPT) [33–38] corresponds to “old-fashioned” time-ordered
perturbation theory, where x+ plays the role of time and the
light-front momentum operator p− = H− plays the role of the
Hamiltonian. The scattering matrix is then expressed in terms
of this x+-ordered dynamics as

Sf i = 〈f |P exp

[
−i

∫
dz+H−

I (z+)

]
|i〉, (2)

where H−
I = H− − H−

0 is the interaction-picture Hamilto-
nian, with H−

0 is free-particle Hamiltonian, and the incoming
and outgoing states are given by

|i〉 = |e−〉 ⊗ |D〉; |f 〉 = |J/ψ〉|e−〉 ⊗ |n〉|p〉. (3)

One can then define the “projectile” S matrix S̃f i through
Sf i = 〈n|〈p|S̃f i |D〉. In the infinite momentum limit, the
interaction of the high-energy projectile with the target is
nearly instantaneous (δx+

int ∝ 1√
s
), providing a “snapshot”

of the configuration of the target occurring at a light-front
time we define to be x+ ≡ 0+. Then the projectile scattering
matrix consists of “time” evolution from x+ =−∞+ to 0+, an
instantaneous eikonal scattering in the field A−a of the target,

2Light-front coordinates are defined by x± ≡
√

g+−
2 (x0 ± x3),

where g+− = 1 and g+− = 2 are two common choices of the
light-front metric. Here we use g+− = 1.
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and the “time” evolution from x+ = 0+ to +∞+ [34],

S̃f i = 〈J/ψ |U[+∞+,0+] TrCP

× exp

[
−i

∫
d4x j+(0+,x−,x) A−a(x+,0−,x)T a

]
× U[0+,−∞+]|γ 〉, (4)

where TrC stands for a trace over color matrices, T a are the
generators of SU(Nc) in the fundamental representation, and
x ≡ (x1

⊥,x2
⊥) is a two-vector in the transverse plane. Also, j+

is the eikonal current of the high-energy quanta at the collision
time x+ = 0+, and the gluon fields A−a of the target are
path ordered P along the x+ direction. The “time” evolution
operator in the interaction picture is

U[x+
f ,x+

i ] ≡ exp[iH−
0 x+

f ] exp[−iH−(x+
f − x+

i )]

× exp[−iH−
0 x+

i ], (5)

and we emphasize that the gluon fields A−a , and S̃ itself, are
operators which are evaluated between the target states. The
photon |γ 〉 can fluctuate into one of many Fock states |X〉
before it scatters on the target,

S̃ =
∫
X

∑∫
X′

∑
〈J/ψ |U[+∞+,0+]|X′〉〈X|U[0+,−∞+]|γ〉〈X′|TrCP

× exp

[
−i

∫
d4xj+(0+,x−,x)A−a(x+,0−,x)T a

]
|X〉.

(6)

Here
∫∑

X denotes a complete sum over Fock states and
integrals over their phase spaces.

The leading contribution in QED is the fluctuation of the
photon into a quark-antiquark dipole |qq̄〉, which can scatter
by gluon exchange; this light-front wave function (LFWF) is
given by

ψγ→qq̄ ≡ 〈qq̄|U[0+,−∞+]|γ 〉 ≈ 〈qq̄|(H−
I,QED)|γ 〉

p−
γ − p−

q − p−
q̄

. (7)

Truncating the Fock space |X〉 at the quark dipole, we obtain
for the S̃ matrix

S̃f i =
∫

d�qq̄ (ψJ/ψ→qq̄)∗ ψγ→qq̄〈qq̄|TrCP

× exp

[
−i

∫
d4xj+(0+,x−,x)A−a(x+,0−,x)T a

]
|qq̄〉,

(8)

where we have similarly defined the LFWF of the J/ψ and∫
d�qq̄ represents an integral over the phase space of the

dipole.
In ordinary time-ordered perturbation theory, the energy

denominator 1/�E ∼ �t is a direct measure of the lifetime �t
of a virtual fluctuation, allowing a clear physical interpretation
of the process. The same is true of LFPT, with �x+
and �p− playing analogous roles. For example, for J/ψ
electroproduction, there are three relevant time scales: the
lifetime �x+

qq̄ of the qq̄ pair, the formation time �x+
J of the

J/ψ , and the duration of the interaction �x+
int. Using LFPT

to calculate the associated energy denominators, one readily
notes a distinct separation of time scales [23],

�x+
qq̄

p+
qq̄

∼ O
(

1

m2
c

)
,

�x+
J

p+
J

∼ O
(

1

M2
J

)
,

�x+
int

p+
tot

∼ O
(

1

s

)
, (9)

where mc is the mass of the charm quark and the subscript
J refers to the J/ψ , e.g., MJ is the mass of the J/ψ .
Because �x+

J , �x+
qq̄ � �x+

int, the energy denominators in
the qq̄ scattering matrix element off the target become
independent of the long-time dynamics in the photon and J/ψ
wave functions, factorizing Ref. [18] into the on-shell dipole
scattering amplitude TrCM̃qq̄ ,

M̃γ→J/ψ =
∫

d�qq̄ (ψJ→qq̄ )∗TrCM̃qq̄ψ (γ→qq̄), (10)

where we have subtracted the noninteracting term 1 from the
S̃ matrix to form the scattering amplitude M̃γ→J/ψ .

To determine the full S matrix in Eq. (2), one must fix the
dipole scattering amplitude on the target. As a warmup to DIS
off the deuteron with disintegration into back-to-back nucleons
in the final state, we first compute explicitly the cross section
for elastic vector meson production on the proton, γ ∗(q) +
p(p) → V (q − �) + p(p + �). This process was measured
at HERA and therefore will also be relevant in our discussion
of rates for the extension to the deuteron case at the EIC.

The center-of-mass energy (squared) of the photon-proton
system is s ≡ (p + q)2, and the invariant momentum transfer
is T ≡ �2. We work in the photon-proton center-of-mass
frame and choose the latter to move along the ⊕ axis with
large longitudinal momentum p+ and the photon to move in
the opposite direction with large longitudinal momentum q−
so that s ≈ 2p+q−. The incoming momenta of the proton and
photon, respectively, are

pμ =
(

p+,
m2

N

s
q−,0

)
, qμ = (−x p+,q−,0), (11)

where x ≈ Q2

s
� 1 and mN is the mass of the nucleon. The

on-shell conditions for the vector meson and the proton fix the
longitudinal components of the momentum transfer �μ to be

�+ = q+ − (q − �)+ ≡ −xeff p
+;

�− = p′− − p− ≈
(

p′2
T

s

)
q−, (12)

where xeff = (Q2+M2
V

s
) � 1 and the outgoing proton momen-

tum is p′ = p + �, MV is the mass of the produced vector
meson, and we have neglected �2

T � max(Q2,M2
V ). Further,

p′2
T = �2

T is the transverse momentum of the scattered proton.
The production cross section is then

dσ = 1

2s

1

4(2π )2

d2�d�−

q− − �−
d2p′ dp′+

p′+ |M|2

× δ(p+ + �+ − p′+)δ(p− + �− − p′−)δ2(� − p′).
(13)
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This gives dσ ≈ d2�
(2π)2 |M

2s
|2; defining the invariant momentum

transfer T ≡ �2 ≈ −�2
T and rescaled amplitude A ≡ M/2s

to write dσ ≈ dT
4π

dφ�

2π
|A|2, where φ� is the azimuthal angle

of �, we obtain

dσN

dT
= 1

4π

∫
dφ�

2π
|A|2 (14)

for the cross section for exclusive vector meson production on
the nucleon.

As discussed previously, owing to the separation of time
scales in high-energy Regge kinematics, manifest in LFPT,
the amplitude A can be decomposed into a convolution of the
light-front wave functions of the photon and vector meson with
the on-shell scattering amplitude Aqq̄N for the scattering of the
quark dipole on the nucleon as

A(�) =
∫

d2rdz

4πz(1 − z)

{∑
σσ ′

ψ
γ
λσσ ′(r,z)

[
ψV

λ′σσ ′(r,z)
]∗}

×TrCAqq̄N (r,�). (15)

Here r is the separation vector of the quark dipole,
z is the fraction of the photon’s momentum car-
ried by the quark, σ (σ ′) are the spins of the
quark (antiquark) in the dipole, λ is the polarization
of the photon, and λ′ is the polarization of the produced
vector meson. The notation TrC indicates a trace over the
fundamental color representation of the dipole, and we have
used the conventions of Ref. [38] for the normalization of
the wave functions and phase-space integrals. Note that in the
above decomposition, we have used the fact that the eikonal
scattering of the quark-antiquark pair off the target is spin
independent and helicity conserving. We also remark that in the
literature (for example, Ref. [39]) it is common to assign a color
factor

√
Nc to the wave functions so that the dipole scattering

amplitude enters with 1
Nc

TrCAqq̄N . We use a convention in
which the color factor is contained entirely within the dipole
scattering amplitude.

If a hard scale is present in the quark loop, then the quark
dipole has small transverse size. This can occur either if
the photon has large virtuality Q2 � �2

QCD (deeply virtual
meson production) or if the vector meson has a heavy mass
M2

V � �2
QCD (heavy exclusive meson production). The typical

transverse size of the dipole is set by the photon wave function
to be 1

r2
T

∼ 〈k2
T 〉 ∼ z(1 − z)Q2 + m2

q . If either Q2 or the quark

mass m2
q is large, then the dipole becomes perturbatively

small. For the case of large Q2, special care must be taken
in the limits z → 0,1 [40,41]. At lowest order, the dipole
scatters on the proton by exchanging two gluons, effectively
measuring the strength of its gluon field. For scattering
on an unpolarized proton in these Regge kinematics, the
dipole scattering amplitude is given by a trivial “hard factor”
times a nonperturbative gluon matrix element of the proton:
the generalized parton distribution (GPD) Hg(x,ξ,T ) of the
nucleon (N ),

TrCAqq̄N (r,�) ≈ αsπ
2

2
r2
T H

g
(N)

(
xeff,0,−�2

T

)
, (16)

where in the light-cone gauge A+ = 0, the gluon GPD Hg is
given by the matrix element

Hg
(
x,0,−�2

T

) = 1

2πp+

∫
dr−eixp+r−

〈
p + 1

2
�

∣∣∣∣
×F+ia

(
−1

2
r

)
F+ia

(
+1

2
r

)∣∣∣∣p − 1

2
�

〉
.

(17)

The coefficient in Eq. (16) is fixed by a direct computation of
both sides of the equation for the case of a quark target, where
one has

TrCAqq̄N (r,�) ≈ iα2
s CF

∫
d2bei�·b

[
ln2 1

|b − zr|T �

− 2 ln
1

|b − zr|T �
ln

1

|b + (1 − z)r|T �

+ ln2 1

|b + (1 − z)r|T �

]
. (18)

In general, the field strength tensors in the operator (17) are
dressed with lightlike Wilson lines to make the quantity gauge
invariant; these Wilson lines are equal to unity in the A+ = 0
light-cone gauge.3

Altogether, combining this with Eqs. (15) and (14), one ob-
tains for the cross section for elastic vector meson production
on the proton,4

dσN

dT
= 1

4π

∣∣∣∣ ∫ d2rdz

4πz(1 − z)
[ψγ ψV ∗](r,z)

×αsπ
2

2
r2
T H

g
(N)(xeff,0,T )

∣∣∣∣2, (19)

where the averaging over the angles of � has now be-
come trivial and we have defined the wave-function overlap
[ψγ ψV ∗](r,z) ≡ {∑σσ ′ ψ

γ
λσσ ′(r,z)[ψV

λ′σσ ′(r,z)]
∗} for brevity.

We note that in the forward limit T → 0, the GPD Hg

reduces down to the ordinary unintegrated gluon distribu-
tion, Hg(x,0,0) = xG(x,1/r2

T ), where the inverse dipole size
1/rT provides the transverse momentum cutoff (factorization
scale) [17,23,24].

C. Back-to-back electrodisintegration of the deuteron

We now consider diffractive J/ψ electro- or photoproduc-
tion on the deuteron and require in addition that the deuteron
disintegrates into the proton and neutron in the final state
with high transverse momentum: γ + D → J/ψ + p + n.
The scattering is illustrated in Fig. 1 and the kinematics are

3Note that a general GPD depends on the skewness ξ ∼ �+/p+,
with Hg ≡ Hg(x,ξ,−�2

T ), but in these kinematics the skewness is
small and is set to zero in our discussion.

4Here and in the following, we ignore saturation corrections that
become important when r2

⊥Q2
s ∼ 1, where Qs is the saturation scale

in the proton that grows with decreasing x. Our formalism can be
extended to include such corrections.
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q

γ∗

D
p p

n

p1

p2 = p − p1 + Δ

J/ψ

q − Δ

Δ

D

J/ψ

γ∗

p

n

(a) (b)

FIG. 1. Schematic illustration of the amplitude for diffractive J/ψ electroproduction on the deuteron: γ(q) + D(p) → J/ψ(q−�) + p(p′
1) +

n(p′
2). (a) In Regge kinematics, the photon preferentially fluctuates into a quark dipole and scatters from the deuteron by pomeron exchange

(double wavy line in the t channel). (b) Spacetime picture of the collision. The symbols ⊕ and � represent the trajectories of the deuteron and
photon, respectively, along the corresponding light-front axes.

similar to the proton case,

pμ =
(

p+,
m2

D

s
q−,0

)
, qμ = (−xp+,q−,0),

�+ ≈ −xeff p
+, �− ≈

[
p′2

1T + m2
N

α′(1 − α′)s
− m2

D

s

]
q−, (20)

with mD the deuteron mass, mN the nucleon mass,
and α′ ≡ p′+

1 /p+ the fraction of the incoming deuteron
momentum carried by the outgoing proton. In deriving
these expressions we have neglected �2

T � p′2
1T as well as

�2
T � max(Q2,M2

V ). The invariant momentum transfer is
T = �2 ≈ −�2

T and the center-of-mass energy (squared) of
the outgoing NN system is then

sNN ≈ p′2
1T + m2

N

α′(1 − α′)
− m2

D. (21)

In the limit when p′2
1T � �2

T , the proton and the neutron
emerge nearly back to back: p′

2 ≈ −p′
1. As the recoil mo-

mentum p′
1T becomes large, the NN invariant mass sNN also

grows; this invariant mass is delivered through the T channel
by the component �− ≈ sNN

s
q−. The amount of energy which

can be delivered through the T channel without disturbing the
preceding kinematics is limited by the approximation

T = 2�+�− − �2
T ≈ −xeffsNN − �2

T ≈ −�2
T , (22)

which, in turn, limits the invariant mass in the NN system to
|T | � sNN � |T |

xeff
for the approximations to be valid. Thus,

one needs very high DIS energies for small sized dipoles (with
large M2

V and/or Q2) to probe large relative momenta between
the outgoing proton and neutron.

Following steps identical to those in Sec. II B, introducing
in addition the rapidity y ′

1 = dp′+
1 /p′+

1 of the proton and the
new momentum transfer variable

t ≡ (p′
1 − p)2 = (1 − α′)

(
m2

D − m2
N

α′

)
− 1

α′ p
′2
1T (23)

and with d2p′
1

(2π)2 = α′ dt
4π

dφ′
1

2π
, one can write the differential cross

section specifying both the overall momentum transfer T and
the final-state proton kinematics as

dσD

dT dtdy ′
1

= 1

(4π )3

α′

1 − α′

∫
dφ�

2π

dφ′
1

2π
|A(�,p′

1,α
′)|2, (24)

where again the energy rescaled amplitude is A = M/2s.

As with the proton case in Eq. (15), the separation of time
scales allows us to factorize the photon and vector meson wave
functions from the scattering amplitude of the dipole on the
deuteron as

A(�,p′
1,α

′) =
∫

d2rdz

4πz(1 − z)
[ψγ ψV ∗](r,z)

×TrCAqq̄D(r,�; p′
1,α

′). (25)

The propagation of the high-energy dipole through the gluon
field of the deuteron is unchanged. However, now the nonper-
turbative matrix element from which the gluon field is taken
is not an expectation value in the proton state; it corresponds
instead to the transition from the deuteron to the NN system.
Therefore, we can define a novel object Ĥ g with the same
gluon operators as the GPD Hg , but evaluated between the
deuteron and NN states; this gluon transition generalized
parton distribution (T-GPD) is defined to be

Ĥ
g
(D)(x,0,T ; t) ≡

∫
dr−

2πp+ eixp+r−〈p(p′
1)n(p + � − p′

1)|

×F+ia

(
− r

2

)
F+ia

(
+ r

2

)
|D(p)〉. (26)

The relation of the scattering amplitude to the T-GPD is the
same as in the proton case,

TrCAqq̄D(r,�; p′
1,α

′) ≈ αsπ
2

2
r2
T Ĥ

g
(D)(x,0,T ; t). (27)

Note that we are utilizing this quantity in the limit |T | � |t |.
The operator expression for Eq. (26) is only valid in the light-
cone gauge A+ = 0; in other gauges, it is dressed by light like
Wilson lines to preserve gauge invariance. Because the only
major difference from the proton case is the evaluation of the
dipole scattering amplitude between different states, we obtain
a similar formula,

dσD

dT dtdy ′
1

= 1

(4π )3

α′

1 − α′

∣∣∣∣ ∫ d2rdz

4πz(1 − z)
[ψγ ψV ∗](r,z)

×αsπ
2

2
r2
T Ĥ

g
(D)(x,0,T ; t)

∣∣∣∣2 , (28)

which differs only in the kinematic prefactor and the appear-
ance of the T-GPD Ĥ

g
(D).
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q

γ∗

D
p

p

n

α , p1

(1 − α) , −p1

1 − z

z

−r/2

+r/2

1 − z

z

J/ψ

q − Δ
−r/2

+r/2

Δ −

n

(1 − α ) , p2 = (Δ − p1)

p
α , p1

FIG. 2. Illustration of the factorization (34) of the cross section into the wave functions of the virtual photon, vector meson, and deuteron
times the scattering of the dipole on the NN system.

As with exclusive J/ψ production off the proton, the lead-
ing order process consists of the projectile dipole exchanging
two gluons with deuteron, delivering a sufficient momentum
kick to break apart the deuteron. The nonperturbative gluon
matrix element (26) is similar to (17), but evaluated between
the incoming deuteron state |D〉 and outgoing proton and
neutron nucleon states 〈N ⊗ N |. In LFPT, the “in” and “out”
states are evaluated at asymptotic infinity, and the operators
are evaluated at x+ = 0+,

out〈pn|[F+iaF+ia](0+)|D〉in

= 〈pn|U[+∞+,0+][F+iaF+ia](0+)U[0+,−∞+]|D〉
=
∫∑
X

〈pn| U[+∞+,0+][F+iaF+ia](0+)

×|X〉〈X|U[0+,−∞+]|D〉, (29)

where we have inserted a complete set of states |X〉 in the
second line. This decomposition relies on the gluon field
insertions being nearly instantaneous relative to the lifetimes
of the intermediate states. In principle, the deuteron wave
function has nonzero overlap with an infinite tower of Fock
states (NN,��,N8N8, . . .). However, because the deuteron
is so loosely bound, the nucleon-nucleon ground state is the
dominant configuration and we assume in the following that
the complete set of states |X〉 is saturated by this configuration
to give

out〈pn|[F+iaF+ia](0+)|D〉in

=
∫

d�NN〈pn|U[+∞+,0+][F+iaF+ia](0+)

×|NN (�NN)〉ψD→NN(�NN), (30)

where the deuteron LFWF is

ψD→NN = 〈NN|U[0+,−∞+]|D〉. (31)

Like the photon and J/ψ wave functions, the intrinsic time
scales ∼1/mD of the deuteron wave function are much longer
than the interaction time scale ∼1/

√
s with the projectile,

leading to a factorization of the matrix element into the
wave function times an on-shell NN amplitude. One therefore

obtains for the gluon T-GPD

Ĥ
g
(D)(x,0,T ; t) =

∫
dα

4πα(1 − α)

d2p1

(2π )2

∑
σpσn

ψD
σD ;σpσn

×(p1,α)Hg
σ ′

pσ ′
n; σpσn

(x,0,T ; t) , (32)

with

H
g
σ ′

pσ ′
n;σpσn

(x,0,T ; t)

=
∫

dr−

2πp+ eixp+r− 〈
pσ ′

p
(p′

1)nσ ′
n
(p + � − p′

1)
∣∣U[+∞+,0+]

×F+ia

(
−1

2
r

)
F+ia

(
+1

2
r

)∣∣pσp
(p1) nσn

(p − p1)
〉
.

(33)

The polarizations of the incoming deuteron and outgoing
proton and neutron are σD , σ ′

p, and σ ′
n, respectively, and the

sum over the spins σp,σn of the intermediate nucleons is shown
explicitly.

The NN matrix element H
g
σ ′

pσ ′
n; σpσn

is close to being the
standard GPD, except for describing a two-hadron system and
therefore retaining dependence on the momentum transfer t to
one hadron (the proton) in addition to the momentum transfer
T to the center of mass. In terms of this NN matrix element,
the production cross section can be written

dσD

dT dt dy ′
1

= 1

(4π )3

α′

1 − α′

∣∣∣∣ ∫ d2rdz

4πz(1 − z)
[ψγ ψV ∗](r,z)

×αsπ
2

2
r2
T

∫
dα

4πα(1 − α)

d2p1

(2π )2

∑
σpσn

ψD
σD ;σpσn

×(p1,α)Hg
σ ′

pσ ′
n;σpσn

(x,0,T ; t)

∣∣∣∣2, (34)

and is depicted in Fig. 2.
By considering exclusive vector meson production from

DIS on a composite state such as the deuteron, we have
introduced another kinematic parameter t into the “GPD”
Hg(x,0,T ; t). If t is a soft scale, p′2

1T ∼ O(�2
QCD), then this is
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simply a nonperturbative distribution. Because the deuteron is
a loose bound state of nucleons, to leading order, the singlet
two-gluon exchange can be thought of as taking place on one
of the nucleons, while the other nucleon is a spectator.5 This
is equivalent to writing the gluon GPD of the deuteron as the
sum of GPDs in each of its nucleons: Ĥ

g
(D) = 2H

g
(N). In this

mechanism, the nucleons are ejected with p2
T comparable to

the momentum transfer |T | from the projectile dipole, or to the
intrinsic momentum scale ∼�2

QCD which the deuteron wave
function can accommodate.

However, if the additional kinematic parameter t becomes
a hard scale |t | ∼ p′2

1T � �2
QCD, it must be generated by a

short-distance QCD interaction. Inserting another complete
set of states in Eq. (33) (and assuming it is also saturated
by the NN state), one can then expand the “time” evolution
operator (5) to lowest nonvanishing order, obtaining

Ĥ
g
(D)(x,0,T ; t)

=
∫

dα

4πα(1 − α)

d2p1

(2π )2

∑
σpσn

ψD
σD ;σpσn

(p1,α)

×
[ ∫

dr−

2πp+ eixp+r−
∫

d�NN
〈
pσ ′

p
(p′

1) nσ ′
n
(p + � −p′

1)
∣∣

×V −
NN |NN〉 1

�E− × 〈NN|
∣∣∣∣F+ia

(
− r

2

)
×F+ia

(
+ r

2

)∣∣∣∣pσp
(p1)nσn

(p − p1)

〉]
, (35)

where V −
NN is the first operator in the expansion of U with

a nonvanishing matrix element. Further, �E− is the energy
denominator of the virtual |NN〉 state between the two-gluon
exchange and the NN rescattering. In this way, we can hope
to extract a nucleon-nucleon scattering matrix element from a
measurement of the J/ψ production cross section.

Specifically, the lowest-order process consists of the ex-
change of an additional gluon between the proton and neutron,
as shown in Fig. 3(b). Normally the exchange of a single gluon
does not contribute to NN scattering, because the gluon carries
an octet color charge. However, as part of the dipole scattering
amplitude, such a process is possible if each nucleon absorbed
exactly one of the gluons from the diffractive T -channel
exchange with the dipole. The additional gluon exchange
between the nucleons can then neutralize the net octet color
charge state each nucleon has acquired from the diffractive
pomeron.

This novel perturbative mechanism, in which the nucleons
are temporarily excited into a color-octet state, may provide
a new window into nucleon-nucleon interactions at short
distances. We explore this mechanism quantitatively in Sec. III.
While a full understanding of how this perturbative picture

5The octet configuration, which we soon discuss, where one gluon
is exchanged with a proton and the other with the neutron does
not apply here because the necessary color neutralizing octet gluon
exchange between the two nucleons is forbidden by confinement at
large distances.

Δ −

n

p
p1 + rp1

p2

Δ −

n

p
p1 + Δp1

p2 p2 + Δ − r

(a () b)

FIG. 3. Examples of the dipole-NN T matrix which can contribute
to (a) the |t | ∼ |T | and (b) |t1| � |T | regimes. In the first case, |t | ≈
|T | ≈ �2

T , and in the second case |t | ≈ p′2
1T � �2

T ≈ |T |.

requires that one demonstrate factorization of the nonpertur-
bative physics beyond leading order, we argue that at high
t this picture is plausible because the separation of time
scales between the diffractive exchange �x+/p+

tot ∼ O(1/s)
and the NN rescattering, �x+/p+

NN ∼ O(1/p′2
1T ), suggests that

a factorization of the T-GPD should survive in a complete
treatment. Regardless, exclusive vector meson production with
deuteron breakup into high-pT nucleons can be used to probe
the short-distance behavior of the T-GPD Ĥ (x,0,T ; t). The
magnitude and t dependence of this object will provide novel
information that models of the short-range nucleon-nucleon
interaction should satisfy. As an example, the multi-Pomeron
exchange model [10], currently applied to model neutron-star
equations of state, should be strongly constrained by this
T-GPD.

III. PERTURBATIVE COMPUTATION

We now perform a perturbative computation of the dipole
scattering amplitude TrCAqq̄D for exclusive vector meson
production with deuteron breakup. In Sec. III A we simplify
the computation greatly by treating each of the nucleons
in the scattering as valence quarks. The purpose of this
toy model computation is to obtain a feel for the relative
importance of initial-state versus final-state gluon-mediated
color exchanges, to understand the structure of so-called pinch
singularities that can modify naive power counting and to
fix numerical coefficients that will be important for our later
estimates.

In Sec. III B we discuss the contours of the full computa-
tion which is challenging even in high-energy asymptotics
and and at leading order. While clearly outside the scope
of this work, we outline how this computation relates to
previous work on large-angle, high-energy elastic scattering.
This correspondence will provide an important basis for
future quantitative studies. Our study motivates an ansatz
for the photodisintegration cross section as a product of the
modulus squared deuteron wave function with the exclusive
vector meson photoproduction cross section and the neutron-
proton elastic scattering cross section. Because each of these
quantities can be fixed, they provide a plausible estimate of
rates for this process at an EIC. These will be discussed in
Sec. IV.
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(a () b) (c)

FIG. 4. Representative diagrams from the three classes of
nucleon-nucleon interactions. The NN interaction can occur as
(a) a final-state interaction, (b) an initial-state interaction, or
(c) a long-lived fluctuation. For each class of diagrams there are
also minor variations on the topology, such as altering the order in
which the projectile scatters on the two nucleons.

A. Toy model computation

It is convenient to perform this calculation using covariant
Feynman perturbation theory rather than LFPT, because the
on-shell dipole scattering amplitude can be computed in either
formalism. It is also convenient to focus on the diagrams
in which both exchanged gluons couple to the quark in the
projectile dipole; the generalization to the diagrams involving
the antiquark is straightforward. We work in Feynman gauge
satisfying ∂μAμ = 0.

The three general diagrammatic topologies relating to the
ordering of the NN interaction with respect to the diffractive
exchange with the projectile are illustrated in Fig. 4 by taking
the NN interaction to be the exchange of a single gluon at
leading order. In our toy computation, the valence quark
“nucleons” are color singlet; this therefore requires that the
diffractive exchange with the projectile deliver one gluon to
each “nucleon.” The generalization to the scattering amplitude

qq q − Δ q − Δ

Δ − Δ −

p1 p1

p2 p2

p1 p1

p2 p2

FIG. 5. Final-state interaction diagrams. The initial neutron
momentum is p2 ≡ p − p1, and the final neutron momentum is
p′

2 = p − p′
1 + �.

of the full projectile dipole TrCAqq̄NN is straightforward. Once
this is accomplished, we convolute the scattering amplitude
with the deuteron wave function [as in Eq. (32)] to obtain
the full dipole scattering amplitude TrCAqq̄D on the deuteron
target.

Let us begin by calculating in detail the final-state interac-
tion diagrams represented in Fig. 4(a). There are two diagrams
with this topology, corresponding to the projectile striking the
two nucleons in either order; these diagrams are shown in
Fig. 5. By labeling the momenta and indices appropriately, it
is possible to arrange the two diagrams so that they only differ
in the flow of momentum through the projectile quark; this
conveniently allows us to write the sum of the diagrams as

i TrCAqNN δσσ ′

= 1

2s

CF

4Nc

∫
d4�

(2π )4
Uμν(�)

[−i

�2

−i

(� − �)2

]
Lμν(�), (36)

withUμν the upper part andLμν the lower part of the diagrams,
as illustrated in Fig. 6.

For the upper part of the diagram, we sum the two pieces shown in Fig. 6 and obtain

Uμν(�) ≡ Uσ ′(q − �)[igγν]

[
i(/q− � � + mq)

(q − /�)2 − m2
q + iε

]
[igγμ]Uσ (q) + Uσ ′(q − �)[igγμ]

[
i(/q − /� + /� + mq)

(q − � + �)2 − m2
q + iε

]
[igγν]Uσ (q),

(37)

where σ (σ ′) is the initial (final) spin of the projectile quark and mq is its mass. To simplify the expression, we take the eikonal
part (q−γ +) of the projectile quark propagator in the numerator, assuming that |�−| � q−:

Uμν(�) = −ig2q−
{

Uσ ′(q − �)γνγ
+γμUσ (q)

(q − �)2 − m2
q + iε

+ Uσ ′(q − �)γμγ +γνUσ (q)

(q − � + �)2 − m2
q + iε

}
. (38)

The dominant contribution to the numerator algebra comes from the γ matrix structure γνγ
+γμ → δ+

μ δ+
ν γ −γ +γ − = 2δ+

μ δ+
ν γ −,

where we have picked out the eikonal quark-gluon vertices and used the anticommutation relations. Using this brings the upper
part of the diagram into the form

Uμν(�) = −2ig2q−δ+
μ δ+

ν [Uσ ′(q − �)γ −Uσ (q)]

{
1

(q − �)2 − m2
q + iε

+ 1

(q − � + �)2 − m2
q + iε

}
. (39)

The leading part of the spinor matrix element is Uσ ′(q − �)γ −Uσ (q) ≈ 2q−δσσ ′ , which simplifies the expression to

Uμν(�) ≈ −2ig2q−δ+
μ δ+

ν δσσ ′

{
− 1

�+ − �+
1 − iε

+ 1

�+ − �+
2 + iε

}
, (40)
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q qq − Δ q − Δ

μ μ

μ

ν ν

ν

q − − Δ +

p1

p2

p1

p2

p1 +

p2 + Δ −

−i
2

−i
(Δ− )2

FIG. 6. Partition of the diagrams of Fig. 5 into the upper part Uμν(�) (first bracketed sum of diagrams), lower part Lμν(�) (third bracketed
diagram), and gluon propagators.

where the poles of the propagators are given by

�+
1 = q+ − (q − �)2

T + m2
q

2q− , �+
2 = −(q − �)+ + (q − � − �)2

T + m2
q

2q− , (41)

with the projectile quarks treated as (nearly) on-shell. (Recall that this was a consequence of the separation of time scales.) Using
this, we rewrite the amplitude as

TrCAqNN = g2CF

8Nc

1

p+

∫
d4�

(2π )4

1

�2
T (� − �)2

T

[
1

�+ − �+
2 + iε

− 1

�+ − �+
1 − iε

]
L++(�), (42)

where we have taken the t-channel gluons to be Glauber-Coulomb gluons (|�+�−| � �2
T ). Because the upper part of the diagram

involving the projectile dipole is the same among all the diagrams in Fig. 4, we can use Eq. (42) as the starting point for the
calculation of all of them.

The lower part of the final-state interaction diagram in Fig. 6, taken in the eikonal limit δ+
μ δ+

ν Lμν(�) = L++(�), is given by

L++
A (�) ≡ Uσ ′

p
(p′

1)[igγα]

[
i(/p1 + /� + mN )

(p1 + �)2 − m2
N + iε

]
[igγ +]Uσp

(p1)Uσ ′
n
(p′

2)[igγ α]

[
i(/p2 + /� − /� + mN )

(p2 + � − �)2 − m2
N + iε

]
×[igγ +]Uσn

(p2)

[ −i

(p1 + � − p′
1)2 + iε

]
, (43)

where σp(σn) are the initial proton (neutron) spins and σ ′
p(σ ′

n) are the final spins, and we use the subscript A to indicate the
category (a) from Fig. 4. Again keeping the eikonal part of the quark propagators p+

1(2)γ
− for |�+| � p+

1(2), we reduce the
expression to

L++
A (�) = ig4 p+

1 p+
2

[
Uσ ′

p
(p′

1)γαγ −γ +Uσp
(p1)

][
Uσ ′

n
(p′

2)γ αγ −γ +Uσn
(p2)

][
(p1 + �)2 − m2

N + iε
][

(p2 + � − �)2 − m2
N + iε

]
[(p1 + � − p′

1)2 + iε]
. (44)

In this eikonal approximation for the quark propagators, the only nonzero contribution from the final-state rescattering is from
γα = γ⊥. The numerator structure reduces to

Num ≡ [Uσ ′
p
(p′

1)γαγ −γ +Uσp
(p1)

][
Uσ ′

n
(p′

2)γ αγ −γ +Uσn
(p2)

] = −[Uσ ′
p
(p′

1)γ i
⊥γ −γ +Uσp

(p1)
][

Uσ ′
n
(p′

2)γ i
⊥γ −γ +Uσn

(p2)
]
,

(45)

and a direct evaluation of the matrix element yields

Uσ ′
p
(p′

1)γ i
⊥γ −γ +Uσp

(p1) = 2

√
p+

1

p′+
1

{(
δij − iσpε

ij
T

)
p

′j
1⊥δσpσ ′

p
− imNε

ij
T [σ j

⊥]σ ′
pσp

}
, (46)

using the spinors of Ref. [35] ([�σ ] are the Pauli matrices and ε
ij
T is the two-dimensional Levi-Civita tensor).

We can simplify this expression by restricting the range of longitudinal momenta of the “nucleons.” The deuteron wave function
is largely nonrelativistic, with the longitudinal momentum shared roughly equally among the nucleons: p+

1 ≈ p+
2 ≈ 1

2p+. If we
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+ + +

−

(a)

(b)

FIG. 7. Pole structure in the complex �± plane. (a) The �+ pole corresponds to the intermediate quark propagator from the projectile dipole,
with a contour that can be deformed far away from the origin. The magnitude of the deformation is limited by the presence of auxiliary poles
(denoted by crosses) from the t-channel gluons. (b) The �− poles correspond to the intermediate proton-neutron propagators.

consider the produced nucleon in the same vicinity p′+
1 ≈ 1

2p+, then the longitudinal momentum of the nucleons is roughly
unchanged: p+

1 ≈ p′+
1 .

Because we are interested in a hard transverse momentum in the final state6 we take p′2
1T � p2

1T ,m2
N , which gives

Uσ ′
p
(p′

1)γ i
⊥γ −γ +Uσp

(p1) = 2
(
δij − iσpε

ij
T

)
p

′j
1⊥δσpσ ′

p
, Uσ ′

n
(p′

2)γ i
⊥γ −γ +Uσn

(p2) = −2
(
δik − iσnε

ik
T

)
p′k

1⊥δσnσ ′
n
, (47)

where we have used p′
2 = p − p′

1 + � ≈ −p′
1. Multiplying the two spinor matrix elements, we obtain for the numerator factor

Num = −[Uσ ′
p
(p′

1)γ i
⊥γ −γ +Uσp

(p1)
][

Uσ ′
n
(p′

2)γ i
⊥γ −γ +Uσn

(p2)
] = +8p′2

1T δσ ′
pσp

δσ ′
nσn

δσp,−σn
. (48)

The resulting spin structure is interesting; in addition to the helicity-preserving eikonal scattering which keeps σ ′
p(n) = σp(n), the

expression couples to the component σp = −σn of the deuteron wave function. Inserting this back into Eq. (44), we obtain

L++
A (�) = +8ig4 p+

1 p+
2 p′2

1T δσ ′
pσp

δσ ′
nσn

δσp,−σn[
(p1 + �)2 − m2

N + iε
][

(p2 + � − �)2 − m2
N + iε

]
[(p1 + � − p′

1)2 + iε]
. (49)

The final-state interaction gluon (p1 + � − p′
1)μ has longitu-

dinal +,− components which are both small; it is a Glauber
gluon. We therefore keep only the transverse momentum (p1 +
� − p′

1)2
T ≈ −p′2

1T and neglect the pole in the longitudinal
integrals. This simplifies the expression down to

L++
A (�) = +2ig4δσ ′

pσp
δσ ′

nσn
δσp,−σn

[�− − �−
3 + iε][�− − �−

4 − iε]
, (50)

where

�−
3 = −p−

1 + (p1 + �)2
T + m2

N

2p+
1

,

�−
4 = p−

2 + �− − (p2 + � − �)2
T + m2

N

2p+
2

, (51)

are the poles of the “proton” and “neutron” propagators,
respectively.

6In principle, a hard transverse momentum can also exist in the
initial state such that p′2

1T ∼ p2
1T � m2

N . This corresponds to the high-
pT tail of the deuteron wave function, which is mimicked in this model
by the initial-state interaction diagrams of Fig. 4(b).

Combining Eqs. (42) and (50), we obtain

TrCA
qNN
(A) = g6CF

4Nc

1

p+
(
δσ ′

pσp
δσ ′

nσn
δσp,−σn

) ∫ d4�

(2π )4

× i

�2
T (� − �)2

T

[
1

�+ − �+
2 + iε

− 1

�+ − �+
1 − iε

]
× 1

�− − �−
3 + iε

1

�− − �−
4 − iε

. (52)

The pole structure which remains in the integral is important;
it determines not only the value of the expression, but also the
virtuality—and hence the lifetime—of the propagators (see
Fig. 7).

The arguments below follow the discussion of factorization
and pinched poles in Ref. [42]. The poles �−

3 and �−
4 of

�− generated by our proton and neutron propagators are
“pinched” as in Fig. 7(b): They occur at parametrically small
values �−

3(4) ∝ 1/p+ and lie on opposite sides of the real axis.
This means that the integration contour along the real �−
axis cannot be deformed to avoid the poles at �− ≈ 0, and,
correspondingly, the proton-neutron propagators are trapped
to have parametrically small virtualities (p1 + �)2,(p2 + � −
�)2 ∼ p2

1T ,p′2
1T . When expressed as a dimensionless ratio
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compared to the hardest scales in the problem, e.g., (p1 + �)2/s
or (p1 + �)2/〈k2

T 〉, with 〈k2
T 〉 ∼ z(1 − z)Q2 + m2

q , the relative
virtuality of these propagators goes to zero. So it seems that,
similar to the case of collinear factorization, the proton-neutron
propagators can be well approximated as being on-shell, with
long lifetimes proportional to the inverse of the virtuality.

A more unusual case is given by the poles �+
1 and �+

2 of �+
generated by the propagator of the projectile quark in the two
diagrams shown in Fig. 5. In this case, the two poles correspond
to two different diagrams, associated with the flow of �+
in either direction through the projectile quark propagator.
Because the two poles are not simultaneously imposed in
the same diagram, it is possible to deform the �+ contour
of integration away from the real axis such that �+ is not
parametrically small anywhere on the contour as in Fig. 7(a).
However, despite the fact that the �+ integration contours are
not trapped in the individual diagrams, the result of adding
the two diagrams together in this fashion is to effectively trap
the contour between the two poles [Fig. 7(a)]. By explicitly
adding the bracketed terms in Eq. (52), we obtain

I ≡
∫

d4�

(2π )4

i

�2
T (� − �)2

T

[
1

�+ − �+
2 + iε

− 1

�+ − �+
1 − iε

]
× 1

�− − �−
3 + iε

1

�− − �−
4 − iε

=
∫

d4�

(2π )4

i

�2
T (� − �)2

T

{
�+

2 − �+
1

[�+ − �+
1 − iε][�+ − �+

2 + iε]

}
× 1

�− − �−
3 + iε

1

�− − �−
4 − iε

. (53)

Although it is not a physical pinch corresponding to a long-
lived intermediate state, the sum of the diagrams generates an
effective pinch that can be used to evaluate the integral. One
obtains

ImTrCA
qNN
(A) = g6CF

4Nc

[
1

p+(�−
4 − �−

3 )

](
δσ ′

pσp
δσ ′

nσn
δσp,−σn

)
×
∫

d2�

(2π )2

1

�2
T (� − �)2

T

, (54)

where in the eikonal approximation used here the real part of
the amplitude is zero. The factor 1/p+(�−

4 − �−
3 ) is the residual

effect of the proton-neutron poles, arising from collecting
the residue of one pole (putting it on shell) and obtaining
the resulting “off-shell-ness” of the other pole. Evaluating
this factor, one observes that the “residual off-shell-ness”
of the intermediate pn state is just the difference between
the minus momentum of the on-shell final-state pn system
(p′−

1 + p′−
2 ) and the minus momentum of the intermediate

state, evaluated with both nucleons on shell: (p1 + �3)− +
(p2 + � − �4)−. This is exactly the energy denominator from

p1

p2

p1 + 3

p2 + Δ − 4

FIG. 8. Energy denominator of the intermediate pn state (dashed
line) for the final-state interaction topology �EFSI representing the
“residual off-shell-ness” of the intermediate state.

LFPT of the intermediate state [see Fig. 8 and compare with
Eq. (35)]: �−

4 − �−
3 = p′−

1 + p′−
2 − (p1 + �3)− − (p2 + � −

�4)− ≡ �E−
FSI. If we take p′2

1T � p2
1T ,�2

T ,�2
T , then the energy

denominator is dominated by the minus momentum of the final
state �E−

FSI ≈ +E−
final and

�−
4 − �−

3 ≈ p′2
1T

2p+
1

+ p′2
1T

2p+
2

≈ p′2
1T

2α(1 − α)p+ , (55)

where α ≡ p+
1 /p+ is the momentum fraction of the deuteron

carried by the proton. We then obtain

ImTrCA
qNN
(A) = +8π

α3
s CF

Nc

α(1 − α)

p′2
1T

(
δσ ′

pσp
δσ ′

nσn
δσp,−σn

)
×
∫

d2xe−i�·xe−i(�−�)·x ln2 1

xT �
, (56)

where we have replaced the transverse momentum integral in
Eq. (54) with its coordinate space equivalent. The suggestive
form of the Fourier factors in Eq. (56) was chosen to show
that both gluons interact with the projectile quark at transverse
position x. The generalization to the case of the full dipole is
then straightforward [compare with Eq. (18)], yielding for the
final-state interaction topology (A),

Im TrCA
qq̄NN
(A) ≈ +8π

α3
s CF

Nc

α(1 − α)

p′2
1T

(
δσ ′

pσp
δσ ′

nσn
δσp,−σn

)
×
∫

d2b e−i�·b
[

ln2 1

|b − zr|T �

− 2 ln
1

|b − zr|T �
ln

1

|b + (1 − z)r|T �

+ ln2 1

|b + (1 − z)r|T �

]
, (57)

where we have kept the dominant imaginary part of the
amplitude.

Now let us consider the initial-state interaction diagrams
of Fig. 4(b). The treatment of the upper part of the diagram
Uμν is the same as before, so we can begin with Eq. (42) and
the lower part of the diagram shown in Fig. 9. Eikonalizing
the “valence” proton and neutron propagators, as previously,
using the approximation p′+

1 ≈ p+
1 and recognizing (p1 + � −

p′
1)2 ≈ −p′2

1T to be a Glauber gluon propagator, we find

L++
B (�) = − 1

4 ig4
[
Uσ ′

p
(p′

1)γ +γ −γ i
⊥Uσp

(p1)
][

Uσ ′
n
(p′

2)γ +γ −γ i
⊥Uσn

(p2)
]

[�− − �−
5 − iε][�− − �−

6 + iε] p′2
1T

, (58)
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p1

p2

p1

p2

p1 −

p − p1 +

FIG. 9. The lower half of the diagram L++ for the initial-state
interaction topology of Fig. 4(b).

where the poles of the proton and neutron propagators,
respectively, are

�−
5 = p′−

1 − (p′
1 − �)2

T + m2
N

2p+
1

;

�−
6 = p′−

1 − p− + (p − p′
1 + �)2

T + m2
N

2p+
2

. (59)

The form Ū (p′
1)γ +γ −γ⊥U (p1) in Eq. (58) is different

from the form Ū (p′
1)γ⊥γ −γ +U (p1) that appeared for the

final-state interaction topology. Direct evaluation of the new
matrix element yields

Uσ ′
p
(p′

1)γ +γ −γ i
⊥Uσp

(p1)

= 2

√
p′+

1

p+
1

{(
δij + iσpε

ij
T

)
p

j
1⊥δσpσ ′

p
+ imNε

ij
T [σ j

⊥]σ ′
pσp

}
.

(60)

In the final-state interaction topology, the numerator structure
Ū (p′

1)γ⊥γ −γ +U (p1) coupled to the transverse momentum
p′

1⊥ in the final state, which is large; in the the initial-state
interaction topology considered here, the numerator structure
Ū (p′

1)γ +γ −γ⊥U (p1) couples to the transverse momentum
p1⊥ in the initial state, which is small. As a consequence,
in the limits p′+

1 ≈ p+
1 and p′2

1T � p2
1T ,m2

N being considered,
the complete numerator of Eq. (58) remains fixed at O(m2

N )
instead of becoming large asO(p′2

1T ) as in Eq. (48). Because the
gluon propagator (p1 + � − p′

1)2 ≈ −p′2
1T itself is large, this

leads to a suppression by O(m2
N/p′2

1T ) of the initial-state inter-
action diagrams relative to the final-state interaction diagrams.

One can check that the integrals over the poles in the
initial-state interaction topology are comparable to those in the
final-state interaction expression. Thus, because the numerator
algebra has introduced a suppression factor ofO(m2

N/p′2
1T ), we

can neglect the contributions from the initial-state interaction
topology from Fig. 4(b) when the transverse momentum of the
detected proton is much larger than 1 GeV.

A similar analysis to the initial- and final-state cases can
be carried out for the “long-lived fluctuation” diagrams of
Fig. 4(c), leading to the lower parts shown in Fig. 10. As
for the initial-state interaction case, there is a suppression by
O( mN

p′
1T

) coming from the Ūγ⊥γ −γ +U structure. Furthermore
(and more importantly), the combination of poles which appear

p1

p2

p1

p2

p1

p2

p1

p2

p1 −

p2 + Δ −

p1 +

p − p1 +

FIG. 10. Two diagrams for the “long-lived fluctuation” topology
of Fig. 4(c).

in these long-lived fluctuations are both on the same side of the
real axis. This breaks the pinch of the �− poles that was present
before, allowing us to close the �− integration contour on the
opposite side of the real axis and obtain zero for the integral
(with eikonal accuracy). Thus, these diagrams in category C are
far more suppressed than the initial-state interaction diagrams
and can therefore be neglected entirely.

As a result of these considerations, we find that the dom-
inant diagrams for p′2

1T � m2
N are the final-state interaction

diagrams of Fig. 4(a), so that the leading contribution at this
order is then given by Eq. (57):

TrC Aqq̄NN = +8πi
α3

s CF

Nc

α(1 − α)

p′2
1T

(
δσ ′

pσp
δσ ′

nσn
δσp,−σn

)
×
∫

d2b ei�·b
[

ln2 1

|b − zr|T �

− 2 ln
1

|b − zr|T �
ln

1

|b + (1 − z)r|T �

+ ln2 1

|b + (1 − z)r|T �

]
. (61)

The dipole scattering amplitude on the deuteron is simply
obtained by convoluting this result with the deuteron wave
function:

TrCAqq̄D =
∑
σpσn

∫
dα

4πα(1 − α)

d2p1

(2π )2
ψD

σD ;σpσn
(p1,α)

×TrCAqq̄NN. (62)

Comparing this to the dipole scattering amplitude (18) on a
single “nucleon” in the valence quark model, we obtain

TrCAqq̄D ≈
[

2
αs

Nc

1

p′2
1T

ψD
σD ;σ ′

p,−σ ′
p

(
0,

1

2

)
δσ ′

p,−σ ′
n

]
TrC Aqq̄N ,

(63)

where in Eq. (62), we have approximated the momentum
fraction in the deuteron by its nonrelativistic value α = 1

2
and used the momentum integral d2p1 to Fourier transform
the deuteron wave function to its value with zero transverse
separation �x⊥ = 0 between the nucleons. From this relation,
and using Eqs. (16) and (27), one obtains a relation between
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N(p1)

N(p2)N(p2)

N(p1)

N(p2)N(p2)

N(p1) N(p1)N∗

N∗N(p2)

N(p1)

N(p2)

N(p1)

(a b) ( () c)

FIG. 11. (a) Generic nonperturbative matrix element represented by Eqs. (32) and (33). (b) Perturbative evaluation of the matrix element.
(c) Possible factorization of the final-state rescattering based on the perturbative evaluation.

the gluon distributions:7

Ĥ
g
(D)

(
xeff,0,−�2

T ; −2p′2
1T

)
≈
[

2
αs

Nc

1

p′2
1T

ψD
σD ;σ ′

p,−σ ′
p

(
0,

1

2

)
δσ ′

p,−σ ′
n

]
H

g
(N)

(
xeff,0,−�2

T

)
.

(64)

This expression has a simple interpretation in terms of the
proposed factorization illustrated in Fig. 11(c), which we write
schematically as

Ĥ
g
(D) ∼ ψD

(
0,

1

2

)
×
[

1

Nc

H
g
(N)

]
×
[

αs

p′2
1T

]
. (65)

The gluon field Ĥ
g
(D) of the deuteron seen by the projectile

dipole is a simple product of the deuteron wave function at
the origin (�xT = 0), the ordinary gluon distribution H

g
(N) of

the “nucleons,” and a new factor ∼αs/p
′2
1T describing the hard

scattering between the “nucleons” in the final state.
The additional suppression by the color factor 1/Nc occurs

because the colors of “valence nucleons” in our toy model
cannot be chosen independently; the total color exchanged
between the projectile and the composite NN system must
be color singlet to generate a rapidity gap; further, the total
color acquired by any given nucleon must be individually color
singlet.

We also note that the simple factorization which arises here
at leading order in the perturbative calculation is very far away
from a demonstration of factorization to all orders. However,
as we argued previously, there is a separation of characteristic
time scales between the long time dynamics of the deuteron
wave function, the instantaneous diffractive scattering with
the projectile dipole, and the final-state interaction. This was
manifest in the pinching of the poles of �− associated with
the intermediate state between the diffractive scattering and
final-state interaction (Fig. 7) which trap the intermediate
“nucleons” to be close to on shell. Whether these features
persist in the more general case requires a much more
sophisticated calculation that we leave for future work.

The relation (64) between the gluon distributions can be
carried over to the cross sections through the use of Eqs. (19)
and (28), yielding for fixed values of the deuteron spin σD and

7Note that in the approximations being considered here (α ≈ α′ ≈
1
2 and p′2

1T � m2
N ), the invariant t defined by Eq. (23) reduces to

t ≈ −2p′2
1T .

final-state nucleon spins σ ′
p,σ ′

n

dσD

dT dtdy ′
1

∣∣∣∣
α′≈ 1

2

=
[

1

(2π )2

α2
s

N2
c

1

p′4
1T

∣∣∣∣ψD
σD ;σ ′

p,−σ ′
p

(
0,

1

2

)∣∣∣∣2δσ ′
p,−σ ′

n

]
dσN

dT
, (66)

where we have again emphasized the restriction α′ ≈ α ≈ 1
2

and summed over the spins of the proton and neutron in the
final state.

In the Appendix, we examine some common choices
of the deuteron wave function used in phenomenology. In
these applications, the orbital part of the wave function is
independent of the spin configuration, multiplying a separately
normalized spin state. Thus,

ψD
σD ;σpσn

(
0,

1

2

)
= ψorbit

(
0,

1

2

)〈(
1

2
,
σp

2

)
⊗
(

1

2
,
σn

2

)∣∣∣∣(SD,σD)

〉
, (67)

where ψorbit is the orbital wave function and the bra-ket product
represents a Clebsch-Gordan coefficient. The ground state of
the deuteron is in an S-wave orbital state, with spin quantum
number SD = 1, and the condition σp = −σn arising from
the scattering mechanism implies that there is only nonzero
overlap with the spin state σD = 0. When calculating the cross
section for unpolarized scattering, we should average over the
deuteron spin and sum over the spins of the final-state nucleons
to obtain

dσD

dT dtdy ′
1

∣∣∣∣
α′≈ 1

2

=
[

1

12π

α2
s

N2
c

1

p′4
1T

∣∣∣∣�D

(
0,

1

2

)∣∣∣∣2
]

× dσN

dT
.

(68)

Note that the wave function |�D(0, 1
2 )|2 from the Appendix

differs from |ψorbit(0, 1
2 )|2 by a factor of π owing to a different

convention for the Fourier transform. With this result, and
with input for the deuteron wave function and the measured
diffractive cross section on the nucleon at HERA, one can
obtain the simplest possible perturbative estimate for the
desired cross section. Quantitative results from this numerical
analysis is discussed in Sec. IV.

045202-15



MILLER, SIEVERT, AND VENUGOPALAN PHYSICAL REVIEW C 93, 045202 (2016)

ψγ→qq̄
ψV →qq̄ ∗

ψD→NN
Mqq̄N→qq̄N

MNN→NN

ΔE

FIG. 12. Breakdown of the amplitude for the process γ ∗D −→
J/ψNN with a hard color-singlet exchange between the nucleons.

B. Models of the perturbative structure of final-state
nucleon-nucleon scattering

In our discussion above, we considered a highly simpli-
fied model wherein the individual nucleons in the deuteron
bound state are treated as valence quarks. We performed a
perturbative computation of DIS off these “nucleons,” with the
exclusive production of a heavy vector meson (the J/ψ) and
back-to-back nucleons with high relative momenta in the final
state. Though this model is not realistic, it does provide useful
lessons and a first rough estimate of the rates for such a process.
In a realistic computation, when p′2

1T � m2
N , if nucleons are

to remain collinear, additional gluon or quark exchanges must
occur between the valence quarks in a nucleon and between
the two nucleons. These additional exchanges break the naive
power counting of the toy model, which prefers a color-octet

final-state exchange; now both color-singlet and color-octet
exchanges enter at the same parametric order. Examples
of such a process, with final-state exchanges between the
nucleons, are shown in Figs. 12 and 13.

In the “color singlet” exchange process shown in Fig. 12,
the two gluons exchanged from the small sized dipole scatter
off one of the nucleons. Ensuring that the three valence
quarks remain collinear requires the outgoing nucleons to
exchange multiple partons, an example of which is shown
in the figure. On a much longer time scale relative to the gluon
exchange from the projectile, a large transverse momentum
p′

1T is transferred to the other nucleon via the color-singlet
exchange of three hard gluons, thereby ensuring that the
valence quarks absorbing the gluons remain collinear after the
scattering.

In the language of high-energy nucleon-nucleon scattering,
such a process is called a Landshoff process [27]. The
“conventional” mechanism shown in Fig. 12 is a color-singlet
exchange, but a novel Landshoff process can occur if the
two gluons from the projectile are absorbed by different
nucleons. In this case, the bound state is excited into a
color-octet–color-octet configuration; they can then decay into
the large relative momentum neutron-proton final state either
by a color-octet Landshoff mechanism or via a quark exchange
diagram as shown in Fig. 13.

The discussion of high-energy, large-angle elastic scattering
has a long history [43]. In pQCD, such scattering can asymp-
totically be represented as the product of the nonperturbative
incoming and outgoing wave functions of the scattering
nucleons, convoluted with a perturbative matrix element for
the scattering [35,44]. In considerations of the latter, the quark
counting rules describe configurations in which all the valence
quarks of the incoming and outgoing nucleons are found
within a small-sized “color transparent” configuration [20], so
that they all participate in a single “pointlike” hard scattering

ψγ→qq̄ ψV →qq̄ ∗

ψD→NN
M (qq̄) (NN)→(qq̄) (N8N8) MN8N8→NN

ΔE

FIG. 13. Breakdown of the amplitude the process γ ∗D −→ J/ψNN with a hard color-octet exchange between the nucleons.
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mechanism [28,29]. This leads to an elastic nucleon-nucleon
scattering cross section that goes as dσ/dt ∝ s−10. Alternately,
in the Landshoff or “independent quark scattering” process, the
valence quarks can scatter pairwise, without requiring that all
the quarks be simultaneously within the same short-distance
region. This leads to a “geometric enhancement” of s2 in the
elastic scattering cross section such that dσ/dt ∝ s−8. The
technical reason for this difference arises precisely from “pinch
singularities” of the sort we outlined in some detail in our toy
model computation.

An example of these “technical” contributions is the
Sudakov suppression of soft gluon emissions [45], which
were conjectured to eliminate the Landshoff pinch singu-
larities. However, the Sudakov suppression does not elimi-
nate the singularities and only changes the power of s in
the cross section [46] to one that is intermediate between
the independent scattering and pointlike processes. Indeed, the
resulting infrared structure of the independent quark scattering
model results in a “chromo-Coulomb” phase shift resulting
from the interference between the long-distance physics of
the former and the short-distance physics of the latter [47]. A
remarkable consequence of this interference are oscillations in
the energy dependence of fixed-angle elastic scattering, which
were observed experimentally in proton-proton collisions [48].

A systematic derivation of large-angle nucleon-nucleon
scattering, which includes the Landshoff pinch contributions
as well as the noted effects owing to the summation of Sudakov
logarithms was initiated by Botts and Sterman [49]. They
studied the interplay between “the geometric enhancement and
radiative suppression” of the hard cross section that controls
the physics of hard large-angle elastic scattering; an excellent
review of the physics and subsequent developments from
Ref. [49] onwards can be found in Ref. [50] (see also Ref. [51].)

Much of the discussion thus far is based on high-energy
asymptotics. It remains an open question whether this car-
ries over to finite energies where experiments have been
performed [52]. Another interesting avenue, which we have
not discussed thus far, is the effect of spin dependence
for polarized nucleon-nucleon scattering. In particular, for
fixed-target polarized proton-proton scattering at the BNL
AGS, large spin-spin correlation asymmetries were observed
at s ≈ 23 GeV2 [53], which, along with the aforementioned
oscillations, were alternatively interpreted as arising from the
onset of exotic resonant structures in the vicinity of the open
charm threshold [54]. In summary, as discussed in Ref. [2],
there are a number of issues that remain unresolved in first-
principles approaches to elastic nucleon-nucleon scattering at
large momentum transfers.

The process we identified therefore has the potential to cast
fresh light on both the nonperturbative and the perturbative
aspects of short-range nucleon-nucleon interactions as the
relative s between the measured photon and proton is varied.
The ability to vary Q2 as well as use a range of vector meson
final states as probes allows us to search for this mechanism in
a variety of processes to optimize the observable rates. Further,
our discussion of the deuteron can, in principle, be extended
to “knockout” reactions, where back-to-back nucleons are
produced in exclusive scattering off other light and heavy
nuclei.

It is therefore important to estimate the rates necessary to
study this process, in particular the maximal accessible pT ’s.
A first-principles perturbative computation, while feasible, is
challenging and outside the scope of this work. However,
the takeaway lesson from our pQCD computation can be
generalized to the process shown in Figs. 12 and 13; we
expect from the separation of time scales that the lower part
of the amplitude factorizes into diffraction on a nucleon, times
the LFPT energy denominator of the NN state, times the NN
rescattering matrix element, as in Eq. (54).8

One can therefore make the ansatz

dσγD→V NN

dT dtdy
= 1

(4π )3

1

(2s)2

∣∣MγD→V NN
(
�2

T ,p′2
1T

)∣∣2, (69)

with

MγD→V NN
(
�2

T ,p′2
1T

)
=
∫

dα

4πα(1 − α)

d2p1

(2π )2
ψD

σD ;σ ′
pσ ′

n
(p1,α)

[
2MγN→V N

(
�2

T

)]
× 1

2p+�E−
[
MNN→NN

(
p′2

1T

)]
. (70)

There is a factor of 2 at the amplitude level coming from
diffraction proceeding on either the proton or the neutron, and,
in principle, there can be nontrivial spin dependence in the two
amplitudes. We assume that the scattering amplitudes are spin
independent and helicity conserving, which allows us to couple
to any of the deuteron spin states. Averaging over deuteron
spins (including the sum over Clebsch-Gordan coefficients),
summing over final-state nucleon spins, one obtains

dσγD→V NN

dT dtdy
= 1

64π4

1

(2s)2

∣∣∣∣�D

(
0,

1

2

)∣∣∣∣2∣∣2MγN→V N
(
�2

T

)∣∣2
× 1

(2p+�E−)2

∣∣MNN→NN
(
p′2

1T

)∣∣2. (71)

The energy denominator is

2p+�E−

= 2p+[p′−
1 + (p − p′

1 + �)− − (p1 + �)− − (p − p1)−]

≈ 4 p′2
1T = sNN, (72)

assuming α′ = 1/2, and the other amplitudes are related to
the cross sections by |MγN→V N (�2

T )|2 = 4π (s)2 dσγN→V N

dT
and

|MNN→NN(sNN)|2 = 4π (2sNN)2 dσ NN→NN

dTNN
. (Note that the photon-

nucleon invariant mass is 1
2 s.) Putting it all together, one then

obtains

dσγD→V NN

dT dtdy
= 1

π2

∣∣∣∣�D

(
0,

1

2

)∣∣∣∣2[dσγN→V N

dT

]
T =−�2

T

×
[
dσ NN→NN

dTNN

]
TNN=−p′2

1T

. (73)

8We note that precisely because the presence or absence of pinches
may be important, a full computation beyond our initial estimate will
be necessary in the future.
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FIG. 14. Selected data for J/ψ photoproduction at HERA. The
data and the fit (77) are taken from Ref. [32], corresponding to
a photon-proton center-of-mass energy

√
s = W between 50 and

70 GeV.

In the next section, we discuss the rates obtained from this
cross section at an EIC.

IV. ESTIMATION OF RATES

Diffractive J/ψ electro- and photoproduction events were
previously measured at HERA on a proton target for a range
of energies corresponding to the photon-proton subprocess
(see Fig. 14). The analogous measurement of interest here
is of small momentum transfer exchange T ≈ 0 but with the
target deuteron undergoing an additional interaction causing
it to disintegrate with high pT ; this process will clearly be
suppressed compared to the leading order process in which
the target remains intact. We now address the question of what
this margin of suppression is. Further by comparing with the
kinematics from the HERA data, we attempt to determine how
readily accessible such a process should be at a future EIC.

As a warmup, we first do this estimate directly using the
pQCD calculation of Sec. III A in which the nucleons are
treated as single valence quarks. We then generalize this
treatment to the more realistic case discussed in Sec. III B.
The pT dependence we obtain for valence quarks in pQCD
reflects the exchange of a single gluon in the amplitude and
therefore falls off unrealistically slowly compared to that for
nucleons. In the toy example, if we integrate Eq. (68) over a
finite window in p′

1T to implement a finite detector acceptance
and to restrict the kinematics to the regime of validity of our
calculation, we obtain

dσD

dT dy ′
1

∣∣∣∣
α′≈ 1

2

=
[

1

6π

α2
s

N2
c

∣∣�D

(
0, 1

2

)∣∣2
p2

T ,min

(
1 − p2

T ,min

p2
T ,max

)]

×dσN

dT
. (74)

The requirement that the invariant momentum transfer |T | ≈
�2

T to the NN center of mass be small compared to the
transverse momentum p′2

1T of the final-state nucleons and that
�− ≈ sNN

s
q− does not grow beyond the small-x regime of

Glauber gluon exchange gives the bound

Max

{
1 GeV2,

1

4
|T |
}

� p′2
1T � |T |

4xeff
. (75)

For |T | ≈ (�QCD)2 ≈ 0.04 GeV2, Q = 0,MV ≈ 3.1 GeV, and
s ≈ (90 GeV)2 for an EIC, we obtain via Eq. (20) that xeff ≈
1.2 × 10−3. This results in a window of validity of 1 GeV2 �
p′2

1T � 8.4 GeV2.
In addition to the theoretical limitations on the range

of p′2
1T , we should also consider the practical limitations

owing to detector acceptance. Simulations of Roman pot
detectors at a future EIC—performed with the eRHIC design
specifications—show that good acceptance of protons is
feasible in a finite pT range ≈0.4–1.5 GeV [55,56]. This
provides a more stringent upper bound of p′2

1T � 2.25 GeV2.
Such events have also been discussed previously in the
context of centrality selection in e + A collisions [57]; further
precision in the measurement of the process of interest is
allowed by installation of neutron detectors [58]. We note
that neutron-proton coincidence studies have been performed
previously at Jefferson laboratory; see, for instance, Ref. [59]
and references therein.

However, because experiments at the EIC are a decade
away, we consider two scenarios: a “Roman pot” scenario
suggested by the one extant simulation of a specific machine
configuration and the “full” scenario limited only by the
constraints of theory:

Roman pot : p2
T ,min = 1 GeV2, p2

T ,max = 2.3 GeV2,

full : p2
T ,min = 1 GeV2, p2

T ,max = 8.4 GeV2. (76)

We now use some realistic numbers in Eq. (74) to estimate
the cross section for exclusive vector meson production
with high-pT deuteron breakup. For the coefficients, we
take αs ≈ 0.3 and Nc = 3, and we take the model value
�D(0, 1

2 ) ≈ 1.05 fm−1 from Eq. (A15) in the Appendix for
the deuteron wave function. We take the values of p2

T ,min and
p2

T ,max from the kinematic windows of (76). The last ingredient
is the baseline diffractive cross section on the nucleon. For this,
we take the ZEUS fit to J/ψ photoproduction data at HERA
from Ref. [32]:

dσN

d|T |
∣∣∣∣
ZEUS

=
(

dσN

d|T |
)

T =0

e−b|T |;(
dσN

d|T |
)

T =0

≈ 208 nb/GeV2; b ≈ 4.02 GeV−2. (77)

It is instructive to use this fit to note separately the p′2
1T

dependence and the |T | dependence of the cross section. In
the fully differential case,

dσD

dT dtdy ′
1

∣∣∣∣
α′≈ 1

2

=
[

1

12π

α2
s

N2
c

∣∣∣∣�D

(
0,

1

2

)∣∣∣∣2(dσN

d|T |
)

T =0

]

× 1

p′4
1T

× e−b|T |, (78)
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and in the pT -integrated case,

dσD

dT dy ′
1

∣∣∣∣
α′≈ 1

2

=
[

1

6π

α2
s

N2
c

∣∣�D

(
0, 1

2

)∣∣2
p2

T ,min

×
(

1 − p2
T ,min

p2
T ,max

)(
dσN

d|T |
)

T =0

]
× e−b|T |. (79)

Note that the |T | dependence is exponential, reflecting
the nonperturbative gluon distribution of the target, while
the p′2

1T ∼ |t | dependence is a power law, reflecting the
perturbative exchange of hard gluons.9 Using the values
specified above, we obtain for the fully differential case

dσD

dT dtdy ′
1

≈
[

2.1
pb

GeV4

](
1 GeV

p′
1T

)4

, (80)

and for the pT -integrated case,

dσD

dT dy ′
1

≈
[

4.1
pb

GeV2

](
1 GeV

pT,min

)2
(

1 − p2
T ,min

p2
T ,max

)

≈
[

2.3 (3.7)
pb

GeV2

]
Roman pot (full). (81)

The ZEUS data correspond to an integrated luminosity of
only 38 pb−1, which provided sufficient statistics out to |T | =
1.5 GeV2. This is a useful baseline to estimate how easily the
deuteron photodisintegration process could be measured at an
EIC, by determining the integrated luminosity necessary to
achieve comparable statistics to ZEUS’ |T | = 1.5 GeV2 data
point.10 The cited cross sections are corrected for effects such
as detector acceptance, so that the product of the cross section
and the integrated luminosity gives the “true” number N of
diffractive events which occurred. As a criterion to determine
the luminosity needed to detect the deuteron disintegration
process at an EIC, we require that the “true” number of events
produced at an EIC be equal to that in the |T | = 1.5 GeV2 bin
at ZEUS,

N = LZEUS

[
dσp

dT

∣∣∣∣(1.5 GeV2)

ZEUS

]
�|T |bin

= LEIC

[
dσD

dT dy ′
1

∣∣∣∣
EIC

]
�|T |bin�ybin, (82)

which corresponds to a necessary integrated luminosity for the
EIC of

LEIC ≈ [19 fb−1]

(
1 pb / GeV2

dσD / dT dy ′
1

)
≈ [8.3 (5.1) fb−1] Roman pot (full), (83)

where we take �ybin = 1 unit. The present EIC design goal
for peak instantaneous luminosity is

(1033–1034) cm−2 s−1 ∼ (0.6–6) fb−1/week, (84)

9Dipole model frameworks, along the lines employed here, provide
excellent fits to the combined ZEUS and HERA data for exclusive
vector meson production [39].

10We note that this ZEUS data is taken for 50 GeV < W < 70 GeV.

FIG. 15. Proton-neutron elastic scattering cross sections as a
function of the nucleon-nucleon invariant mass sNN . The data points
are interpolated to θc.m. = 60◦ from the data tables of Ref. [60].

which, assuming a 70% decrease from peak luminosity to
average luminosity per fill and a 50% duty cycle, translates to
an effective average luminosity of

(3.5 × 1032–3.5 × 1033) cm−2 s−1 ∼ (0.2–2) fb−1/week.
(85)

With this average luminosity, the desired statistics could
potentially be achieved within a few weeks (optimistically)
or as much as 40 weeks (conservatively).

As noted previously, this toy model calculation was
done for “nucleons” consisting of single quarks so that all
factors could be accounted for consistently. The quark-quark
scattering which drove the deuteron disintegration process is
fairly weak, scaling as αs/p

′2
1T at the amplitude level. This

leads to a cross section which is quite small in magnitude,
but falls off very slowly at large transverse momentum. This
serves as a reasonable lower bound for the rates at an EIC,
but even with all the coefficients fixed by perturbative QCD,
this process is still measurable with the high luminosity of
such a machine. In a more realistic treatment of the nucleons,
the overall magnitude of the cross sections is enhanced
by nonperturbative form factors, while at large transverse
momentum they fall off much faster with p′

1T based on
measurements of the NN cross sections.

We now use Eq. (73) to estimate the rate for a more
realistic scenario of NN scattering. As previously, we use
�D(0, 1

2 ) ≈ 1.05 fm−1 from the Appendix and the ZEUS fit
for exclusive photoproduction of J/ψ (for |T | = 0.04 GeV2),
which gives dσγN/dT = 177 nb/GeV2. For the neutron-
proton cross section, we employ the available data on nucleon-
nucleon scattering [60]. The neutron-proton cross section is
shown in Fig. 15 as a function of energy. We note that
the nucleon-nucleon cross sections are commonly cited for
the center-of-mass scattering angle θc.m. = 90◦; however, this
does not quite correspond to the kinematics in our case. The
center-of-mass scattering angle is related to sNN and TNN by

TNN = −( 1
2 sNN − 2m2

N

)
(1 − cos θc.m.), (86)

where sNN is given by (21), and TNN ≈ −p′2
T . In the kinematics

at hand (α′ ≈ 1
2 and p2

T � m2
N ), we have TNN ≈ − 1

4 sNN ,
corresponding to θc.m. = 60◦ rather than 90◦. Therefore, we

045202-19



MILLER, SIEVERT, AND VENUGOPALAN PHYSICAL REVIEW C 93, 045202 (2016)

FIG. 16. Cross sections for J/ψ production with deuteron
breakup using proton-neutron scattering data. The valence-quark toy
model (red dashed curve) of Eq. (80) has a smaller magnitude at low
sNN , but a slow decrease with energy as s−2

NN . The fit (73) taken from
NN scattering data (blue solid curve) has larger magnitude at low sNN

owing to nonperturbative form factors, but a very fast decrease with
energy as s−8

NN .

interpolate to cos θc.m. = 0.5 from the data tables of Ref. [60],
resulting in the cross sections shown in Fig. 15. The cross
sections for θc.m. = 60◦ are about an order of magnitude larger
than the ones for θc.m. = 90◦. As noted in Ref. [60], the energy
dependence of the neutron-proton cross section at 60◦ prefers
a power law dσ

dT
∼ s−8.04

NN , rather than the s−10.40
NN dependence

shown by the 90◦ data.
Using the NN cross sections of Fig. 15 in Eq. (73), we obtain

the cross sections for J/ψ photoproduction with hard deuteron
breakup shown in Fig. 16. Using the same criterion of Eq. (82)
to determine the necessary integrated luminosity at an EIC,
we obtain the plot shown in Fig. 17. A detection threshold of
2 fb−1 is also shown, obtained by using an effective average
luminosity of 0.1 fb−1/week (or 1.6 × 1032 cm−2 s−1) over a
nominal running time of 20 weeks out of the year; note that
this is an even more conservative estimate than the one used
in Eq. (85) for the pQCD toy model. The result, shown as the
dashed line in Fig. 17, suggests that in this time frame an EIC
could measure this breakup process on realistic nucleons out

FIG. 17. Integrated luminosities at an EIC needed to detect J/ψ

production in the deuteron breakup process with a given NN invariant
mass sNN . With statistics from 20 weeks of running assuming an
effective average luminosity of ∼1.6 × 1032 cm−2 s−1 (black dashed
line), a reasonable reach of ∼12 GeV2 can be obtained.

to sNN ∼ 12 GeV2 with the same level of statistics obtained at
HERA. With more generous estimates of the EIC luminosity,
this limit could extend out to sNN ∼ 18 GeV2.

We also note that the statistical precision of the measure-
ments at HERA and at an EIC are governed not really by
the “true” number of events N as used here, but rather by
the “observed” number Nobs = ε N , where ε is an efficiency
representing detector acceptance and other factors. For a more
precise estimate of the rates at an EIC, one should require
matching Nobs from HERA rather thanN . This would require a
detailed detector simulation to quantify, but given the advances
in detector technology, the increase in detector efficiency
εEIC > εZEUS would likely mean that the actual luminosity
needed at an EIC to match the statistical precision of ZEUS
would be less than what is calculated here. One can therefore
take these estimates as very conservative lower bounds on the
rates one should expect at an EIC.

V. SUMMARY

We considered here the process of back-to-back electro- or
photo-production of high transverse momentum protons and
neutrons accompanied by J/ψ production in DIS scattering off
the deuteron. Such a process, which is a unique measurement
at a future Electron-Ion Collider (EIC), offers the striking
possibility of using high-energy quark-antiquark dipole pairs
of varying size to probe short-distance correlations between
protons and neutrons at much lower energies. To leading order,
the nonperturbative matrix element characterizing the scatter-
ing is a novel gluon transition generalized parton distribution
(T-GPD), which is sensitive to the underlying structure of the
short-range nucleon-nucleon potential. Measurements of the
T-GPD at an EIC can therefore significantly constrain models
of the short-range nuclear force.

When the relative transverse momentum pT of the outgoing
proton and neutron are large (with the center-of-mass energy
of this subsystem expressed as sNN ∼ 4p2

T ), perturbative
computations of the scattering are feasible. We performed
such a toy model computation with the nucleons replaced with
valence quarks, which demonstrated the importance of so-
called “pinch singularities”; these ensure that the intermediate
“nucleon” states are close to being on-shell. This permits a
factorization, for large sNN asymptotics, of the T-GPD into a
convolution of the deuteron wave function, the absorption of
a color-octet gluon by each of the intermediate nucleons, and
final-state octet gluon exchange between the two nucleons that
ensures that they remain color singlets.

The full perturbative computation is quite challenging even
at leading order. Nevertheless, it bears strong similarities to
a vast literature on large-angle elastic nucleon-nucleon scat-
tering at high energies. The previous research addressed the
relative importance of large-sized Fock-state configurations—
the so-called Landshoff processes—where independent quarks
in a nucleon each scatter off a partner in the oncoming nucleon,
versus the importance of pointlike Fock configurations. In
the latter, all the valence quarks participate in a single short-
distance hard scattering. Quark counting rules devised for these
processes give a different asymptotic sNN dependence from
the Landshoff process. Understanding these asymptotics and
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extending our understanding to lower sNN is essential for
uncovering the parton structure of short-range nuclear forces.
Further, as discussed, the elastic scattering studies suggest
a strong spin dependence to this parton structure, and the
possible contribution of hitherto-unobserved multiparton
configurations.

Towards this end, exploiting the lessons from our toy
model study and the extant literature, we made an ansatz that
the cross section for this process factorizes into a product
of the squared deuteron wave function, the photoproduction
cross section for diffraction J/ψ production, and the
neutron-proton elastic scattering cross section. We note that
our ansatz relied on a configuration where the two-gluon
exchange from the quark-antiquark dipole is off one of the
nucleons, with a subsequent color-singlet exchange between
the nucleons. As we discussed, other configurations are also
feasible. With this ansatz, we were able to use information on
the deuteron wave function (articulated in the Appendix), data
from HERA on exclusive photoproduction of J/ψ , and data
on neutron-proton elastic scattering cross sections to estimate
the rates for this process at an EIC.

We imposed as a condition that the statistical accuracy of
the data be comparable to that measured in exclusive photopro-
duction of J/ψ off the proton at HERA. Thus, knowing the
integrated luminosity of the HERA measurements, we were
able to make estimates of the required luminosity at an EIC.
The toy model calculation, in which the deuteron T-GPD can
be factorized as a product of the proton gluon distribution
times a suppression factor αS/(Nc p′2

T ) arising from one gluon
exchange in the final state, provides a lower bound for the
rates at moderate p′

T . Even these small rates, however, are still
accessible at an EIC with peak luminosities a factor of 102–103

that of HERA. In the toy model, the cross section falls off very
slowly with increasing energy, scaling as s−2

NN , which is likely
overly optimistic.

We showed that a more realistic ansatz of the exclusive
photodisintegration deuteron cross section for J/ψ production
can be expressed as a convolution of the deuteron wave
function at the origin, the exclusive J/ψ photoproduction
cross section at HERA, and the neutron-proton 60◦ elastic
cross section. The rates for this channel are much larger at
moderate p′

T owing to nonperturbative form factors, but fall
sharply with increasing energy as s−8

NN . These two models can
be considered as upper and lower bounds for the behavior that
can be expected at an EIC.

Employing the known empirical values to compute the rates
for the realistic ansatz, we find that for a conservative average
luminosity of 1.6 × 1032 cm−2 s−1, comparable statistics to the
HERA measurement can be attained with a 20-week run at an
EIC for squared center-of-mass energies of the neutron-proton
subsystem out to sNN ∼ 12 GeV2. With these values of sNN , it
is feasible to scan the transition region from hadron to parton
degrees of freedom in the description of short-range nuclear
forces. How the maximal sNN scales with luminosity will, of
course, depend very sensitively on the power-law dependence
of the data with respect to this parameter. We stress that
at present there are significant detector-related challenges to
extending this measurement out to even sNN = 12 GeV2.

The EIC offers the opportunity of extending the measure-
ment outlined here to the quark-gluon dynamics of the target
fragmentation region in DIS off polarized light nuclei as well as
in large nuclei. In addition to photo-production of heavy vector
mesons, the large Q2 electro-production of light vector mesons
will provide complementary insight. Recent experiments at
the Thomas Jefferson National Accelerator Facility, BNL
Relativistic Heavy Ion Collider, and the CERN Large Hadron
Collider that are sensitive to rare parton configurations in
protons and nuclei have revealed a number of surprises;
the measurement we have outlined, and like measurements,
are important for a theoretical understanding of such states.
Further, as our study clearly illustrates, the potential of EIC
to scan the transition region from hadron to parton degrees
of freedom at short distances provides an important missing
link of this physics to first-principles studies of the structure
of nuclei and neutron stars.
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APPENDIX: ESTIMATES OF THE DEUTERON
WAVE FUNCTION

Here we discuss some model results for the wave function
of the deuteron. It is common in these nonrelativistic models
to work with the convention

�̃D( �p) =
∫

d3r

(2π )3/2
e−i �p·�r�D(�r) (A1)

and with both the coordinate- and momentum-space wave
functions normalized to unity:

1 =
∫

d3r�2
D(�r) =

∫
d3p�̃2

D( �p). (A2)

In the nonrelativistic approximation, which is very accurate
here, the momentum fraction is given by

x = 1

2
+ pz

2m
, (A3)
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so that we can define the mixed-representation wave functions

�̃D(p⊥,x) =
√

dpz

dx
�̃D

[
p2

⊥ + p2
z (x)
]

=
√

2m�̃D[p2
⊥ + m2(2x − 1)2], (A4)

where we have taken the wave functions to be spherically
symmetric (S wave). With the normalization (A4), the mixed
wave functions are normalized as

1 =
∫

d2p⊥
∫

dx�̃2
D(p⊥,x) =

∫
d2r⊥

∫
dx�2

D(r⊥,x).

(A5)

First let us consider the simple model of Ref. [61],

�̃D(p⊥,x) = 1

π

√
2m

√
ab(a + b)

(a − b)2

[
1

a2 + m2(2x − 1)2 + p2
⊥

− 1

b2 + m2(2x − 1)2 + p2
⊥

]
, (A6)

where a = 0.231 61 fm−1, b = 1.308 fm−1, m =
nucleon mass = 4.76 fm−1. We want the wave function
at zero transverse separation,

�D(r = 0,x) =
∫

d2p⊥
2π

�̃D(p⊥,x), (A7)

and direct integration gives

�D(r = 0,x) = 1

π

√
2m

√
ab(a+b)

(a−b)2

π

2π
ln

b2+m2(2x−1)

a2+m2(2x−1)
.

(A8)

We can see that this is narrowly peaked about x = 1/2 (but
not as narrowly peaked as more realistic wave functions.
Evaluation at x = 1/2 gives

�D(r = 0,x = 1/2) = 1

π

√
m

2

√
ab(a + b)

(a − b)2
ln

b2

a2
(A9)

so that

�D(r = 0,x = 1/2) = 1.1 fm−1 = 0.22 GeV. (A10)

It is also convenient to write the wave function at r = 0,x =
1
2 in terms of the spherically symmetric coordinate-space wave
function:

�D(r = 0,x = 1/2) =
√

2m

∫
d2p⊥
2π

∫
d2r⊥

(2π )3/2
e−i �p⊥·�r⊥

×
∫ ∞

−∞
dz�D(

√
r2
⊥ + z2) (A11)

=
√

m

π

∫ ∞

−∞
dz�D(

√
z2). (A12)

This last expression has a nice physical interpretation: Fixing
pz = 0 means all values of z contribute. Using instead the
ANL V18 potential [62] gives

�AV18
D (r = 0,x = 1/2) = 1.01 fm−1. (A13)

Similarly, the Reid93 potential [63] gives

�R93
D (r = 0,x = 1/2) = 1.05 fm−1, (A14)

and the Nijmegen II potential [63] gives

�N
D(r = 0,x = 1/2) = 1.05 fm−1. (A15)

All three of these wave functions contain a 6% D-wave state
as well, so these numbers could be multiplied by 1.06 to
compensate.

[1] M. J. Savage, Nuclear forces from lattice quantum chromody-
namics, in Proceedings of International Conference on Nuclear
Theory in the Supercomputing Era (NTSE-2013), edited by
A. M. Shirokov and A. I. Mazur (Pacific National University,
Khabarovsk, Russia, 2013), p. 156.

[2] M. M. Sargsian, Nucleon-nucleon interactions at short distances,
arXiv:1403.0678.

[3] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, and J. W.
Watson, Evidence for the Strong Dominance of Proton-Neutron
Correlations in Nuclei, Phys. Rev. Lett. 97, 162504 (2006).

[4] L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian,
Evidence for short range correlations from high Q**2 (e, e-
prime) reactions, Phys. Rev. C 48, 2451 (1993).

[5] O. Hen, D. W. Higinbotham, G. A. Miller, E. Piasetzky, and L.
B. Weinstein, The EMC effect and high momentum nucleons in
nuclei, Int. J. Mod. Phys. E 22, 1330017 (2013).

[6] D. Higinbotham, G. A. Miller, O. Hen, and K. Rith, The EMC
effect still puzzles after 30 years, CERN Courier 53N4, 24
(2013).

[7] O. Hen, L. B. Weinstein, S. Gilad, and S. A. Wood, In
medium nucleon structure functions, SRC, and the EMC effect,
arXiv:1409.1717.

[8] L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez,
O. Hen, and R. Shneor, Short Range Correlations and the EMC
Effect, Phys. Rev. Lett. 106, 052301 (2011).

[9] Y. Yamamoto, T. Furumoto, N. Yasutake, and Th. A. Rijken,
Hyperon-mixed neutron star with universal many-body repul-
sion, Eur. Phys. J. A 52, 19 (2016).

[10] Y. Yamamoto, T. Furumoto, N. Yasutake, and T. A. Rijken,
Multi-pomeron repulsion and the neutron-star mass, Phys. Rev.
C 88, 022801 (2013).

[11] D. Geesaman et al., Reaching for the horizon: The 2015 long
range plan for nuclear science.

[12] D. Boer et al., Gluons and the quark sea at high energies:
Distributions, polarization, tomography, arXiv:1108.1713.

[13] A. Accardi, J. Albacete, M. Anselmino, N. Armesto, E. As-
chenauer et al., Electron ion collider: The next QCD frontier—
Understanding the glue that binds us all, arXiv:1212.1701.

[14] J. L. Abelleira Fernandez et al. (LHeC Study Group Collabora-
tion), A Large Hadron Electron Collider at CERN: Report on the
physics and design concepts for machine and detector, J. Phys.
G 39, 075001 (2012).

[15] R. Venugopalan, Why we need an electron-ion collider, Ann.
Phys. 528, 131 (2016).

045202-22

http://arxiv.org/abs/arXiv:1403.0678
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevC.48.2451
http://dx.doi.org/10.1103/PhysRevC.48.2451
http://dx.doi.org/10.1103/PhysRevC.48.2451
http://dx.doi.org/10.1103/PhysRevC.48.2451
http://dx.doi.org/10.1142/S0218301313300178
http://dx.doi.org/10.1142/S0218301313300178
http://dx.doi.org/10.1142/S0218301313300178
http://dx.doi.org/10.1142/S0218301313300178
http://arxiv.org/abs/arXiv:1409.1717
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1140/epja/i2016-16019-0
http://dx.doi.org/10.1140/epja/i2016-16019-0
http://dx.doi.org/10.1140/epja/i2016-16019-0
http://dx.doi.org/10.1140/epja/i2016-16019-0
http://dx.doi.org/10.1103/PhysRevC.88.022801
http://dx.doi.org/10.1103/PhysRevC.88.022801
http://dx.doi.org/10.1103/PhysRevC.88.022801
http://dx.doi.org/10.1103/PhysRevC.88.022801
http://arxiv.org/abs/arXiv:1108.1713
http://arxiv.org/abs/arXiv:1212.1701
http://dx.doi.org/10.1088/0954-3899/39/7/075001
http://dx.doi.org/10.1088/0954-3899/39/7/075001
http://dx.doi.org/10.1088/0954-3899/39/7/075001
http://dx.doi.org/10.1088/0954-3899/39/7/075001
http://dx.doi.org/10.1002/andp.201500248
http://dx.doi.org/10.1002/andp.201500248
http://dx.doi.org/10.1002/andp.201500248
http://dx.doi.org/10.1002/andp.201500248


PROBING SHORT-RANGE NUCLEON-NUCLEON . . . PHYSICAL REVIEW C 93, 045202 (2016)

[16] J. C. Collins, L. Frankfurt, and M. Strikman, Factorization for
hard exclusive electroproduction of mesons in QCD, Phys. Rev.
D 56, 2982 (1997).

[17] L. Frankfurt, W. Koepf, and M. Strikman, Diffractive heavy
quarkonium photoproduction and electroproduction in QCD,
Phys. Rev. D 57, 512 (1998).

[18] D. Y. Ivanov, A. Schafer, L. Szymanowski, and G. Krasnikov,
Exclusive photoproduction of a heavy vector meson in QCD,
Eur. Phys. J. C 34, 297 (2004).

[19] B. Kopeliovich, L. Lapidus, and A. Zamolodchikov, Dynamics
of color in hadron diffraction on nuclei, JETP Lett. 33, 595
(1981).

[20] G. Bertsch, S. J. Brodsky, A. Goldhaber, and J. Gunion,
Diffractive Excitation in QCD, Phys. Rev. Lett. 47, 297
(1981).

[21] A. H. Mueller, Small x behavior and parton saturation: A QCD
model, Nucl. Phys. B 335, 115 (1990).

[22] N. N. Nikolaev and B. G. Zakharov, Colour transparency
and scaling properties of nuclear shadowing in deep inelastic
scattering, Z. Phys. C 49, 607 (1991).

[23] S. J. Brodsky, L. Frankfurt, J. Gunion, A. H. Mueller, and M.
Strikman, Diffractive leptoproduction of vector mesons in QCD,
Phys. Rev. D 50, 3134 (1994).

[24] L. Frankfurt, W. Koepf, and M. Strikman, Hard diffractive
electroproduction of vector mesons in QCD, Phys. Rev. D 54,
3194 (1996).

[25] M. Diehl, Generalized parton distributions, Phys. Rep. 388, 41
(2003).

[26] E. R. Berger, F. Cano, M. Diehl, and B. Pire, Generalized
Parton Distributions in the Deuteron, Phys. Rev. Lett. 87, 142302
(2001).

[27] P. V. Landshoff, Model for elastic scattering at wide angle,
Phys. Rev. D 10, 1024 (1974).

[28] S. J. Brodsky and G. R. Farrar, Scaling laws for large momentum
transfer processes, Phys. Rev. D 11, 1309 (1975).

[29] V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze,
Automodellism in the large-angle elastic scattering and structure
of hadrons, Lett. Nuovo Cimento 7, 719 (1973).

[30] M. Harvey, On the fractional parentage expansions of color
singlet six quark states in a cluster model, Nucl. Phys. A 352,
301 (1981); 481, 834(E) (1988).

[31] S. J. Brodsky, C.-R. Ji, and G. P. Lepage, Quantum Chromo-
dynamic Predictions for the Deuteron Form-Factor, Phys. Rev.
Lett. 51, 83 (1983).

[32] S. Chekanov et al. (ZEUS Collaboration), Exclusive photopro-
duction of J/psi mesons at HERA, Eur. Phys. J. C 24, 345
(2002).

[33] J. B. Kogut and D. E. Soper, Quantum electrodynamics
in the infinite momentum frame, Phys. Rev. D 1, 2901
(1970).

[34] J. Bjorken, J. B. Kogut, and D. E. Soper, Quantum electrody-
namics at infinite momentum: Scattering from an external field,
Phys. Rev. D 3, 1382 (1971).

[35] G. P. Lepage and S. J. Brodsky, Exclusive processes in
perturbative quantum chromodynamics, Phys. Rev. D 22, 2157
(1980).

[36] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Quantum chromo-
dynamics and other field theories on the light cone, Phys. Rep.
301, 299 (1998).

[37] S. J. Brodsky and F. Schlumpf, The Impact of QCD and light
cone quantum mechanics on nuclear physics, Prog. Part. Nucl.
Phys. 34, 69 (1995).

[38] Y. V. Kovchegov and E. Levin, Quantum Chromodynamics at
High Energy (Cambridge University Press, Cambridge, UK,
2012).

[39] A. H. Rezaeian, M. Siddikov, M. Van de Klundert, and R.
Venugopalan, Analysis of combined HERA data in the Impact-
Parameter dependent Saturation model, Phys. Rev. D 87, 034002
(2013).

[40] Y. V. Kovchegov and L. D. McLerran, Diffractive structure
function in a quasi-classical approximation, Phys. Rev. D 60,
054025 (1999).

[41] Y. V. Kovchegov and M. D. Sievert, Calculating TMDs of a large
nucleus: Quasi-classical approximation and quantum evolution,
Nucl. Phys. B 903, 164 (2016).

[42] J. Collins, Foundations of Perturbative QCD (Cambridge Uni-
versity Press, Cambridge, UK, 2011).

[43] A. Radyushkin and P. Stoler (eds.), Exclusive Processes at
High Momentum Transfer. Proceedings, Newport News, USA,
May 15–18, 2002 (World Scientific Publishing, Singapore,
2002).

[44] A. V. Efremov and A. V. Radyushkin, Factorization and
asymptotical behavior of pion form-factor in QCD, Phys. Lett.
B 94, 245 (1980).

[45] A. Sen, Asymptotic behavior of the Sudakov form-factor in
QCD, Phys. Rev. D 24, 3281 (1981).

[46] A. H. Mueller, Perturbative QCD at high-energies, Phys. Rep.
73, 237 (1981).

[47] B. Pire and J. P. Ralston, Fixed angle elastic scattering and
the chromo-Coulomb phase shift, Phys. Lett. B 117, 233
(1982).

[48] A. S. Carroll et al., Nuclear Transparency to Large Angle pp
elastic scattering, Phys. Rev. Lett. 61, 1698 (1988).

[49] J. Botts and G. F. Sterman, Hard elastic scattering in QCD:
Leading behavior, Nucl. Phys. B 325, 62 (1989).

[50] G. Sterman, Fixed angle scattering and the transverse structure of
hadrons, in Proceedings of 4th Workshop on Exclusive Reactions
at High Momentum Transfer., Newport News, USA, May 18–21,
2010 (World Scientific Publishing, Singapore, 2011), pp. 16–25.

[51] J. Botts, J.-W. Qiu, and G. Sterman, Elastic amplitudes and
power corrections in QCD, Nucl. Phys. A 527, 577 (1991).

[52] L. L. Frankfurt, M. I. Strikman, and M. B. Zhalov, Pitfalls
in looking for color transparency at intermediate-energies,
Phys. Rev. C 50, 2189 (1994).

[53] G. R. Court et al., Energy Dependence of Spin Effects in p ↑
+p ↑→ p + p, Phys. Rev. Lett. 57, 507 (1986).

[54] S. J. Brodsky and G. F. de Teramond, Spin Correlations, QCD
Color Transparency and Heavy Quark Thresholds in Proton-
Proton Scattering, Phys. Rev. Lett. 60, 1924 (1988).

[55] eRHIC Detector Design Requirements, https://wiki.bnl.gov/
eic/index.php/Detector_Design_Requirements.

[56] E. C. Aschenauer et al., eRHIC design study: An electron-ion
collider at BNL, arXiv:1409.1633.

[57] T. Lappi, H. Mäntysaari, and R. Venugopalan, Ballistic Protons
in Incoherent Exclusive Vector Meson Production as a Measure
of Rare Parton Fluctuations at an Electron-Ion Collider, Phys.
Rev. Lett. 114, 082301 (2015).

[58] L. Zheng, E. C. Aschenauer, and J. H. Lee, Determination
of electron-nucleus collision geometry with forward neutrons,
Eur. Phys. J. A 50, 189 (2014).

[59] I. Korover et al. (Lab Hall A Collaboration), Probing the
Repulsive Core of the Nucleon-Nucleon Interaction Via the
4He(e,e′pN) Triple-Coincidence Reaction, Phys. Rev. Lett. 113,
022501 (2014).

045202-23

http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1103/PhysRevD.57.512
http://dx.doi.org/10.1103/PhysRevD.57.512
http://dx.doi.org/10.1103/PhysRevD.57.512
http://dx.doi.org/10.1103/PhysRevD.57.512
http://dx.doi.org/10.1140/epjc/s2004-01712-x
http://dx.doi.org/10.1140/epjc/s2004-01712-x
http://dx.doi.org/10.1140/epjc/s2004-01712-x
http://dx.doi.org/10.1140/epjc/s2004-01712-x
http://dx.doi.org/10.1103/PhysRevLett.47.297
http://dx.doi.org/10.1103/PhysRevLett.47.297
http://dx.doi.org/10.1103/PhysRevLett.47.297
http://dx.doi.org/10.1103/PhysRevLett.47.297
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://dx.doi.org/10.1016/0550-3213(90)90173-B
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1007/BF01483577
http://dx.doi.org/10.1103/PhysRevD.50.3134
http://dx.doi.org/10.1103/PhysRevD.50.3134
http://dx.doi.org/10.1103/PhysRevD.50.3134
http://dx.doi.org/10.1103/PhysRevD.50.3134
http://dx.doi.org/10.1103/PhysRevD.54.3194
http://dx.doi.org/10.1103/PhysRevD.54.3194
http://dx.doi.org/10.1103/PhysRevD.54.3194
http://dx.doi.org/10.1103/PhysRevD.54.3194
http://dx.doi.org/10.1016/j.physrep.2003.08.002
http://dx.doi.org/10.1016/j.physrep.2003.08.002
http://dx.doi.org/10.1016/j.physrep.2003.08.002
http://dx.doi.org/10.1016/j.physrep.2003.08.002
http://dx.doi.org/10.1103/PhysRevLett.87.142302
http://dx.doi.org/10.1103/PhysRevLett.87.142302
http://dx.doi.org/10.1103/PhysRevLett.87.142302
http://dx.doi.org/10.1103/PhysRevLett.87.142302
http://dx.doi.org/10.1103/PhysRevD.10.1024
http://dx.doi.org/10.1103/PhysRevD.10.1024
http://dx.doi.org/10.1103/PhysRevD.10.1024
http://dx.doi.org/10.1103/PhysRevD.10.1024
http://dx.doi.org/10.1103/PhysRevD.11.1309
http://dx.doi.org/10.1103/PhysRevD.11.1309
http://dx.doi.org/10.1103/PhysRevD.11.1309
http://dx.doi.org/10.1103/PhysRevD.11.1309
http://dx.doi.org/10.1007/BF02728133
http://dx.doi.org/10.1007/BF02728133
http://dx.doi.org/10.1007/BF02728133
http://dx.doi.org/10.1007/BF02728133
http://dx.doi.org/10.1016/0375-9474(81)90412-7
http://dx.doi.org/10.1016/0375-9474(81)90412-7
http://dx.doi.org/10.1016/0375-9474(81)90412-7
http://dx.doi.org/10.1016/0375-9474(81)90412-7
http://dx.doi.org/10.1016/0375-9474(88)90729-4
http://dx.doi.org/10.1016/0375-9474(88)90729-4
http://dx.doi.org/10.1016/0375-9474(88)90729-4
http://dx.doi.org/10.1103/PhysRevLett.51.83
http://dx.doi.org/10.1103/PhysRevLett.51.83
http://dx.doi.org/10.1103/PhysRevLett.51.83
http://dx.doi.org/10.1103/PhysRevLett.51.83
http://dx.doi.org/10.1007/s10052-002-0953-7
http://dx.doi.org/10.1007/s10052-002-0953-7
http://dx.doi.org/10.1007/s10052-002-0953-7
http://dx.doi.org/10.1007/s10052-002-0953-7
http://dx.doi.org/10.1103/PhysRevD.1.2901
http://dx.doi.org/10.1103/PhysRevD.1.2901
http://dx.doi.org/10.1103/PhysRevD.1.2901
http://dx.doi.org/10.1103/PhysRevD.1.2901
http://dx.doi.org/10.1103/PhysRevD.3.1382
http://dx.doi.org/10.1103/PhysRevD.3.1382
http://dx.doi.org/10.1103/PhysRevD.3.1382
http://dx.doi.org/10.1103/PhysRevD.3.1382
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1016/0146-6410(95)00006-5
http://dx.doi.org/10.1016/0146-6410(95)00006-5
http://dx.doi.org/10.1016/0146-6410(95)00006-5
http://dx.doi.org/10.1016/0146-6410(95)00006-5
http://dx.doi.org/10.1103/PhysRevD.87.034002
http://dx.doi.org/10.1103/PhysRevD.87.034002
http://dx.doi.org/10.1103/PhysRevD.87.034002
http://dx.doi.org/10.1103/PhysRevD.87.034002
http://dx.doi.org/10.1103/PhysRevD.60.054025
http://dx.doi.org/10.1103/PhysRevD.60.054025
http://dx.doi.org/10.1103/PhysRevD.60.054025
http://dx.doi.org/10.1103/PhysRevD.60.054025
http://dx.doi.org/10.1016/j.nuclphysb.2015.12.008
http://dx.doi.org/10.1016/j.nuclphysb.2015.12.008
http://dx.doi.org/10.1016/j.nuclphysb.2015.12.008
http://dx.doi.org/10.1016/j.nuclphysb.2015.12.008
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1016/0370-2693(80)90869-2
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1016/0370-1573(81)90030-2
http://dx.doi.org/10.1016/0370-1573(81)90030-2
http://dx.doi.org/10.1016/0370-1573(81)90030-2
http://dx.doi.org/10.1016/0370-1573(81)90030-2
http://dx.doi.org/10.1016/0370-2693(82)90553-6
http://dx.doi.org/10.1016/0370-2693(82)90553-6
http://dx.doi.org/10.1016/0370-2693(82)90553-6
http://dx.doi.org/10.1016/0370-2693(82)90553-6
http://dx.doi.org/10.1103/PhysRevLett.61.1698
http://dx.doi.org/10.1103/PhysRevLett.61.1698
http://dx.doi.org/10.1103/PhysRevLett.61.1698
http://dx.doi.org/10.1103/PhysRevLett.61.1698
http://dx.doi.org/10.1016/0550-3213(89)90372-6
http://dx.doi.org/10.1016/0550-3213(89)90372-6
http://dx.doi.org/10.1016/0550-3213(89)90372-6
http://dx.doi.org/10.1016/0550-3213(89)90372-6
http://dx.doi.org/10.1016/0375-9474(91)90159-4
http://dx.doi.org/10.1016/0375-9474(91)90159-4
http://dx.doi.org/10.1016/0375-9474(91)90159-4
http://dx.doi.org/10.1016/0375-9474(91)90159-4
http://dx.doi.org/10.1103/PhysRevC.50.2189
http://dx.doi.org/10.1103/PhysRevC.50.2189
http://dx.doi.org/10.1103/PhysRevC.50.2189
http://dx.doi.org/10.1103/PhysRevC.50.2189
http://dx.doi.org/10.1103/PhysRevLett.57.507
http://dx.doi.org/10.1103/PhysRevLett.57.507
http://dx.doi.org/10.1103/PhysRevLett.57.507
http://dx.doi.org/10.1103/PhysRevLett.57.507
http://dx.doi.org/10.1103/PhysRevLett.60.1924
http://dx.doi.org/10.1103/PhysRevLett.60.1924
http://dx.doi.org/10.1103/PhysRevLett.60.1924
http://dx.doi.org/10.1103/PhysRevLett.60.1924
https://wiki.bnl.gov/eic/index.php/Detector_Design_Requirements
http://arxiv.org/abs/arXiv:1409.1633
http://dx.doi.org/10.1103/PhysRevLett.114.082301
http://dx.doi.org/10.1103/PhysRevLett.114.082301
http://dx.doi.org/10.1103/PhysRevLett.114.082301
http://dx.doi.org/10.1103/PhysRevLett.114.082301
http://dx.doi.org/10.1140/epja/i2014-14189-3
http://dx.doi.org/10.1140/epja/i2014-14189-3
http://dx.doi.org/10.1140/epja/i2014-14189-3
http://dx.doi.org/10.1140/epja/i2014-14189-3
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://dx.doi.org/10.1103/PhysRevLett.113.022501


MILLER, SIEVERT, AND VENUGOPALAN PHYSICAL REVIEW C 93, 045202 (2016)

[60] J. L. Stone, J. P. Chanowski, H. R. Gustafson, M. J. Longo, and
S. W. Gray, Large angle neutron-proton elastic scattering from
5-GeV/c to 12-GeV/c, Nucl. Phys. B 143, 1 (1978).

[61] B. Tiburzi and G. Miller, Trouble in asymptopia: The
Hulthen model on the light front, Phys. Rev. C 63, 044014
(2001).

[62] R. B. Wiringa, V. Stoks, and R. Schiavilla, An Accurate
nucleon-nucleon potential with charge independence breaking,
Phys. Rev. C 51, 38 (1995).

[63] V. Stoks, R. Klomp, C. Terheggen, and J. de Swart, Construction
of high quality N N potential models, Phys. Rev. C 49, 2950
(1994).

045202-24

http://dx.doi.org/10.1016/0550-3213(78)90446-7
http://dx.doi.org/10.1016/0550-3213(78)90446-7
http://dx.doi.org/10.1016/0550-3213(78)90446-7
http://dx.doi.org/10.1016/0550-3213(78)90446-7
http://dx.doi.org/10.1103/PhysRevC.63.044014
http://dx.doi.org/10.1103/PhysRevC.63.044014
http://dx.doi.org/10.1103/PhysRevC.63.044014
http://dx.doi.org/10.1103/PhysRevC.63.044014
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950



