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Hydrodynamic calculations of ultrarelativistic heavy-ion collisions are performed using the iEBE-VISHNU

2+1-dimensional code with fluctuating initial conditions and three different parametrizations of the lattice
QCD equations of state: continuum extrapolations for stout and HISQ/tree actions, as well as the s95p-v1
parametrization based upon calculations using the p4 action. All parametrizations are matched to a hadron
resonance gas equation of state at T = 155 MeV, at which point the calculations are continued using the UrQMD

hadronic cascade. Simulations of
√

sNN = 200 GeV Au+Au collisions in three centrality classes are used to
quantify anisotropic flow developed in the hydrodynamic phase of the collision as well as particle spectra and
pion Hanbury-Brown-Twiss (HBT) radii after hadronic rescattering, which are compared with experimental data.
Experimental observables for the stout and HISQ/tree equations of state are observed to differ by less than a few
percent for all observables, while the s95p-v1 equation of state generates spectra and flow coefficients which
differ by ∼10–20%. Calculations in which the HISQ/tree equation of state is sampled from the published error
distribution are also observed to differ by less than a few percent.

DOI: 10.1103/PhysRevC.93.044913

I. INTRODUCTION

Quantum chromodynamics (QCD) predicts that, at suffi-
ciently high temperature or density, nuclear matter exists in a
deconfined state of quarks and gluons known as a quark-gluon
plasma (QGP). This state of matter filled the early universe
several microseconds after the big bang and is now recreated
and studied in the laboratory by colliding heavy ions at
relativistic energies at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC).

Quantitative model-to-data comparison, using simulations
based on relativistic hydrodynamics, is the optimal means
to extract properties of the QGP produced by relativistic
heavy-ion collisions, as it expands and freezes into hadrons
too quickly for direct observation. These hydrodynamic
descriptions require two essential ingredients to specify the
full time evolution of the QGP fireball: initial conditions
which describe the thermal profile of the QGP droplet at some
early starting time and a QCD equation of state (EoS) which
interrelates the energy density, pressure, and temperature of
each fluid cell in local thermal equilibrium.

Lattice discretization is the only reliable method to calculate
the QCD equation of state at zero baryochemical potential in
the vicinity of the QGP phase transition and hence constitutes a
critical component of hydrodynamic simulations. While lattice
techniques are rigorous in their treatment of the underlying
QCD Lagrangian, they are subject to statistical and systematic
errors inherent in the lattice discretization procedure. These
errors are manifest in differences in the continuum extrapolated
QCD trace anomaly and lead to an overall uncertainty in the
true value of the QCD equation of state.

To date there have been few sensitivity studies on the
influence of the EoS on hydrodynamic simulation results.
These have been limited to studies of the order of the phase
transition [1], different parametrization schemes for the lattice

QCD (LQCD) EoS [2] and data driven Bayesian techniques
to constrain parametrizations of the EoS motivated by LQCD
calculations [3,4]. However, a sensitivity study on the inherent
errors in the LQCD EoS has not yet been performed, primarily
because continuum extrapolations for the LQCD EoS at zero
baryon density have only recently become available [5,6].
In this work, we quantify the effect of lattice errors on
simulations of relativistic heavy-ion collisions by comparing
simulation predictions obtained with QCD EoS calculations
by the Wuppertal-Budapest Collaboration using the stout
fermion action [5] and the HotQCD Collaboration using the
HISQ/tree action [6]. We also compare to the older s95p-v1
parametrization [2] constructed from calculations performed
on coarser (323 × 8) lattices using p4 and asqtad actions
without continuum extrapolation [7]. The equations of state
are analyzed using a modern event-by-event hybrid simulation
which couples viscous hydrodynamics to a hadronic after-
burner to calculate anisotropic flow coefficients, spectra, and
Bertsch-Pratt radii and are compared to measurements at the
Relativistic Heavy-Ion Collider (RHIC). We also perform a
set of calculations in which the HISQ/tree continuum EoS is
sampled from within the published error range.

II. EQUATIONS OF STATE

The Wuppertal-Budapest, HotQCD, and s95p-v1 EoS
parametrizations used in this work all employ staggered
fermion actions with varying level improvements: additional
terms added to remove lattice artifacts and improve simulation
convergence. For example, both the stout and HISQ/tree
actions used by the Wuppertal-Budapest and HotQCD calcu-
lations contain additional smearing of the gluon links relative
to the p4 action used to construct the s95p-v1 parametriza-
tion. Moreover, the Wuppertal-Budapest stout action omits

2469-9985/2016/93(4)/044913(10) 044913-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.93.044913


J. SCOTT MORELAND AND RON A. SOLTZ PHYSICAL REVIEW C 93, 044913 (2016)

second-order corrections in the lattice spacing which are
common to the other three.

The three analyses are further distinguished by the granular-
ity of the lattices used in each calculation. The p4 results used
in the s95p-v1 parametrization are from (323 × 8) lattices,
referred to by the number of temporal dimension, Nτ = 8,
while the HISQ/tree continuum extrapolation was calculated
for Nτ = 8, 10, and 12, and the stout results for lattices with
Nτ = 6, 8, 10 and 12. For a more detailed discussion of the
EoS calculations and relative improvements of the staggered
fermion actions see [8].

LQCD EoS calculations are obtained from the trace of the
stress-energy tensor, equal to the difference between the energy
density and three times the pressure. This quantity is typically
referred to as the interaction measure or trace anomaly because
it measures deviations from the conformal equation of state.
Scaled by the fourth power of the temperature, the trace
anomaly forms a dimensionless measure

I ≡ �μμ(T )

T 4
= e − 3p

T 4
, (1)

where � is the stress-energy tensor, e is the local fluid energy
density, p the pressure, and T the temperature.

Lattice calculations typically extend down to temperatures
of ∼130 MeV, where small deviations with the hadron reso-
nance gas (HRG) EoS may begin to develop. This is evident
in Fig. 1, which shows the trace anomaly of the HRG EoS
alongside results from the HotQCD and Wuppertal-Budapest
collaborations with HISQ/tree and stout actions respectively,
as well as the older s95p-v1 parametrization obtained using the
p4 action. Both the HISQ/tree and stout EoS results begin to
pull away from the HRG EoS at temperatures above 130 MeV,
while the s95p-v1 parametrization agrees with the HRG results
up to a matching temperature of 183.8 MeV by construction.

Although both the Wuppertal-Budapest and HotQCD
collaborations have provided parametrizations suitable for
insertion into hydrodynamic codes, the matching temperature
of 130 MeV falls below the 155–165 MeV temperature range
where hybrid simulations typically switch from relativistic
viscous hydrodynamics to a microscopic kinetic description
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FIG. 1. The QCD interaction measure for a hadron resonance
gas (HRG) alongside recent lattice calculations from the HotQCD
and Wuppertal-Budapest collaborations as well as the older s95p-v1
lattice parametrization [2,5,6].
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FIG. 2. The modified QCD interaction measures for the HQ, WB,
and S95 EoS obtained from Eq. (2) and the corresponding lattice
parametrizations in Fig. 1. The vertical line marks the hydro-to-micro
switching temperature Tsw = 155 MeV.

such as the ultrarelativistic quantum molecular dynamics
(UrQMD) model [9,10]. We note also that recent estimates
for the freeze-out temperature derived from combining lattice
calculations and experimental data also fall within this range
[11,12]. To ensure a self-consistent description of the collision
dynamics where the simulation switches from hydrodynamics
to microscopic transport, we modify each lattice EoS to match
the HRG EoS at the desired hydro-to-micro switching temper-
ature. We thus define a new piecewise interaction measure

I (T ) =
⎧⎨
⎩

Ihrg(T ), T � T1,
Iblend(T ), T1 < T < T2,
Ilattice(T ), T � T2,

(2)

where Ihrg and Ilattice are the HRG and LQCD trace anomalies
pictured in Fig. 1, and Iblend is a function

Iblend = (1 − z) Ihrg + z Ilattice (3)

which smoothly connects between the two in the temperature
interval T1 < T < T2. The interpolation parameter z ∈ [0,1]
is constructed to match the first and second derivatives at the
endpoints of the interpolation interval,

z = 6x5 − 15x4 + 10x3 (4)

where x = (T − T1)/(T2 − T1). (5)

We fix the boundaries of the blending region T1 = 155 MeV
and T2 = 180 MeV to impose matching at the switching
temperature Tsw = 155 MeV, which coincides with the
pseudocritical phase transition temperatures of the HotQCD
and Wuppertal-Budapest EoS [13–15]. The modified
interaction measures, hereafter referred to simply as HQ, WB,
and S95, are plotted in Fig. 2. This interpolation procedure
imposes the necessary matching condition on either side of the
switching temperature (vertical line) with minimal disturbance
to the peak of the LQCD trace anomaly at higher temperatures.

Signal propagation in the QGP medium is characterized by
the speed of sound, expressed in terms of the pressure and
energy density as c2

s = dp/de. In Fig. 3 we plot the squared
speed of sound for the HQ, WB, and S95 interaction measures
shown in Fig. 2 alongside recent results from a systematic
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FIG. 3. Squared speed of sound c2
s plotted versus temperature T

for the HQ, WB, and S95 equations of state pictured in Fig. 2. The
top panel shows EoS parametrizations from the Bayesian prior used
in Ref. [3] (thin grey lines) while the bottom panel shows samples
from the Bayesian posterior once the samples have been constrained
by experimental data.

Bayesian analysis used to constrain parametrized forms of
the LQCD EoS by simultaneously fitting model predictions
to multiple observables at RHIC and LHC [3]. The top panel
of Fig. 3 shows the three lattice parametrizations used in this
work plotted against 50 parametric EoS samples (thin grey
lines) from the Bayesian prior, while the bottom panel of
Fig. 3 shows the same lattice results plotted against samples
from the Bayesian posterior, i.e., once the EoS curves have
been constrained by data. The more tightly clustered posterior
curves show a clear preference for the present lattice results.
Although these constraints are not able to resolve differences
between the different lattice calculations, they fall below the
continuum extrapolations for temperatures above 0.2 GeV.

Within the three lattice calculations used in this study, the
HQ and WB speed-of-sound curves are in good agreement
while the S95 parametrization remains softer in a wider interval
about the QGP phase transition. We note that the parametric
transition (3) modifies the speed of sound in the vicinity of
the EoS matching temperature but is constructed to preserve
continuity across the desired transition region.

With the trace anomalies in hand, the energy density,
pressure and entropy density are easily interrelated to specify
the equation of state used in the analysis,

p(T )

T 4
=

∫ T

0
dT ′ I (T ′)

T ′ , (6)

e(T )

T 4
= I (T ) + 3

p(T )

T 4
, (7)

s(T )

T 3
= e(T ) + p(T )

T 4
. (8)

For clarity, Figs. 1–3 do not include the respective er-
rors bands for the HotQCD and Wuppertal-Budapest trace
anomalies, but both calculations devote considerable effort
to providing an accurate error estimate for their respective
calculations [5,6]. Common contributions to the errors come
from variations in spline fits to the interaction measures,
differences between quadratic and quartic extrapolations in the
lattice spacing, and small (2%) variations in the temperature
scale. Errors are typical of order 5% for most quantities, and
increase to 5–10% in the transition region where the curves
are steepest.

III. HYBRID MODEL

The equations of state are embedded in the event-by-event
iEBE-VISHNU hybrid model which uses the VISH2+1 boost-
invariant viscous hydrodynamics code [16] to simulate the
time evolution of the QGP medium and the microscopic UrQMD

hadronic afterburner [9,10] for subsequent evolution below the
QGP transition temperature. Where necessary, free parameters
of the model are tuned to facillitate model-to-data comparison
with

√
sNN = 200 GeV gold-gold collisions at RHIC. In this

section, we briefly outline the implementation of the model
used in the analysis; for a more detailed explanation of the
model see Ref. [17].

A. Initial conditions

The initial conditions represent the largest source of un-
certainty in current hydrodynamic simulations, and a number
of models exist in the literature which have described the
experimental data with varying degrees of success [18–23].
Because the goal of the present work is to measure the
sensitivity of the hydrodynamic evolution to differences in
the QGP EoS and not to obtain the overall best fit of model to
data, we choose the simplest and most widely adopted initial
condition implementation based on a two-component Glauber
model; for an overview see [24].

In the two-component ansatz, initial entropy is deposited
proportional to a linear combination of nucleon participants
and binary nucleon-nucleon collisions,

dS/dy |y=0 ∝ (1 − α)

2
Npart + αNcoll, (9)

where, for the binary collision fraction, we use α = 0.14 which
has been shown to provide a good description of the central-
ity dependence of charged particle multiplicity in

√
sNN =

200 GeV gold-gold collisions [25].
The entropy is localized about each nucleon’s transverse

parton density Tp(x),

dS/dy |y=0 ∝
Npart,A∑
i=0

wi Tp(x − xi)(1 − α + α Ncoll,i)

+
Npart,B∑
j=0

wj Tp(x − xi)(1 − α + α Ncoll,j ),

(10)
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where the summations run over the participants in each nu-
cleus, Ncoll,i denotes the number of binary collisions suffered
by the ith nucleon, and the proton density Tp(x) is described
by a Gaussian

Tp(x) = 1√
2πB

exp

(
− x2 + y2

2B

)
(11)

with transverse area B = 0.36 fm2.
The random nucleon weights wi in Eq. (10) are sampled

independently from a gamma distribution with unit mean

Pk(w) = kk

�(k)
wk−1e−kw, (12)

and shape parameter k = Var(P )−1 which modulates the
variance of the distribution. Such fluctuations are typically
added to reproduce the large multiplicity fluctuations observed
in minimum bias proton-proton collisions [25–29]. In this
work the shape parameter is fixed to k = 1 determined by
a fit to the

√
s = 200 GeV UA5 proton-antiproton data [30].

The initial condition profiles, which provide the entropy
density at the QGP thermalization time, are finally rescaled
by an overall normalization factor to fit the measured charged
particle multiplicity in 0–10% centrality collisions.

B. Hydrodynamics and Boltzmann transport

The hydrodynamic equations of motion are obtained in the
iEBE-VISHNU model by solving the second-order Israel-Stewart
equations,

∂μT μν = 0, T μν = euμuν − (p + 	)
μν + πμν, (13)

where the bulk pressure 	 and shear stress πμν satisfy the
relaxation equations

D	 = − 1

τ	

(	 + ζθ ) − 1

2
	

ζT

τ	

dλ

(
τ	

ζT
uλ

)
,

(14)


μα
νβDπαβ = − 1

τπ

(πμν − 2ησμν)

− 1

2
πμν ηT

τπ

dλ

(
τπ

ηT
uλ

)
. (15)

We follow the work in Ref. [25] and fix the bulk viscosity ζ
and shear viscosity η in Eq. (14) using a constant specific shear
viscosity η/s = 0.08 and vanishing bulk viscosity ζ/s = 0 in
the hydrodynamic phase of the simulation.

As previously explained in Sec. II, the iEBE-VISHNU

hybrid model transitions from hydrodynamic field equations
to microscopic transport at a sudden switching temperature
Tsw at which the hydrodynamic energy-momentum tensor is
particlized using the Cooper-Frye freeze-out prescription,

E
dNi

d3p
=

∫
σ

fi(x,p)pμd3σμ (16)

where fi is the distribution function of particle species i, pμ

is its four-momentum, and d3σμ characterizes an element of
the isothermal freeze-out hypersurface defined by Tsw.

The sampled particles then enter the UrQMD simulation
where the Boltzmann equation,

dfi(x,p)

dt
= Ci(x,p), (17)

is solved to simulate all elastic and inelastic collisions between
the particles with collision kernel Ci until the system becomes
too dilute to continue interacting. Finally, the four-position,
four-momentum, and particle identification number of each
particle is recorded.

IV. RESULTS

The results section is organized as follows. In Sec. IV A
we calculate the particle spectra for each equation of state
across three different centrality classes using the final particle
information output of the hybrid simulation. In Sec. IV B
we repeat the calculation for elliptic and triangular flow but
perform the calculation on the hydrodynamic Cooper-Frye
freezeout surface to reduce statistical errors. In Sec. IV C we
calculate the femptoscopic event-averaged Bertsch-Pratt radii,
again using the final particle information output by the full
hybrid calculation. Finally, in Sec. IV D, we calculate mean
pT and integrated anisotropic flow cumulants v2{2} and v3{2}
from the UrQMD output using a sampling of equation of state
curves from the HotQCD published errors.

All results presented in the following sections are based
on 5 × 104 minimum bias events which are subdivided into
centrality classes according to initial entropy, e.g., the initial
condition events with 20% highest entropy comprise centrality
class 0–20%. Each hydrodynamic event is then oversampled
an additional ten times when calculating spectra and flow
coefficients and twenty times for pion femptoscopy to suppress
finite statistical error.

A. Particle spectra

Figure 4 shows the invariant yield dN/(2πpT dpT dy) of
positively charged pions, kaons, and protons calculated from
the hybrid model for the 10–15%, 20–30%, and 40–50%
centrality classes using the HQ, WB, and S95 equations of
state constructed in Sec. II.

The first row shows the HQ yields obtained from the hybrid
model plotted against observed pion, proton, and kaon data
from PHENIX [31]. The second and third rows show the
ratio of the invariant yields of the WB and S95 equations
of state over the HQ result. One sees that the HQ equation
of state provides a good description of observed particle
yields except for moderate to large pT in central collisions
where this calculation overpredicts the data. This agreement
would likely improve with more realistic initial conditions,
bulk viscous corrections, and/or more careful treatment of
the hydro-to-micro switching temperature Tsw, and thus it is
difficult to make any specific statements about the overall fit
of the model to data.

The second and third rows of Fig. 4 show the ratios of the
WB and S95 yields to the HQ result. The observed spectra
predicted by the HQ and WB equations of state agree within
statistical error, while the S95 equation of state is appreciably
softer and produces ∼5% more particles at pT = 0.5 GeV
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FIG. 4. Effect of the equation of state on transverse momentum spectra. Top row: model calculations using the HQ equation of state plotted
against PHENIX data [31] for pions, kaons, and protons (blue short-dashed lines/circles, orange dashed lines/squares, and green dash-dotted
lines/triangles) in centrality bins 10–15%, 20–30%, and 40–50% (columns left to right). Middle and bottom rows: ratios of the WB and S95
invariant yields to the HQ result. Shaded bands indicate 2σ statistical error.

and ∼20% fewer particles at pT = 2.5 GeV across all three
centralities.

B. Elliptic and triangular flow anisotropy

The azimuthal anisotropy of final particle emission is
characterized by the Fourier expansion

E
d3N

d3p
= 1

2π

d2N

dy pT dpT

(
1 +

∞∑
n=1

2vn cos n(φ − �RP )

)
,

(18)
where φ is the direction of the emitted particle, �RP is the
reaction plane angle of the event, and vn the anisotropic flow
coefficient corresponding to the Fourier harmonic of order n.

The anisotropic flow is typically estimated using multi-
particle correlations such as two- and four-particle cumulants.
The statistical error of the event-averaged estimators is
suppressed with both increasing event multiplicity and event
sample size. This can pose a challenge for computationally
intensive hybrid model calculations which typically cannot
reach integrated luminosities comparable to experiment.

Statistical errors are particularly challenging in differential
flow calculations at moderate to large pT where particle statis-
tics are limited. We circumvent this issue in the differential
flow analysis and calculate the flow anisotropy of pions,
kaons, and protons directly from the Cooper-Frye freeze-out
surface using the built-in routines in the iEBE-VISHNU package

according to

vn(pT ) =
∫

dφp einφpdN/(dy pT dpT dφp)∫
dφp dN/(dy pT dpT dφp)

. (19)

Consequently, the flow results in Figs. 5 and 6 do not include
contributions from flow generated by the UrQMD hadronic
afterburner which is identical for each of the three equations
of state. In Sec. IV D results that incorporate UrQMD for the
integrated flow measurements will be shown to be consistent.

Figure 5 shows the elliptic flow v2 of pions, kaons, and
protons calculated from Eq. (19) for the HQ, WB, and S95
equations of state in 0–10%, 20–30%, and 40–50% centrality
bins. The first row of the figure shows the elliptic flow predicted
by the HQ equation of state while the middle and bottom rows
display theoretical ratios of the WB and S95 predictions over
the HQ result. The presentation of Fig. 6 is identical to Fig. 5
except that elliptic flow v2 has been replaced with triangular
flow v3.

We see in Fig. 5 that the elliptic flow generated by the HQ
and WB parametrizations is in very good agreement across
all centralities, while the S95 parametrization systematically
generates ∼5% less flow than the HQ equation of state. This
is expected as the S95 equation of state is considerably softer
in the vicinity of the phase transition as evidenced by the
speed of sound in Fig. 3. In Fig. 6, we see that the effect
on the triangular flow is similar to the effect observed on the
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FIG. 5. Effect of the equation of state on differential elliptic flow v2(pT ) calculated from the Cooper-Frye freeze-out hypersurface (19).
Top row: model calculations using the HQ equation of state for the elliptic flow v2(pT ) of pions, kaons, and protons (blue short-dashed, orange
dashed, and green dash-dotted lines) in centrality bins 0–10%, 20–30%, and 40–50% (columns left to right). Middle and bottom rows: ratios
of the WB and S95 elliptic flow to the HQ result. Statistical errors are negligible and have been omitted.

elliptic flow except more pronounced and generates as large
as a ∼15% discrepancy in the peripheral flow predicted by the
HQ and S95 equations of state.

C. Femptoscopic Bertsch-Pratt radii

The size of the fireball emission region is obtained using
Hanbury-Brown-Twiss (HBT) interferometry for identical
particles. The azimuthally averaged two-particle correlation
function

C(q,k) = 1 +
∑

n

∑
i,j δq δk�(q,r)∑

n

∑
i,j ′ δq δk

(20)

consists of a numerator with particles pairs sampled from the
same event and a denominator with pairs sampled from differ-
ent events. Here q = pi − pj denotes the relative momentum,
r = xi − xj the relative separation, and k = (pi + pj )/2 the
average momentum of the pion pair in the longitudinal
comoving frame where the component of k along the beam
axis vanishes. The numerator is summed over all events n in
a given centrality class and unique particle pair combinations
i,j in each event. In the denominator, particle i is taken from
one event and particle j ′ from a random partner event in the
same centrality class. The delta functions δq and δk are 1 if the
momenta q and k fall into their respective bins and 0 otherwise.
Bose-Einstein correlations, which are not included natively in

the UrQMD model, are imposed by adding the symmetrization
factor �(q,r) = cos(q r).

The average pair momentum k is then projected into its
longitudinal component kz and transverse component kT , while
the separation momentum q is represented in the orthogonal
coordinates (qo,qs,ql), where ql lies along the beam axis, qo is
parallel to kT , and qs perpendicular to qo and ql . The resulting
correlation function is approximated using a Gaussian source
and fit to the parametric form

C(qo,qs,ql,kT ) = 1 + λ e−(R2
oq

2
o+R2

s q
2
s +R2

l q
2
l ) (21)

using a least-squares fit on the three-dimensional correlation
function C(qo,qs,ql) to find the optimal source strength λ
and Bertsch-Pratt radii Ro, Rs , and Rl for each value of the
transverse momentum kT .

We calculate the Bertsch-Pratt radii for each equation of
state using identical pions. The fit is performed using 5 ×
104 minimum bias hydrodynamic events and an additional
twenty UrQMD oversamples per event. The oversamples are
then concatenated into a single particle list to increase the
number of particle pairs by a factor of 202.

In Fig. 7, we plot the Bertsch-Pratt radii for the HQ, WB,
and S95 equations of state as functions of the transverse

mass mT =
√

m2 + k2
T , where m is the pion mass. The

horizontal rows show the radii Ro, Rs , Rl and ratio Ro/Rs

(top to bottom), while the columns mark centrality classes
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FIG. 6. Same as Fig. 5 but for differential triangular flow v3(pT ). Note that the y-axis limits in the top row are different.

0–10%, 10–20%, and 20–40% (left to right). The different
colored/dashed lines annotated in the legend indicate different
equations of state and the bands estimate errors in the fit pa-
rameters of Eq. (21). The symbols are experimental data from
PHENIX [32].

We see that the hybrid model provides a good description
of Ro, Rs , and Rl across all three centralities, although the
ratio Ro/Rs is noticeably flatter than the data. In contrast
to the sensitivity observed in the spectra and anisotropic
flow coefficients, we see no discernible difference in the
Bertsch-Pratt radii predicted by the three different equations of
state. This suggests that HBT measurements are at most weakly
sensitive to small perturbations in the lattice EoS. These
results agree with a new sensitivity study which quantified
the differential change in simulated observables as a function
of perturbed model inputs, e.g., the shape of the EoS speed-
of-sound curve [4].

D. HotQCD errors

In addition to the best fit parametrization shown in Fig. 1, we
perform a sensitivity study using equations of state drawn from
the HotQCD error distributions. These curves were calculated
in Ref. [6] in several steps. The HotQCD trace anomaly was
first calculated at various temperatures in the interval 130 <
T < 400 MeV using grids with temporal extent Nτ = 8, 10,
and 12. For each temperature and temporal extent, several
thousand lattice configurations were generated, creating a set
of “data points” with a mean and variance determined from the

Monte Carlo ensemble. A set of data points was then resampled
from the ensemble’s mean and variance, and the collection of
resampled points, one for each value of the temperature T and
grid size Nτ , were fit with the ansatz,

θμμ(T )

T 4
= A +

nk=3∑
i=1

Bi × Si(T ) + C + ∑nk+3
i=1 Di × Si(T )

N2
τ

.

(22)
Here the constants A, Bi , C, and Di are parameters of the
fit, Si is a set of cubic basis splines, and nk the number
of knots used in the B-spline fitting. The entire procedure
was repeated 20 001 times to sample the function space of
θμμ(T )/T 4 from the errors in the ensemble averaged lattice
measurements.

Here we investigate the effect of these HotQCD lattice er-
rors by measuring the spectra and anisotropic flow coefficients
for a subset of 100 randomly sampled EoS curves determined
according to Eq. (22). The piecewise interpolation procedure
described in Sec. II is applied to each spline to smoothly match
the HotQCD lattice interaction measures with the HRG result
at low temperature. The resulting interaction measures are
shown in Fig. 8 alongside the HRG-matched best fit HotQCD
parametrization which naturally falls in the middle of the
sampled curves.

The energy density, entropy density, pressure, and tem-
perature are then calculated from each interaction measure
according to (6) to generate 100 different EoS tables. Above
400 MeV, the higher derivatives of the interaction measures
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FIG. 7. Effect of the equation of state on the Bertsch-Pratt radii. We plot Ro, Rs , Rl , and the ratio Ro/Rs (rows top to bottom) in centrality
bins 0–10%, 10–20%, and 20–40% (columns left to right) against transverse mass mT for the HQ, WB, and S95 equations of state (blue
short-dashed, red dashed, and green dash-dotted lines). Shaded bands indicate 2σ errors from the covariance of the fit parameters (21). Symbols
with errors bars are experimental data from PHENIX [32]. The HQ, WB, and S95 EoS curves overlap and are nearly indistinguishable.

become unreliable, and we extrapolate the EoS table using
a simple power law; e.g., the energy density as a function
of temperature is extended using e(T ) = aT b where the
coefficients a and b are tuned to fit the lattice EoS at 400 MeV.
We note, however, that this modification has negligible
impact on the hydrodynamic evolution at RHIC where the

FIG. 8. QCD interaction measure for 100 random samples of
the HotQCD error estimate (thin grey lines) plotted alongside the
hadron resonance gas EoS (thick black line) and best fit HotQCD
parametrization (dashed blue line). Both the HQ and HQ sample EoS
curves are matched to the HRG EoS at 155 MeV as in Fig. 2.

spacetime volume of the system is predominantly below T =
400 MeV.

In the previous sections, we compared observables cal-
culated from different EoS both as functions of transverse
momentum and centrality, as well as for different particle
species. Figures 4–7 indicate that changes in the EoS affect
pions, kaons, and protons in a similar fashion. Meanwhile,
the pT dependence of these quantities exhibits a few general
trends. Changing the stiffness of the EoS changes the slope of
the spectra while it shifts the differential flow curves vertically
up and down. These generic features suggest that simpler
quantities such as mean pT and integrated flow may offer
equal resolving power to species-dependent and differential
quantities with the added benefit of increased statistics and
reduced model uncertainty.

With this in mind, we quantify the effect of the HotQCD
errors by calculating the mean pT and integrated two-particle
cumulants v2{2} and v3{2} for all charged particles in the
20–30% centrality bin. Unlike the pT -differential flow in
Figs. 5 and 6, these integrated cumulants are calculated from
the UrQMD particle output and account for flow developed in
the hadronic phase of the collision.

The mean pT and flow cumulants for the sampled HotQCD
EoS curves—numbered in increasing order by the maximum
value of their respective interaction measures—are displayed
Fig. 9 alongside results for the HQ, WB, and S95 EoS
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FIG. 9. From top to bottom: calculations of mean pT , elliptic
flow cumulant v2{2}, triangular flow cumulant v3{2}, and maximum
value of the interaction measure I (T ) = (e − 3p)/T 4 for

√
sNN =

200 GeV Au+Au collisions in centrality bin 20–30%. The calculation
is performed for 100 EoS curves randomly sampled from the errors
in the HotQCD continuum extrapolation (blue circles) as well as for
the HQ, WB, and S95 EoS curves shown in Fig. 2 (blue squares, red
triangles, and green stars). Gray shaded bands show the 2σ confidence
interval for the HQ samples, and percentages indicate the relative
increase (decrease) of a given observable for each EoS relative to the
HQ result (blue squares). HQ EoS samples are numbered in increasing
order by the peak value of the interaction measure. The kinematic cuts
are pT < 3 GeV with |η| < 0.5 for mean pT and |η| < 1 for flow.
Vertical error bars on the measurements represent 2σ statistical error
from finite particle fluctuations.

described in Sec. II. The grey band plotted on top of the HQ
samples marks the 2σ confidence interval describing 95% of
the variance in the HQ samples, while the percentages next to

the data points describe the increase (decrease) of each EoS
relative to the HQ EoS result (blue square). For comparison,
the bottom panel of Fig. 9 displays the maximum value of the
interaction measure for each EoS.

Several key features are immediately apparent from the
figure. We see a clear separation of the different EoS curves
which is strongly correlated with the maximum value of the
interaction measure (bottom panel). Softer EoS curves have a
larger peak in the trace anomaly and hence drive less radial,
elliptic, and triangular flow as evidenced by the smaller values
of mean pT , v2, and v3.

Errors in the HotQCD continuum extrapolation, repre-
sented by the spread in the HQ EoS samples (blue circles),
account for small (order 1%) differences in mean pT , v2, and
v3 which are similar in magnitude to differences between
the Wuppertal-Budapest stout fermion (red triangles) and
HotQCD HISQ/tree actions (blue squares). On the other hand,
the pronounced peak in the S95 interaction measure leads to
much larger differences in mean pT and flow. For example,
the value of v3{2} calculated using the S95 EoS is 12.6%
smaller than the same calculation performed with the HQ
EoS.

V. CONCLUSION AND OUTLOOK

The LQCD EoS is an essential ingredient used in hydro-
dynamic simulations of relativistic heavy-ion collisions. In
this study, we simulated collisions at RHIC using a modern
event-by-event hybrid model with several calculations of the
LQCD equation of state to quantify differences in the simulated
spectra, flow, and HBT radii.

The analysis was performed in two stages. In the first stage
of the analysis, we compared simulation results obtained with
state-of-the-art LQCD EoS calculations from the HotQCD
Collaboration using the HISQ/tree fermion action and from
the Wuppertal-Budapest Collaboration using the stout fermion
action, as well as using the older s95p-v1 parametrization
constructed from coarser lattices using the p4 action without
continuum extrapolation. The three parametrizations are each
matched to a hadron resonance gas EoS at T = 155 MeV
where the hybrid model transitions from viscous relativistic
fluid dynamics to Boltzmann transport described by the UrQMD

model. For each EoS, we calculate spectra, differential flow,
and HBT radii for pions, kaons, and protons using three
different centrality classes.

We find that the spectra and anisotropic flow coefficients of
the HotQCD and Wuppertal-Budapest calculations are largely
indistinguishable, while the s95p-v1 parametrization leads
to noticeably softer spectra and less anisotropic flow. On
the other hand, measurements of the azimuthally averaged
HBT radii were not sensitive enough to resolve differences
between the different EoS parametrizations. Furthermore, we
see little differences for pions, kaons, or protons and somewhat
surprisingly only moderate sensitivity of the EoS deviations to
changes in the centrality class.

In the second stage of the analysis, we quantified the effect
of errors in the HotQCD continuum extrapolation using a
set of 100 randomly sampled EoS curves from the HotQCD
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error estimate. The mean pT and integrated flow cumulants
v2{2} and v3{2} were calculated for each of the HotQCD EoS
samples as well as for the HotQCD, Wuppertal-Budapest,
and s95p-v1 EoS parametrizations used in the first stage
of our analysis. We observe that errors in the HotQCD
continuum extrapolation lead to less than 1% differences in
mean pT and 2–3% variations in v2{2} and v3{2}. These
errors are comparable in magnitude to current experimental
systematic errors [33,34], and until significant error reductions
are obtained to constrain other model input parameters, further
refinements of the equation of state at zero baryon density are
unlikely to be needed. However, continued use of the s95p-v1

equation of state in hydrodynamic modeling will produce
particle spectra that are too soft and v2 and v3 values that
are order 10% too small.
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