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Toward a consistent evolution of the quark-gluon plasma and heavy quarks
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Heavy-quark observables in ultrarelativistic heavy-ion collisions, like the nuclear modification factor and the
elliptic flow, give insight into the mechanisms of high-momentum suppression and low-momentum thermalization
of heavy quarks. Here, we present a global study of these two observables within a coupled approach of the heavy-
quark propagation in a realistic fluid dynamical medium, MC@sHQ + EPOS2, and compare with experimental
data from the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider experiments. The heavy
quarks scatter elastically and inelastically with the quasiparticles of the quark-gluon plasma (QGP), which are
represented consistently with the underlying equation of state. We examine two scenarios: first, we interpret the
lattice QCD equation of state as a sum of partonic and hadronic contributions and, second, as a gas of massive
partonic quasiparticles. It is observed that, independent of their momentum, the energy loss of heavy quarks
depends strongly on how the lattice QCD equation of state is translated into degrees of freedom of the QGP.
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I. INTRODUCTION

At top energies at the BNL Relativistic Heavy Ion Col-
lider (RHIC) and CERN Large Hadron Collider (LHC), a
color-deconfined QCD medium of high temperatures and
densities, the quark-gluon plasma (QGP), is created during
ultrarelativistic heavy-ion collisions. The properties of this
fascinating new state of matter can be probed by heavy-flavor
particles, which are predominantly produced in the initial hard
nucleon-nucleon interactions. Due to the propagation through
the colored partonic medium high-pT heavy quarks suffer
from a substantial energy loss, while low-pT heavy quarks are
expected to thermalize at least partially within the medium.

The nuclear modification factor RAA, which is the ratio
of the spectra measured in heavy-ion collisions to the scaled
proton-proton reference, and the elliptic flow v2, which is at
low pT a measure of thermalization inside the medium and
reflects at high pT the spatial anisotropy of the initial state,
are traditional observables of heavy-flavor hadrons and decay
leptons.

A suppression of high-pT D mesons, heavy-flavor decay
electrons and muons has been measured by the STAR [1,2]
and PHENIX [3] collaborations at RHIC and by the ALICE
[4–6] and CMS [7] collaborations at the LHC. The v2 of D
mesons, heavy-flavor decay electrons and muons was found to
be nonvanishing both at RHIC [8] and at LHC [9].

Perturbative QCD calculations for the average energy loss
of high-pT particles include elastic [10–13] and/or inelastic
scattering [14–27]. In most of these models, no evolution of
the QGP is considered and only average temperatures and
path-length distributions are included. The generic form of the
RAA as a function of pT or the integrated RAA as a function
of centrality can easily be reproduced by most calculations
on the basis of fundamental principles despite rather different
ingredients. The strength of the suppression, however, depends
strongly on the details of the freeze-out evolution of the QGP
[28]. For quantitative predictions the fully coupled dynamics
of the heavy quarks and of the QGP needs to be taken into

account. Under the assumption that the time evolution of the
heavy-quark distribution function in the QGP can be described
by Fokker–Planck dynamics [29–35], the interaction of a
heavy quark with the QGP is expressed by two transport
coefficients: a drag force Ai and a diffusion tensor Bij , which
can be written as B⊥ and B||. These quantities can be calculated
from the microscopic 2 → 2 processes by

dX

dt
= 1

2E

∫
d3k

(2π )32Ek

∫
d3k′

(2π )32Ek′

∫
d3p′

(2π )32E′

×
∑ 1

di

|Mi,2→2|2ni(k)X

× (2π )4δ(4)(p + k − p′ − k′), (1)

where p (p′) and E = p0 (E′ = p′
0) are the momentum and

energy of the heavy quark before (after) the collision and
k (k′) and Ek = k0 (Ek′ = k′

0) are the momenta and energies
of the colliding light quark (i = q) or gluon (i = g). For
the scattering process of a heavy quark with a light quark
(qQ → qQ), dq = 4 and, for the scattering off a gluon (gQ →
gQ), dg = 2. n(k) is the thermal distribution of the light
quarks or gluons. Mi is the matrix element for the scattering
process i, calculated by using perturbative QCD (pQCD)
Born matrix elements. In order to calculate the quantities
mentioned above, Ai and Bij , one has to take X = p − p′

i

and X = (1/2)(p − p′
i)(p − p′

j ). Usually, the simultaneous
calculation of both coefficients from Eq. (1) does not satisfy
the Einstein relation, which assures that asymptotically f ( �p,t)
is the distribution function at thermal equilibrium. In most
Fokker–Planck and Langevin approaches, one quantity is
calculated and the other one is obtained via the Einstein
relation under the assumption that B⊥ = B||. It has recently
been shown that the results from the Fokker–Planck and
Langevin approaches differ substantially from that of the full
Boltzmann transport equation in which the collision integrals
are explicitly solved [36], because the underlying assumption
that the scattering angles and the momentum transfers are
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small, is not well justified. A recent review article [37] gives
a broad overview of the various approaches of heavy-flavor
energy loss using either the Fokker–Planck or Langevin or the
Boltzmann dynamics.

From Eq. (1) one sees immediately that all quantities
depend on the distribution of the partonic scattering partners
ni(k). In a thermal medium ni(k) is given by the Fermi–Dirac,
Bose–Einstein, or (if quantum statistics is neglected) the
Boltzmann distribution. It is obvious that these quantities
depend on the local temperature and velocities of the medium,
which in most approaches are given by a fluid dynamical
description of the QGP. As a consequence, final observables
like RAA and v2 are strongly affected by the details of the
medium evolution. While the solution of the fluid dynamical
conservation equations requires only the knowledge of thermo-
dynamic quantities, such as the equation of state, and transport
coefficients, the actual nature of the quasiparticles is important
for the scattering cross sections between heavy quarks and light
partons. Usually, ni(k) is taken as a thermal distribution of
massless, noninteracting partons [12,26,27]. The equation of
state from lattice QCD calculations [38,39] is not compatible
with this assumption. It shows that the Stefan–Boltzmann limit
is obtained only at extremely high temperatures which are not
relevant for heavy-ion collisions.

In the present work, we address two different interpretations
of the equation of state in terms of the underlying degrees of
freedom. First, we follow the phenomenological parametriza-
tion of the lattice QCD equation of state as a sum of a partonic
and a hadronic contributions. Here, the partons are considered
as massless. This parametrization is used explicitly in EPOS2,
the fluid dynamical evolution which models the QGP in our
approach. In a recent work [40], we investigated the effect
of hadronic bound states above the transition temperatures
by an ad hoc parametrization of their contribution. Here,
a parametrization is used, which is compatible with the
underlying QCD equation of state. Second, we determine
quasiparticle masses by fitting the entropy density, calculated
in lattice QCD. Quasiparticle models have been used in various
forms to describe the thermodynamics of QCD [41,42]. In the
off-shell transport approach with a hadronic and a partonic
phase, PHSD [43], a dynamical version is implemented. The
approach has recently also been applied to the dynamics
of charm quarks [44,45]. Differences between our approach
and the PHSD implementation include in particular the fluid
dynamical versus microscopic treatment of the light parton
dynamics and the parametrization of the coupling constant,
which depends in our case on the momentum transfer in
the collisions whereas PHSD uses a coupling constant which
depends on the temperature of the environment.

Our model couples the Monte Carlo treatment of the full
Boltzmann transport equation of heavy quarks (MC@sHQ)
[12] to the (3 + 1)-dimensional fluid dynamical evolution of
the locally thermalized QGP following the initial conditions
from EPOS2 [46,47]. EPOS2 is a multiple-scattering approach
which combines pQCD calculations for the hard scatterings
with Gribov–Regge theory for the phenomenological, soft
initial interactions. Jet components are identified and sub-
tracted while the soft contributions are mapped to initial
fluid dynamical fields. By enhancing the initial flux tube

radii, viscosity effects are mimicked, while the subsequent
(3 + 1)-dimensional fluid dynamical expansion itself is ideal.
Including final hadronic interactions the EPOS2 event gen-
erator has successfully described a variety of bulk and jet
observables, both at RHIC and at the LHC [46,47].

The fluid dynamical evolution is used as a background
providing us with the temperature and velocity fields necessary
to sample thermal scattering partners for the heavy quarks.
These scatterings can occur purely elastically or inelastically.
The elastic cross sections are obtained within a pQCD-inspired
calculation, including a running coupling constant αs [12,48].
The contribution from the t channel is regularized by a
reduced Debye screening mass κm2

D , which is calculated
self-consistently [12,13], yielding a gluon propagator with
1/t → 1/[t − κm̃2

D(T )] for all momentum transfers t . In this
Hard-Thermal Loop + semihard (HTL + semihard) approach
[12], κ is determined such that the average energy loss is
maximally insensitive to the intermediate scale between soft
(with a HTL gluon propagator) and hard (with a free gluon
propagator) processes. The inelastic cross sections include
both the incoherent gluon radiation [49], which has been ex-
tended to finite quark masses [50], and the effect of coherence,
i.e., the Landau–Migdal–Pomeranchuk (LPM) effect [51]. The
spatial diffusion coefficient from this approach [52,53] is
compatible with the available lattice QCD calculations [54],
which currently still have large uncertainties. In order to further
constrain the model, we rescale the cross sections by a global
factor K , which is chosen such that the results give a reasonable
agreement with the RAA data at intermediate and high pT . For√

sNN = 2.76 TeV at LHC, KLHC
c = 1.5 for purely collisional

processes and KLHC
c+r = 0.8 for collisional + radiative (LPM)

processes. The rescaling is less well determined at the
√

sNN =
200 GeV RHIC energy, because high-pT data is not yet
available. In this work we apply the same K factors at RHIC
as at the LHC. All other observables are then calculated with
the same rescaled cross sections. Results presented within
this model, MC@sHQ + EPOS2, so far [40,55,56] assume
massless thermal partons.

This paper is organized as follows: We describe the two
approaches to the coupling between the heavy-quark sector
and the fluid dynamical medium via the equation of state in
Sec. II. In Sec. III we investigate the consequences of this
coupling on the drag coefficient before we present the results
for the RAA and v2 of the full evolution at LHC and RHIC
energies in Sec. IV and the conclusions in Sec. V.

II. EQUATION OF STATE AND COUPLING
TO HEAVY QUARKS

Thanks to the continued progress in lattice QCD calcula-
tions at vanishing net-baryon density, today the QCD equation
of state is known very precisely [38,39]. This knowledge
tremendously reduced uncertainties in fluid dynamical sim-
ulations of ultrarelativistic heavy-ion collisions and facilitated
quantitative estimates for the value of the shear viscosity
as well as constraints for the initial state. For heavy-flavor
dynamics the use of a realistic freeze-out evolution, i.e.,
of an approach that reproduces the available data on bulk
observables, is therefore possible and should become standard
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for reliable quantitative statements about heavy-flavor energy
loss and thermalization in heavy-ion collisions.

At this level of precision, the question of the nature of the
active degrees of freedom in the QGP arises, as it affects the
matrix elements as well as the thermal distribution function
of partons in Eq. (1). In Ref. [40] we discussed the reduction
of heavy-flavor energy loss in the presence of color-neutral
hadronic bound states above Tc, as was advocated in Ref. [57].
For an estimated fraction of hadronic bound states, the RAA at
the LHC could still be reproduced by increasing the K factor
for a collisional plus radiative scenario from KLHC

c+r = 0.8 (for
a 100% partonic medium) to KLHC

c+r = 1.0. It was found that
the v2 was more sensitive to the smaller fraction of partons in
the medium at later times of the evolution. According to some
lattice calculations for the quark-number susceptibilities there
are indications for the existence of hadronic bound states above
Tc, although this is excluded by other investigations [58] on
the lattice. While a definite statement or even a quantitative
description is not yet available, one might refer to model
studies [59,60] which all give an estimate for the fraction of
hadronic bound states by either adjusting their thermodynamic
quantities to the ones calculated on the lattice or according
to the model ingredients. None of these models is, however,
able to reproduce the lattice (off-diagonal) quark-number
susceptibilities correctly, which motivated the work in Ref.
[57], and which are the essential quantities when the existence
of hadronic bound states above Tc is claimed. It is thus not
clear if these models capture the proper physics of hadronic
bound states around the transition temperature.

Here, we follow two other approaches. The first is closely
related to the approach of Ref. [40] but here we treat the
equation of state as implemented in the EPOS approach.
There the lattice equation of state is parametrized, above
Tf = 134.74 MeV, as a sum of an ideal partonic gas and of
a hadron resonance gas (HRG). Assuming that heavy quarks
interact only with the colored partonic medium, the heavy
quark energy loss will be reduced as compared to a model
in which is assumed that above Tc only partons exist. For
the second approach, no coexistence of partons and hadrons
is assumed, but the partons constituting the medium above a
temperature Tf < Tc are massive quasiparticles. These masses
can be determined as a function of the temperature by fitting
the equation of state.

A. EPOS parametrization of lattice equation of state

There are several parametrizations of the lattice QCD equa-
tion of state that connect a high-temperature part to a hadronic
medium at lower temperatures [61,62]. The parametrization
used in the EPOS2 fluid dynamical simulations relies on an
effective hadronic and an effective partonic contribution such
that the pressure reads

p(T ) = pQGP(T ) + λ̃(T )(pHRG − pQGP), (2)

where pQGP is the pressure in the Stefan–Boltzmann (SB) limit
of QCD, i.e., the pressure of an ideal ultrarelativistic plasma
of massless quarks and gluons,

pQGP = dg + 7/8dq

90
π2T 4. (3)

The degeneracy factors of the gluons and quarks are dg =
2(N2

c − 1) and dq = 2spin2qq̄NcNf with Nc = 3 colors and
Nf = 3 flavors. The hadronic contribution is given by the
pressure of the hadron resonance gas model,

pHRG/T 4 = 1

V T 3

∑
i∈mesons

lnZM
mi

(T ,V,μB,μQ,μS)

+ 1

V T 3

∑
i∈baryons

lnZB
mi

(T ,V,μB,μQ,μS) (4)

and

lnZM/B
mi

= ∓V di

2π2

∫ ∞

o

dkK2 ln(1 ∓ zi exp(−εi/T )), (5)

with the energies εi = (k2 + m2
i )1/2 and the fugacities

zi = exp((BiμB + QiμQ + Siμs)/T ). (6)

μX are the chemical potentials for baryon number (X = B),
electric charge (X = Q), and strangeness (X = S). The EPOS
parametrization assumes that, below the temperature Tf =
134.74 MeV, the equation of state is given by a pure HRG and
thus λ̃(T < Tf ) = 1. Above Tf λ̃(T ) is obtained from a fit of
Eq. (2) to lattice calculations [54] and with following form:

λ̃(T ) = exp

[
−

(
T − Tf

δ(1 + (T − Tf )/(δa))

)

− b

(
T − Tf

δ(1 + (T − Tf )/(δa))

)2]
. (7)

As shown in Ref. [47] this parametrization reproduces well
the lattice equation of state at μB = 0 for the following
parameters: δ = 0.24 GeV, a = 0.77, b = 3.0.

The fraction of the effective partonic degrees of freedom,
given by λ = 1 − λ̃ in Eq. (2), is shown in Fig. 1, which should
be compared to the equivalent figure of Ref. [40]. We observe
that λ approaches unity very slowly. Even at temperatures
as high as T ∼ 1 GeV, which can be reached locally in the
initial hot spots at LHC energies, it is still λ ≈ 0.84. In reality
the resulting difference can, however, not stem from hadronic
contributions, as the present parametrization suggests. We
assume that the difference from the Stefan–Boltzmann limit is

0
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0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

T [GeV]

FIG. 1. The fraction of partonic degrees of freedom as given by
the EPOS parametrization of the lattice equation of state.
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due to some residual interactions at high temperatures, which
effectively reduce the possibility for the heavy quarks to scatter
off constituents of the colored medium.

B. Thermal masses of light quarks

Our second approach is an extension of the model estab-
lished in Ref. [12] by assuming that the incoming and outgoing
light partons, which interact with the heavy quarks, have a
finite mass. For this purpose, we treat those as long-living
quasiparticles. It is well known that quasiparticle models are
able to reproduce the lattice QCD equation of state [43,63,64]
by assuming effective dispersion relations for noninteracting
quasi-quarks and -gluons in the QGP. Due to the statistical
factor of exp[−m/T ], we expect that, in a medium with a given
temperature, the density of light massive partons is reduced as
compared to the density of massless partons, which leads to a
reduced scattering rate.

The temperature dependence of the parton masses is
obtained from fitting the entropy density of a noninteracting
gas of massive quarks and gluons to the lattice equation of
state [38,39].

The pressure and the energy density read

p(T ) = dq

∫
d3p

(2π )3

p2

3Eq

fFD(Eq)

+ dg

∫
d3p

(2π )3

p2

3Eg

fBE(Eg) − B(T ), (8)

e(T ) = dq

∫
d3p

(2π )3
EqfFD(Eq)

+dg

∫
d3p

(2π )3
EgfBE(Eg) + B(T ), (9)

with Eq = (p2 + m2
q)1/2, Eg = (p2 + m2

g)1/2, and the
temperature-dependent bag constant B(T ). fFD and fBE are the
Fermi–Dirac and Bose–Einstein distributions, respectively. In
order to connect mq and mg we use the perturbative HTL-result
mg = √

3mq [65] as a conservative estimate. We assume the
same thermal masses for u, d, and s quarks. The mean-field
contribution B cancels in the entropy density

s(T ) = e(T ) + p(T )

T
. (10)

The thermal masses of quarks and gluons are shown in
Fig. 2. At high temperatures we find the almost linear behavior
as is known from pQCD calculations. The quasiparticle masses
show a strong increase for temperatures above and close to
T = 134 MeV, which coincides very well with Tf from the
EPOS parametrization. In this simple quasiparticle picture
no assumption about the structural form of the temperature
dependence of the thermal masses is made. Other quasiparticle
approaches [41,42] express the masses via the perturbative
form m2 ∝ g2T 2 and parametrize a logarithmic temperature
dependence of the coupling g by a fit to the lattice QCD equa-
tion of state. It is thus assumed that the nonperturbative physics
in the vicinity of the transition temperature can effectively be
described by a temperature-dependent coupling that strongly
increases near Tc. The definition of the running coupling
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1.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
(T

)
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eV
]

T [GeV]

gluons
quarks

FIG. 2. Thermal masses of the quarks and gluons in the QGP
within a quasiparticle approach.

constant at finite temperatures is not unique. In our approach
we do not assume any explicit temperature dependence of
αs . The coupling is determined by the momentum transfer in
the individual scattering process. This is different from the
PHSD approach in which the coupling constant is a function
of temperature. It shows a strong enhancement near Tc, leading
there to an increase of Ai and hence of the heavy-flavor energy
loss [66] compared with what we expect in our approach
(although in our approach there is also an effective temperature
dependence because at a smaller temperature the momentum
transfer is smaller and therefore the coupling is larger).

According to the calculation presented in Appendix we
define an effective reduction λm of the scattering rates via the
ratio of the drag coefficients A (see below for a definition of this
quantity) for the case of massive quasiparticles as compared
to massless light partons

λm(T ,p) = A(m(T ),p)

A(m(T ) = 0,p)
, (11)

with the quasiparticle masses as shown in Fig. 2. We assume the
same form of reduction for both types of scatterings: that of the
charm quark with a massive quasi-quark Qq → Qq, and that
with a massive quasi-gluon Qg → Qg, and in all channels, but
we use the respective thermal masses for quarks and gluons.
The thus-obtained effective reductions of the scattering rates
are shown for different momenta of the charm quark as a
function of temperature in Fig. 3 and for different temperatures
as a function of the momentum of the charm quark in Fig. 4.

The strong reduction of λm at low T is due to the strong
increase of the masses. Deep inside the high-temperature QGP
phase low-momentum heavy quarks are only slightly affected
by the mass of their scattering partners. The scattering rates
of high-momentum heavy quarks, however, are significantly
reduced even at high temperatures. Due to the assumption
mgl(T ) = √

3mq(T ), the scattering of a heavy quark with a
massive gluon is more strongly suppressed than the scattering
of a heavy quark with a massive light quark.

Contrary to the EPOS reduction of effective degrees of
freedom, the interpretation of the equation of state via thermal
masses of quasiparticles leads to a momentum-dependent
reduction of the scattering rates; see Fig. 4. One clearly
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FIG. 3. The effective reduction λm of the scattering rates for
different momenta of the charm quark as a function of temperature
for scattering off massive quasi-quarks (upper plot) and quasi-gluons
(lower plot).

observes a rapid decrease of λ
q,gl
m with momentum p of the

heavy quark for p < 4 GeV, while λ
q,gl
m is almost independent

of momentum for higher momenta, which comes from a
saturation of the drag force at large momentum in the case
of a running coupling constant. We can thus expect that, for
massive quasi-quarks the thermalization of low-momentum
heavy quarks is less suppressed by scattering with partons of
a finite thermal mass than the energy loss at higher momenta.
This should result in an elliptic flow, which (after fixing the
RAA at high momenta), is enhanced over a scenario where
the effective reduction is only temperature dependent but
momentum independent.

III. DRAG COEFFICIENT

The drag coefficient is a relevant indicator for the energy
loss which a heavy quark suffers in the medium. It describes the
average longitudinal momentum loss per unit time (isotropic
medium) and thus is related to the drag force in Eq. (1) via

A||( �p,T ) = p||A(p,T ) = −dp||
dt

∣∣∣∣
T

. (12)

In Figs. 5 and 6 we present the drag force for three
different assumptions about the degrees of freedom of the QGP
constituents: first, the standard massless partons (solid lines);
second, the EPOS parametrization of the equation of state
(short dashed lines); and third, the description of the medium
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(b)
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T = 0.5 GeV

FIG. 4. The effective reduction λm of the scattering rates for
different temperatures of the medium as a function of the momentum
of the charm quark for scattering off massive quasi-quarks (upper
plot) and quasi-gluons (lower plot).

with massive quasiparticles (long dashed lines). In each of
these plots the two energy-loss mechanisms are shown, purely
collisional (light, orange lines) and the collisional + radiative
(LPM) scenario (black lines). Figure 5 shows the drag force
at fixed temperature T = 300 MeV as a function of the
momentum of the charm quark (upper plot) and as a function
of temperature at fixed momentum (lower plot). The same
scenarios are shown in Fig. 6, but now include the global
rescaling factors K , which are obtained from an optimal
description of RAA around pT ∼ 10 GeV at

√
sNN = 2.76

TeV Pb + Pb collisions at the LHC (see Sec. IV).
We observe in both figures that the collisional + radiative

(LPM) energy loss increases with momentum at high mo-
menta, while the purely collisional energy-loss mechanism
leads to at most a logarithmic increase. The reduction of the
energy loss in both scenarios in which the QGP constituents are
represented consistently with the equation of state as compared
with the standard case of massless partons is clearly visible
in Fig. 5. The drag force for each energy-loss mechanism is
smallest for the medium consisting of massive quasiparticles.
The temperature dependence of the reduction factor λ becomes
obvious in the lower plot of Figs. 5 and 6. While the drag force
is finite at temperatures close to Tc in the ideal gas of massless
partons, it (almost) vanishes for the two other more realistic
representations of the QGP constituents. In the PHSD model,
the temperature dependence of the strong-coupling constant
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FIG. 5. The drag force for the three different representations of
the QGP constituents: massless partons (solid), EPOS parametriza-
tion of the equation of state (short dashed), and massive quasiparticles
(long dashed), as a function of momentum (upper plot) and as a
function of medium temperature (lower plot). Results for the purely
collisional energy loss (black) and for the collisional + radiative
(LPM) are shown.

and its strong increase in the vicinity of Tc counterbalance the
reduction of the drag force due to the large masses [66].

When one looks at the rescaled drag force in Fig. 6, one
sees immediately that the curves as function of momentum are
closer together for each of the energy-loss mechanisms than
in Fig. 5. The determination of the K factors in comparison
with experimental data for RAA includes an integration over
the entire freeze-out evolution and an averaging over several
initial momenta. Despite the therefore very similar values
of RAA (see Sec. IV), the temperature dependence (see
lower plot of Fig. 6) is still very different. One observes
in particular a stronger temperature-dependence for both
energy-loss scenarios inspired by the equation of state. In
all of the rescaled scenarios the drag force for the purely
collisional scenario exceeds that for a collisional + radiative
(LPM) interaction mechanism at low momenta p � 5 GeV.
Due to the momentum dependence of the reduction factor
λ, the enhancement of the low-momentum drag force for
collisional energy loss is most pronounced for the case of
massive quasiparticles.
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FIG. 6. Same as in Fig. 5, but the different scenarios are rescaled
with the K factor determined from an optimal description of the
central RAA data at the LHC. See text for details.

We now proceed by applying our model to the full medium
evolution in Pb + Pb collisions at

√
s = 2.76 TeV and Au +

Au collisions at
√

s = 200 GeV.

IV. RAA AND v2 AT LHC AND RHIC

For the fully coupled evolution of heavy quarks and
the QGP medium, we initialize the charm quarks at the
nucleon-nucleon scattering points from the EPOS2 initial
conditions. The initial transverse momentum spectra are
obtained from FONLL calculations [67]. Nuclear shadowing
has been included according to the EPS09 parametrization
of the nuclear parton distribution functions [68]. For the
charm quark propagation in the medium we solve the same
Boltzmann transport equation as in previous works, where
the medium constituents are massless partons, but reduce the
scattering rate according to the effective reduction factors λ,
as discussed in the previous section. After the evolution in the
medium the charm quarks hadronize at a given temperature
either via coalescence or via fragmentation [69]. Depending
on the local fluid velocity, the orientation of the hypersurface
of constant hadronization temperature, and the momentum
of the heavy quark, a coalescence probability is determined.
This probability is maximal when the heavy quark and the
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FIG. 7. Comparison of the D meson RAA for a QGP consisting
of massive quasiparticles (solid lines) and massless partons (dashed
lines). The cross sections are not rescaled (K = 1). Purely collisional
(orange, light) and collisional + radiative (LPM) (black) energy-loss
scenarios are shown.

thermally distributed light quark are close in coordinate
and momentum space. The normalization is given by the
requirement that a bottom quark at rest can only hadronize
via coalescence. At high pT the coalescence probability
goes to zero and fragmentation into D mesons becomes the
dominant hadronization process. The fragmentation function
is the same as used in order to compare FONLL calculations
with proton-proton data [70] and is thus consistent with the
initial production.

In Fig. 7 we show RAA of D mesons for
√

sNN = 2.76 TeV
central Pb + Pb collisions in the case of massive quasiparticles
in the QGP compared with the case where the QGP consists
of massless partons. The decoupling temperature is T =
168 MeV. In these calculations the cross sections are not
rescaled, which corresponds to K = 1. The case where the
medium constituents are massless partons is shown with
the dashed lines. Here, the purely collisional energy loss is
evidently not strong enough to explain the experimental data.
Including radiative corrections we find a good description for
the intermediate pT range in the case of the massless QGP
but the overall suppression at high pT is too large. These
observations motivate the choice of K factors. As expected,
the strongly reduced drag force of charm quarks in a medium
with massive quasiparticles leads to a substantial reduction of
the energy loss of charm quarks for both energy-loss scenarios:
purely collisional and collisional + radiative (LPM).

In the following, we use the K factors determined by the
RAA data around pT ∼ 10 GeV at a decoupling temperature
of Tf = 134 MeV. Next, this same K factor is also applied
for the case where the heavy-quark propagation hadronizes at
T = 168 MeV, which is the EPOS2 particlization temperature.
By comparing results for the higher and lower decoupling
temperatures, one can see the effect of the late-stage evolution,
during which the description of the degrees of freedom is still
in accordance with the interpretation of the equation of state.

In Fig. 8 we show RAA of D mesons in central collisions
at the LHC for both interpretations of the equation of state:
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FIG. 8. D meson RAA in central
√

sNN = 2.76 TeV Pb + Pb
collisions. In the upper plot, the EPOS parametrization of the
equation of state is used; in the lower plot the scenario with massive
quasiparticles is used. Shown are curves for purely collisional and
collisional + radiative (LPM) energy loss and for the two decoupling-
temperatures T = 134 MeV and T = 168 MeV. Standard curves refer
to the case of massless light partons.

the EPOS parametrization (upper plot) and the massive
quasiparticle interpretation of the light partons (lower plot),
as well as for the standard scenario (massless quarks with
Tc = 155 MeV and Kc = 1.22, Kc+r = 0.6).1 It is seen that
K factors can be determined such that the experimental data
above pT � 8 GeV can be equally well described by both
representations of the medium constituents. At high momenta,
the decoupling temperatures do not affect the results. Below
pT � 5 GeV, differences become more prominent. In both
cases, EPOS parametrization of the equation of state or
massive quasiparticles, the peak around pT ∼ 1.5−2.5 GeV
is higher and shifted toward larger pT if the evolution is
stopped at a later temperature, since the radial flow in the
medium increases with evolution time. Since the effective
reduction of the scattering rates in the scenario with massive

1We note that these K factors differ from those in previous
publications, which were chosen such that intermediate- and high-
pT RAA data were optimally reproduced, whereas here we focus on
reproducing RAA(pT ∼ 10 GeV) ∼ 0.3.
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FIG. 9. D meson v2 in the 30%–50% most-central
√

sNN =
2.76 TeV Pb + Pb collisions. In the upper plot the EPOS parametriza-
tion of the equation of state is used; in the lower plot the scenario
with massive quasiparticles is used. Shown are curves for purely
collisional and collisional + radiative (LPM) energy loss and for
the two decoupling temperatures T = 134 MeV and T = 168 MeV.
Standard curves refer to the case of massless light partons.

quasiparticles depends on the incoming momentum of the
charm quark and scatterings of low-momentum charm quarks
are less suppressed, the coupling to the radial flow is stronger
in this case. This is especially true for a prolonged evolution
in the low-temperature phase. Toward higher pT we can see
a slight upward trend of the RAA for the purely collisional
energy-loss scenario.

Figure 9 shows the elliptic flow v2 of D mesons in the
30%–50% most-central collisions at the LHC. It can be seen
again that, due to the momentum dependence of the effective
reduction, λg,q

m , in a massive-quasiparticle picture the coupling
to the flow of the medium is stronger at low momenta than
is the case for the EPOS parametrization of the equation
of state. The evolution at lower temperatures can again
enhance v2 compared to a higher decoupling temperature. For
completeness, we show our results for RAA and v2 at top RHIC
energy in Figs. 10 and 11. We observe the same trends with
respect to the representation of the medium constituents, the
decoupling temperature, and the energy-loss mechanism as for
the LHC. In order to determine the K factors at RHIC, data
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FIG. 10. D meson RAA in central
√

sNN = 200 GeV Au + Au
collisions. In the upper plot the EPOS parametrization of the
equation of state is used; in the lower plot the scenario with massive
quasiparticles is used. Shown are curves for purely collisional and
collisional + radiative (LPM) energy loss and for the two decoupling-
temperatures T = 134 MeV and T = 168 MeV.

at higher pT for the D meson RAA would be very helpful.
The now-available data cover a pT range which has not been
included in the K-factor determination at the LHC. Here,
we take therefore the same K factors as determined at the
LHC and investigate the consequences at the lower energy,
although there are some indications that slightly higher K
factors improve the comparison with the data at RHIC [56,71].
It seems, however, that no model can be tuned in such a way
that it is able to cope with the data, which might be a sign for
an excess of radial flow in the background medium.

V. CONCLUSIONS

In the present work, we investigated the possibility to couple
consistently the heavy-flavor dynamics to the fluid dynamical
evolution of the light-bulk particles in ultrarelativistic heavy-
ion collisions. While today in most models the equation of
state is taken realistically as the lattice QCD equation of
state, thermal scattering partners are mostly sampled from
the distribution of a noninteracting ideal gas of relativistic,
massless partons. This characterization of the nature of the
quasiparticles might only be justified at extremely high
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FIG. 11. D meson v2 in 20%–40% most-central
√

sNN =
200 GeV Au + Au collisions. In the upper plot, the EPOS parametriz-
ation of the equation of state is used; in the lower plot the scenario
with massive quasiparticles is used. Shown are curves for purely
collisional and collisional + radiative (LPM) energy loss and for the
two decoupling-temperatures T = 134 MeV and T = 168 MeV.

temperatures where the Stefan–Boltzmann limit will even-
tually be reached. Here we looked into two different repre-
sentations of the degrees of freedom in the QGP, which both
reproduce the correct lattice QCD equation of state. One is
a parametrization of the lattice equation of state in terms
of partonic and hadronic degrees of freedom and is used in
the fluid dynamical evolution of the EPOS2 approach. The
other is the description of the medium constituents as massive
quasiparticles. The thermal masses have been obtained by
fitting the lattice equation of state. They show a strong increase
at lower temperatures. In the first case, the scattering rate of
the heavy quarks with the medium constituents is reduced by
the fraction of hadronic color-neutral degrees of freedom in the
medium, which is a function of the medium temperature. In the
second case, we derived an effective reduction of the scattering
rate via a comparison of the drag force for massive with that of
massless medium constituents. Here the reduction factor de-
pends on the temperature, the momentum of the heavy quark,
and whether the heavy quark scatters with a quark or a gluon.

We could show that the high-momentum part of RAA

remains unchanged after a rescaling of the rates with a global
K factor, although the temperature dependence of the drag

force is very different in a realistic description of the medium
constituents compared with massless partons. Due to the
reduced drag force, the K factors needed to reproduce the
RAA data are found to be significantly larger than in previous
calculations with massless partons. Differences are visible at
lower transverse momenta in RAA and in the elliptic flow
v2, where the late-stage evolution with low temperatures is
more important and the scattering rate is significantly reduced.
Particularly interesting is the case of massive quasiparticles,
where the additional momentum dependence of the reduction
factor leads to a very pronounced impact of the late-stage
evolution. The coupling to the radial flow and the elliptic flow
of the underlying medium is enhanced after a global rescaling
of the scattering rates by a K factor.

Since the central RAA data at intermediate and high
transverse momentum are currently used to calibrate the
energy-loss model, further observables such as the elliptic
flow studied here are sensitive to the representation of the
medium constituents, albeit the current precision of the data
is not good enough to distinguish these effects. It would be
interesting to look at azimuthal correlations and higher-order
flow harmonics [55,56] in future work. For this, we will use
the upgraded EPOS3 version which includes a coupled initial
state for fluid dynamics and heavy-flavor production and a
viscous fluid dynamical evolution.

The approach of massive quasiparticles seems one of the
more realistic approaches to understand the thermodynamics,
i.e., the equation of state of QCD, which can also be
used as a foundation to study heavy-flavor dynamics. This
approach should be followed in more detail to include the
strong-coupling effects leading to enhanced thermal masses of
the light quasiparticles also with respect to the heavy-flavor
interaction. The representation of the medium constituents
by massless partons is an unrealistic approximation for
temperatures which are reached in heavy-ion collisions.
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APPENDIX: SCATTERING OF HEAVY QUARKS ON
LIGHT QUARKS

We start from the definition of the drag force in Ref. [29]:

Ai( �p) = 1

16(2π )5Ep

∫
d3q

Eq

f (�q)
∫

d3q ′

Eq ′

∫
d3p′

Ep′
(p − p′)i

× δ(4)(Pin − Pfin)

∑ |M|2
γQγp

, (A1)

044909-9



NAHRGANG, AICHELIN, GOSSIAUX, AND WERNER PHYSICAL REVIEW C 93, 044909 (2016)

where γQ is the degeneracy of the heavy quark (γQ = 6), γp

is the degeneracy of the light parton, �p (�q ) is the incoming
momentum of the heavy quark (light parton), and �p ′ (�q ′)
is the final momentum. Ex is the energy associated with the
momentum �x. mQ is the mass of the heavy quark while mq

is the mass of the light parton. The drag force can easily be
brought to a covariant form, as seen by solving the Fokker–
Planck equation in the absence of diffusion (Bij = 0):

∂f

∂t
= ∂

∂pi

(Aif ) ⇒ d〈pi〉f
dt

= −
∫

d3p(Aif ), (A2)

where f is the particle distribution in momentum space. In
particular, if we take f = δ( �p − �p0), we obtain

dp0,i

dt
= −Ai( �p0) ⇒ d �p0

dτ
= − Ep

mQ

�A = − �A, (A3)

where τ is the eigentime of the heavy quark. d �p0/dτ is the
spatial part of a covariant quantity. Adding the temporal part
we can define the covariant Aμ:

Aμ( �p) = −1

16(2π )5mQ

∫
d3q

Eq

f (�q)
∫

d3q ′

Eq ′

∫
d3p′

Ep′

(
q − q ′)μ

× δ(4)(Pin − Pfin)

∑ |M|2
γQγp

, (A4)

using (p − p′)μ = −(q − q ′)μ. Introducing

aμ :=
∫

d3q ′

Eq ′

∫
d3p′

Ep′
(q − q ′)μδ(4)(Pin − Pfin)

∑ |M|2
γQγp

,

(A5)
which is covariant as well so we can evaluate aμ and

Aμ = − 1

16(2π )5mQ

∫
d3q

Eq

f (�q)aμ (A6)

in different frames.

1. Evaluation of aμ

We evaluate aμ in the heavy-quark–light-parton center-of-
mass (c.m.) frame (dubbed ac.m.) and Aμ in the frame where
the heavy quark is at rest. a0

c.m. = 0 by construction and

�ac.m. =
∫

d3q ′

Eq ′Ep′
δ(

√
s − Eq ′ − Ep′)(�q − �q ′)

∑ |M|2
γQγp

.

(A7)
Using Ep′ = (m2

Q + p2
rel)

1/2 and Eq ′ = (m2
q + p2

rel)
1/2 we ob-

tain

δ(
√

s − Eq ′ − Ep′ ) = δ(q ′ − prel)
prel

Eq′ + prel

Ep′
= Eq ′Ep′

prel
√

s
δ(q ′ − prel),

(A8)
and thus

�ac.m. = prel√
s

∫
d�q ′ (�q − �q ′)

∑ |M|2(s,t)

γQγp

. (A9)

Due to symmetry, �ac.m. ‖ q̂c.m., where q̂ is the unit vector in
the direction of the light parton in the c.m., we write

�ac.m. = ac.m.q̂,

with

ac.m. = prel√
s

∫
d�q ′ (�q − �q ′) · q̂

∑ |M|2(s,t)

γQγp

. (A10)

Introducing the angle θ between �q and �q ′ leads to

ac.m. = 2πp2
rel(s)√
s

∫
d cos θ (1 − cos θ )

∑ |M|2(s,t)

γQγp

. (A11)

We define

m1(s) :=
∫ +1

−1
d cos θ

1 − cos θ

2

∑ |M|2(s,t)

γQγp

, (A12)

which is positive defined, implying a force along −q̂, which
appears natural if one goes in the rest frame of the heavy quark.
We obtain

aμ
c.m. =

{
0 for μ = 0
4πp2

rel(s)m1(s)√
s

q̂
μ
c.m. for μ �= 0.

(A13)

2. Calculation of m1

For the evaluation of m1 we introduce v = cos θ − 1:

m1(s) := −
∫ 0

−2

v

2

∑ |M|2(s,t(v))

γQγp

dv.

In the c.m., one finds t = (p − p′)2 = −2p2
rel(1 − cos θ ) =

2p2
relv, which yields

m1(s) := 1

8p4
rel

∫ 0

−4p2
rel

∑ |M|2(s,t)

γQγp

(−t)dt. (A14)

The scattering amplitude M between a heavy and a light
quark reads (conventions of Itzikson and Zuber)

M =g2
∑

λ

tλa,a′ t
λ
b,b′

× ū(sp′ )(p′)γ μu(sp)(p)gμνū
(sq′ )(q ′)γ νu(sq )(q)

t − m2
g

,

where a (b) is the initial color of the heavy quark (light quark),
and a′ (b′) are the final colors. Up to the color factor, the
matrix element is identical to that for e−μ− scattering and can
be found in standard text books:

∑
|M|2 = 8g4 × col × s2

− + u2
− + 2

(
m2

Q + m2
q

)
t(

t − m2
g

)2 .

with s− := s − m2
Q − m2

q and u− := u − m2
Q − m2

q . The color
factor “col” is evaluated to

col :=
∑

a,a′,b,b′

∣∣∣∣∣
8∑

λ=1

tλaa′ t
λ
bb′

∣∣∣∣∣
2

=
8∑

λ,λ′=1

[Tr(tλtλ
′
)]2

=
8∑

λ,λ′=1

δλ,λ′

4
= 2. (A15)
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The matrix element therefore reads∑ |M|2
γqγQ

= 16g4

γqγQ

[
s2
− + u2

− + 2
(
m2

Q + m2
q

)
t
]

(
t − m2

g

)2

=256π2α2
s

γqγQ

[
s2
− + u2

− + 2
(
m2

Q + m2
q

)
t
]

(
t − m2

g

)2 ,

with γQ = γq = 6 and we obtain

m1(s) = 8π2

9p4
rel

∫ 0

−4p2
rel

(−t)dtα2
s

s2
− + u2

− + 2
(
m2

Q + m2
q

)
t(

t − m2
g

)2 ,

(A16)
where αs is t dependent.

3. Aμ in heavy-quark rest system

In the c.m. system a
μ
c.m. is given by Eq. (A13). The boost

matrix � from the c.m. to the rest frame of the heavy quark is
given by

�(�u) =
(

u0 −〈�u
−�u〉 1 + �u〉〈�u

1+u0

)
,

where (u0,�u) is the four-velocity of the rest frame of the c quark
seen from the c.m. frame. �u is the opposite of the four-velocity
of the c.m. in the c-rest frame, i.e.,

�u = − �qr√
s

and u0 = Eqr
+ mQ√
s

,

with s = (mQ + Eqr
)2 − q2

r = m2
Q + m2

q + 2mQEqr
, where

the subscript r indicates that the quantities are considered in
the rest frame of the c quark. We obtain

� = 1√
s

(
Eqr

+ mQ 〈�qr

�qr〉
√

s + �qr 〉〈�qr√
s+Eqr +mQ

)

and

ar = 4πp2
rel(s)m1(s)

s

(
Eqr

+mQ 〈�qr

�qr〉
√

s+ �qr 〉〈�qr√
s+Eqr +mQ

)
·
(

0

q̂c.m.

)

= 4πp2
rel(s)m1(s)

s

(
qr

(Eqr
+ mQ)q̂r

)
, (A17)

where we have used that q̂c.m. = q̂r , i.e., the direction of �qr is
not affected when going to the c.m. frame. In the heavy-quark
rest system, Aμ, defined in Eq. (A6), is given by

Aμ
rest = − 1

8(2π )4mQ

∫
p2

rel(s)m1(s)

s

×
[∫

d��q[qδμ0 + (Eq + mQ)q̂iδ
μi]fr (�q)

]
q2dq

Eq

= − 1

4(2π )3mQ

∫
p2

rel(s)m1(s)

s

× [qf0(q)δμ0 + (Eq + mQ)f1(q)δμi(û)i]
q2dq

Eq

= − (
A0

rest + Av
restû

)μ
, (A18)

where we have introduced

4πf0(q) =
∫

d��qf
(

u0Eq − uq cos θ

T

)

= 2π

∫
d cos θf

(
u0Eq − uq cos θ

T

)
(A19)

and

4πf1(q) =
∫

d��qf
(

u0Eq − uq cos θ

T

)
cos θ

= 2π

∫
d cos θf

(
u0Eq − uq cos θ

T

)
cos θ. (A20)

In the latter equation we used the fact that, for the μ = i
components, symmetry requires that Ai

rest should be directed
along �u. Hence �Arest = ( �Arest · û)û.

For a Juettner–Boltzmann distribution f0 and f1 are given
by

f (�q) = e− u0Eq
T

+ �q·�u
T ⇒ f0(q) = e− u0Eq

T

2

∫ +1

−1
d cos θe

qu cos θ
T

= e− u0Eq
T

(
sinh α

α

)
(A21)

and

f1(q) = e− u0Eq
T

(
∂

∂α

sinh α

α

)
. (A22)

with α := qu
T

.
For the Fermi–Dirac distribution, which we use for our

calculation, there is also an analytical solution for the moments
f0 and f1:

f (�q) = 1

e
u0Eq

T
− �q·�u

T + 1
⇒ f0(q) = 1

2

∫ +1

−1

dv

e
u0Eq −uqv

T + 1
,

(A23)

where v = cos θ . We rewrite this equation, introducing α = uq
T

and β = u0Eq

T
:

f0(q) = 1

2

∫ +1

−1

e
uqv
T dv

e
u0Eq

T + e
uqv
T

= 1

2

∫ +1

−1

eαvdv

eβ + eαv

= 1

2α

∫ e+α

e−α

d(eαv)

eβ + eαv
= 1

2α
ln

(
eβ + eα

eβ + e−α

)
. (A24)

For f1, we get

f1(q) = 1

2

∫ +1

−1

v eαv

eβ dv

1 + eαv

eβ

= 1

2

+∞∑
n=1

(−1)n+1
∫ +1

−1
v

(
eαv

eβ

)n

dv.

(A25)
Using the variable change ṽ = nαv, one gets

f1(q) = 1

2

+∞∑
n=1

(−1)n

(nα)2enβ
[(1 − ṽ)eṽ]+nα

−nα

= 1

2

+∞∑
n=1

(−1)n

(nα)2enβ
[enα − e−nα − nα(enα + e−nα)]
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= 1

2

[
1

α2

+∞∑
n=1

(− eα

eβ

)n

n2
− 1

α2

+∞∑
n=1

(− e−α

eβ

)n

n2

− 1

α

+∞∑
n=1

(− eα

eβ

)n

n
− 1

α

+∞∑
n=1

(− e−α

eβ

)n

n

]

= 1

2α2

[
Li2

(
−eα

eβ

)
− Li2

(
−e−α

eβ

)

+ α ln

(
1 + eα

eβ

)
+ α ln

(
1 + e−α

eβ

)]
, (A26)

where Li2(z) is the polylog function, with |z| < 1 in this case,
so that the power series converges.

4. Aμ in fluid rest system

The transformation between the heavy-quark rest system
and the rest system of the fluid cell is given by(A0

fluid

�Afluid

)
=

(
u0 −〈�u

−�u〉 1 + �u〉〈�u
1+u0

)
·
(

−A0
rest

−Av
restû

)
, (A27)

where u ≡ (u0,�u ) is the fluid four-velocity measured in the
c-quark rest frame; that is, u = 1

mQ
(Ep, − �p ). We thus get

�Afluid = A0
rest �u − Av

rest

(
1 + ‖�u ‖2

1 + u0

)
︸ ︷︷ ︸

= 1+u0+‖�u ‖2

1+u0 =u0

û

= (
A0

rest‖�u ‖ − Av
restu

0
)
û

=
(

Av
rest

Ep

mQ

− A0
rest

‖ �p ‖
mQ

)
p̂. (A28)

Thus, we find for the drag force in the fluid rest system,

�A = m

Ep

�Afluid = (
Av

rest − βA0
rest

)
p̂. (A29)

with β = p
Ep

. In Fig. 12, we present the drag force for model
C (top) and model E (bottom) of Ref. [12]. For model C, αs =

FIG. 12. (top) Contribution of quarks to the drag of c quarks as a
function of p with parameters corresponding to model C of Ref. [12].
(bottom) Same as top panel but for model E.

αs(2πT ) and the IR regulator μ2 = 0.15m2
D in the propagator,

while for model E, αs = αeff(t) and μ2 = 0.2m̃2
D [12]. The

various curves correspond to mq = 0, mq = T , mq = 2T , and
mq = 3T . One sees that giving a finite mass to the light quark
leads to the reduction of the drag force for a given temperature.
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345, 277 (1995).
[17] R. Baier, Y. L. Dokshitzer, A. H. Müller, S. Peigné, and D.
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