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Transverse-momentum–flow correlations in relativistic heavy-ion collisions
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The correlation between the transverse momentum and the azimuthal asymmetry of the flow is studied. A
correlation coefficient is defined between the average transverse momentum of hadrons emitted in an event and
the square of the elliptic or triangular flow coefficient. The hydrodynamic model predicts a positive correlation
of the transverse momentum with the elliptic flow, and almost no correlation with the triangular flow in Pb-Pb
collisions at LHC energies. In p-Pb collisions the new correlation observable is very sensitive to the mechanism
of energy deposition in the first stage of the collision.

DOI: 10.1103/PhysRevC.93.044908

I. INTRODUCTION

Collective expansion of the fireball in relativistic heavy-ion
collisions generates an azimuthally asymmetric transverse
flow. To a first approximation the collective expansion trans-
forms the azimuthal asymmetry of the fireball into the elliptic
or triangular flow in the final spectra [1]. An essential issue in
the analysis of the hydrodynamic response is the identification
of the relevant parameters of the initial state governing the
final response [2,3]. Another important topic recently studied
concerns nonlinearities in the hydrodynamics response [4–6].

One way to study nonlinearities in the hydrodynamic
response is to measure higher order moments between flow
coefficients [5]. Another possibility is to use event shape
engineering [7]. This technique has been used in a number
of experimental analyses [8,9] and theoretical studies [10].
Experimental results indicate that for a subsample of events
with higher elliptic flow the transverse momentum spectra get
harder [9].

Transverse-momentum fluctuations from event to event are
caused by fluctuations in the initial size of the fireball [11,12].
Correlations between the average transverse flow and the
coefficients of azimuthally asymmetric flow could reveal
interesting information both on the correlation in the initial
state between the size and the eccentricities and on the
correlations of the strength of the hydrodynamic response
with the flow coefficients. In the following, the correlation
coefficient between the average transverse flow and the square
of the elliptic or triangular flow coefficient is proposed as a
robust observable to study such effects.

II. TRANSVERSE-MOMENTUM–FLOW CORRELATIONS

The covariance of any observable O with the square of the
flow coefficient can be defined as

cov(vn{2}2,O) =
〈

1

Npairs

∑
i �=k

einφi e−inφk (O − 〈O〉)
〉
, (1)

where the sum is over pairs of particles not used in the
calculation of the observable O. The simplest way to achieve
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it is to use separate pseudorapidity intervals for the calculation
of the flow coefficient and O. The Pearson coefficient for the
correlation between O and the flow coefficient is

R(vn{2}2,O) = cov(vn{2}2,O)√
Var(vn{2}2)Var(O)

. (2)

By definition the Pearson coefficient is in the range [−1,1].
Specifically, for the average transverse momentum in the

event O = [p⊥] = 1
N

∑
i p

i
⊥ one gets

cov(vn{2}2,[p⊥])

=
〈

1

NpairsN

∑
i �=k �=j

einφi e−inφk (pj − 〈[p⊥]〉)
〉
. (3)

In the following, particles in the sums are taken from three dif-
ferent pseudorapidity intervals A, B, C, ηi ∈ [−2.5, −0.75],
ηk ∈ [0.75,2.5], and ηj ∈ [−0.5,0.5]. I have checked that
similar results can be obtained using one large interval, but
excluding self-correlations. The main reason to use three
separate pseudorapidity intervals is to reduce nonflow effects.
The Pearson correlation coefficient is

R(vn{2}2,[p⊥])

=
〈

1
NANB

∑
i∈A,k∈B einφi e−inφk 1

NC

∑
j∈C(pj − 〈[p⊥]〉)〉√

Var
(

1
NANB

∑
i∈A,k∈B einφi e−inφk

)
Var([p⊥]C)

.

(4)

The Pearson coefficient can be calculated from the experimen-
tal data to estimate correlations between an observable and the
magnitude of the flow. However, the result depends on multi-
plicities in the intervals where the quantities are calculated, so
changing the rapidity intervals or transverse-momentum cuts
introduces a spurious effect due to self-correlations, not related
to correlations of the collective quantities.

III. SELF-CORRELATIONS

The Pearson correlation coefficient [Eq. (4)], normalized
by the variances of vn{2}2 and [p⊥], depends strongly on the
choice of the kinematic range, as the multiplicities can change.
In the presence of collective flow, one is rather interested
in extracting the correlation coefficient of the event-by-event
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characteristics of the spectra, the flow coefficient squared, and
the average transverse momentum.

The correlation coefficient can be normalized by the
standard deviation of the flow coefficient and of the average
transverse momentum. For the average transverse momentum
it amounts to using the dynamical transverse-momentum
fluctuations [13]

Cp⊥ =
〈

1

N (N − 1)

∑
i �=j

(pi − 〈[p⊥]〉)(pj − 〈[p⊥]〉)
〉
. (5)

The variance of the flow coefficient squared can be estimated
from

Var(v2
n)dyn =

〈
1

NA(NA − 1)NB(NB − 1)

×
∑

i �=j∈A

∑
k �=l∈B

einφi+inφj e−inφk−inφl

〉

−
〈

1

NANB

∑
i∈A,k∈B

einφi e−inφk

〉2

(6)

or equivalently

Var
(
v2

n

)
dyn = vn{2}4 − vn{4}4. (7)

The correlation coefficient of the collective parameters in the
events is

ρ(vn{2}2,[p⊥]) = cov(vn{2}2,[p⊥])√
Var

(
v2

n

)
dynCp⊥

. (8)

The correlation coefficient defined above has two desired
features. First, the correlation coefficient (8) is a very good
estimate of the true correlation of the collective parameters.
This can be checked by comparing results using realistic
finite multiplicity events against those obtained by integration
of the final spectra. Second, the correlation coefficient does
depend very weakly on the choice of the kinematic range in
pseudorapidity. Note that such a small dependence is possible
due to nonflow effects or to the pseudorapidity dependence
of the flow [14]. In the following I call ρ(vn{2}2,[p⊥]) the
transverse-momentum–flow correlation coefficient.

Unlike the Pearson coefficient (4) the correlation coef-
ficient (8) is not necessarily limited to the range [−1,1].
However, if genuine nonstatistical fluctuations of vn and
[p⊥] stem from fluctuations of collective parameters of the
spectra, the correlation coefficient ρ(vn{2}2,[p⊥]) measures
the correlation between these parameters and should be in the
range [−1,1].

IV. RESULTS FROM THE HYDRODYNAMIC MODEL

Viscous hydrodynamic model simulations in (3+1) di-
mensions were performed for Pb-Pb collisions at

√
sNN =

2.76 TeV and p-Pb collisions at 5.02 TeV [15]. The initial
conditions were generated event by event from the Glauber
Monte Carlo model. At the positions of the participant
nucleons in the transverse plane xi,yi entropy is deposited
with a Gaussian profile of width σ = 0.4 fm. The transverse
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FIG. 1. Correlation coefficient between the elliptic flow coef-
ficient squared v2{2}2 and the average transverse momentum of
charged particles in an event for different centralities. The stars denote
the Pearson coefficient [Eq. (4)], the circles denote the correlation
coefficient without self-correlations [Eq. (8)] and the triangles denote
the correlation coefficient calculated from oversampled events.

profile is given by a sum of contributions from all participant
nucleons:

S(x,y) ∝
∑

i

[
(1 − α) + N coll

i α
]
e
− (x−xi )2+(y−yi )2

2σ2 , (9)

where the deposited strength has a contribution 1 − α (α =
0.15) times the number of collisions for nucleon i; more details
are given in [12].

In each event, after hydrodynamic evolution, statistical
emission of hadrons is performed giving events with realistic
multiplicities. The Pearson correlation coefficient (4) and
the correlation of the transverse momentum and flow (8)
are calculated in several centrality classes from central to
midperipheral. The centrality classes in the calculation are
defined by the number of participant nucleons. The Pearson
coefficient is always smaller in magnitude than the transverse-
momentum–flow correlation coefficient (Figs. 1 and 2). It is
due to contributions from self-correlation in the denominator
of Eq. (4). These contributions are important for small multi-
plicities, and get larger for peripheral events or for a narrow
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FIG. 2. Same as Fig. 1, but for the triangular flow v3{2}2.
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FIG. 3. Correlation coefficient between the elliptic flow coef-
ficient squared v2{2}2 and the average transverse momentum of
charged particles in an event for different centralities. The stars
denote correlations calculated in the range |η| ∈ [1.75,−2.5] for v2

2

and η ∈ [−0.2,0.2] for [p⊥], the circles and triangles denote the
correlation coefficient calculated with |η| ∈ [1.75,−2.5] for v2

2 , and
η ∈ [−0.2,0.2] with 100% and 50% efficiency, respectively.

pseudorapidity range. The correlation calculated from Eq. (8)
is a quantity that is defined to be independent of the multiplic-
ity, except for small nonflow effects. In Figs. 1 and 2 (triangles)
are shown the results for the transverse-momentum–flow
correlations obtained by integrating the spectra in each event.
Technically, these numbers are calculated using oversampled
events, where the multiplicity is increased by a factor 100–300
depending on centrality. As can be observed from the results
in Figs. 1 and 2, the transverse-momentum–flow correlation
coefficient (8) is very close to the result for oversampled
events. It means that Eq. (8) can be used in practice to estimate
the genuine transverse-momentum–flow correlations, without
self-correlations and with only small nonflow contributions.
The approximate independence of the pseudorapidity range
or efficiency is explicitly shown in Fig. 3. The results for
the correlation coefficient ρ(v2{2}2,[p⊥]) do change when the
multiplicity changes, due to finite efficiency or different range
in pseudorapidity.

The correlation between the elliptic flow and the trans-
verse momentum is positive (Fig. 1), it is small for central
but increases for midcentral events. The correlation coef-
ficient reaches 0.25 for centrality 30–40% which indicates
a significant positive correlation. The increase of the mean
transverse momentum indicates a stronger transverse flow
and a stronger collective response to the initial geometry
of the source. The results are qualitatively consistent with
the results of the ALICE Collaboration obtained using the
event shape engineering technique [9]. A stronger transverse
push yields a stronger hydrodynamic response of the spectra
to the initial azimuthal deformation. Such an effect is also
largely responsible for the observed energy dependence of
the integrated elliptic flow [16]. A less important, reverse
effect is present in the initial state from the Glauber Monte
Carlo model. The initial ellipticity is negatively correlated to
the inverse rms radius. Smaller, more compact sources give
larger transverse momentum, but a smaller deformation. The
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FIG. 4. Correlation coefficient between the elliptic flow coeffi-
cient squared v2{2}2 and the average transverse momentum of charged
particles in an event for different centralities. The triangles, circles,
and stars denote the correlation coefficient for the flow calculated
in the ranges 0.2 < p⊥ < 2 GeV, 0.5 < p⊥ < 2 GeV, and 0.4 <

p⊥ < 0.7 GeV, respectively. The average transverse momentum
of charged particles in the event [p⊥] is calculated in the range
0.2 < p⊥ < 2 GeV in all the cases.

strength of that negative correlation depends on the width
of Gaussian smearing of the deposited density from each
participant nucleon [Eq. (9)]. The increase of the transverse-
momentum–flow correlation for midcentral events indicates
that it comes from a stronger hydrodynamic response to
the large deformation in such events; this is consistent with
arguments based on the principal component analysis of the
elliptic and transverse flow [6].

The triangular flow shows almost no correlation with the
transverse flow (Fig. 2). The negative correlation of the initial
triangularity with the inverse of the rms radius is stronger
than for the elliptic flow. Also, the triangular deformation
is more sensitive to the initial Gaussian smoothing [Eq. (9)]
than the elliptic deformation. Unlike for the elliptic flow, the
magnitude of hydrodynamic transverse push is not identifiable
as a predictor for the triangular flow [3].

The transverse-momentum–flow correlation coefficient
[Eq. (8)] is defined to be independent of the range in
pseudorapidity. On the other hand, the elliptic and triangular
flows depend on transverse momentum. The shift of the
integrated elliptic or triangular flow with the change of the
average transverse momentum depends on the p⊥ range chosen
to calculate v2

n. In Fig. 4 the correlation coefficients are
compared for three different p⊥ ranges used to calculate the
integrated flow coefficient, [0.2,2] GeV (typical range where
predictions of the hydrodynamic model are justified), [0.5,2]
GeV [preferred range in view of the efficiency of the ATLAS
and CMS detectors at the CERN Large Hadron Collider
(LHC)], [0.4,0.7] GeV (range where the average transverse
momentum lies). The transverse-momentum average is cal-
culated for charged hadrons with 0.2 < p⊥ < 2.0 GeV. The
calculated transverse-momentum–flow correlation coefficient
depends on the p⊥ integration range.

The collective flow observed in p-Pb collisions can be
described fairly well using relativistic hydrodynamics [17].
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FIG. 5. Correlation coefficient between the elliptic flow coeffi-
cient squared (triangles) or the triangular flow coefficient squared
(stars) and the average transverse momentum for p-Pb collisions at
5.02 TeV for two centralities, 0–3% and 10–20%. The hydrodynamic
evolution is performed for two scenarios of energy deposition in the
initial fireball: compact source (lower symbols) and standard Glauber
model (upper symbols).

The predicted flow depends strongly on assumptions concern-
ing the initial density fluctuations [18]. Two simple scenarios
of the entropy deposition in the transverse plane are studied:
the standard Glauber model, with entropy deposited at the
positions of the participant nucleons, and the compact source
scenario, with entropy deposited in between the two colliding
nucleons [19]. For centralities in the range 0–20% the rms
radius of the fireball in the first scenario is around 1.5 fm,
while in the second case it is much smaller, 0.9 fm.

The correlation between the final average transverse mo-
mentum [p⊥] and the initial eccentricities has a different
sign in the two scenarios. For centrality 0–3%, one finds
ρ([p⊥],ε2) = −0.04 ± 0.03 and ρ([p⊥],ε3) = −0.13 ± 0.04
for the compact source model, while ρ([p⊥],ε2) = 0.14 ±
0.03 and ρ([p⊥],ε3) = 0.05 ± 0.03 for the standard Glauber
model. The final transverse-momentum–flow correlation is
very different in the two scenarios. For the larger source it is
positive and for the compact source it is negative (Fig. 5). The
measured value of the transverse-momentum–flow correlation
in small systems is very sensitive to the mechanism of the
entropy deposition in the initial state of hydrodynamics. It
would be also interesting to check if this observable could be
used to distinguish between the hydrodynamic expansion and
the partonic cascade mechanism [20] of generating flowlike
correlations in small systems.

V. CONCLUSIONS

An observable testing the hydrodynamic response of the
particle spectra to the initial eccentricity is proposed. It
provides a simple quantitative measure of the correlation
between the transverse flow and the coefficients of the
azimuthal asymmetry of the spectra. A correlation coefficient
can be defined between the square of the flow coefficient
v2

n and the average transverse momentum in the event [p⊥].
Excluding self-correlations in the calculation of the covariance
and the variances, one obtains a good estimator of the

correlation coefficient of the average transverse momentum
and the flow coefficients of the spectra, with no significant
nonflow effects. Explicit calculations in the relativistic hy-
drodynamic model show that the transverse-momentum–flow
correlation can be measured for heavy-ion collisions at the
LHC. The same is true for collisions at energies currently
available at the BNL Relativistic Heavy Ion Collider, but the
smaller pseudorapidity acceptance and smaller multiplicity
would make the interpretation more difficult due to nonflow
effects.

The azimuthal asymmetry in the spectra of particles
emitted in relativistic heavy-ion collisions is formed during
the collective transverse expansion of the fireball. The strength
of the response depends on the gradients of the source density.
For smaller sources a stronger transverse flow is generated.
On the other hand, fireballs with a smaller initial size tend to
have smaller eccentricities, especially for the triangular flow.
Hydrodynamic model calculations give a significant positive
correlation between the average transverse flow and the elliptic
flow, increasing from central to midcentral collisions. This is
qualitatively consistent with the experimental results using
the event shape engineering [9] and the analysis of the
nonlinear response in Ref. [6]. The hydrodynamic model
with the Glauber model initial condition using a smoothing
scale of 0.4 fm predicts almost no correlations between the
triangular flow and the average transverse momentum. It would
be interesting to check if the transverse-momentum–flow
correlations in peripheral A-A or in p-A collisions could be
used as an additional constraint in studies trying to estimate
the smoothing scale in the initial entropy deposition in the
fireball [21]. The sensitivity of the proposed correlation
measure to viscosity coefficients of matter in the fireball is
left for further studies. In this context it should be noted
that transverse-momentum fluctuations are sensitive to the
effective equation of state [22] and could be sensitive to the
increase of bulk viscosity near the critical temperature.

In small system collisions the magnitude of the transverse
push in the expansion is very sensitive to the duration of
the collective dynamics and the size of the initial fireball.
Moreover, if the system size fluctuates to be small, the
smoothing in the initial entropy deposition yields a stronger
reduction of the initial eccentricities. The hydrodynamic
model gives very different predictions for the transverse-
momentum–flow correlation in two scenarios: the standard
Glauber model and the compact source scenario in p-Pb
collisions at the LHC. This observable could be used to probe
the mechanism of energy deposition at small scales in the the
first stage of the collision. Finally, it would be interesting to
compare the predictions of the hydrodynamic and the cascade
AMPT models [20,23] for the transverse-momentum–flow
correlation.

In summary, the paper proposes to study correlations be-
tween the flow, or specifically the square of the flow coefficient,
and other observables, as an alternative to the event shape
engineering technique. Hydrodynamic model calculations for
the correlation of the flow and the transverse momentum
demonstrate the practical feasibility of the procedure. The
transverse-momentum–flow correlation could be used to study
fluctuations in the initial stage of the collision.
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[12] P. Bożek and W. Broniowski, Phys. Rev. C 85, 044910 (2012).
[13] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 044902

(2005).
[14] V. Khachatryan et al. (CMS Collaboration), Phys. Rev. C 92,

034911 (2015).
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