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An analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy
nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013)]. The method
allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event
(EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase
Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component
of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the
asymmetry in the number of participating nucleons in the two colliding nuclei. The higher-order longitudinal
harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations
as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals
interesting charge-dependent short-range structures that are absent in HIJING model. The proposed method
opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions.
Future analysis directions and prospects of using the pseudorapidity correlation function to understand the
centrality bias in p + p, p + A, and A + A collisions are discussed.
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I. INTRODUCTION

Heavy-ion collisions at RHIC (Relativistic Heavy-Ion
Collider) and LHC (Large Hadron Collider) have two defining
characteristics which are the focus of many studies: (1) large
density fluctuations in the initial state of the collisions that
vary event to event and (2) the rapid formation of a strongly
coupled quark gluon plasma that expands hydrodynamically
with very low specific viscosity. The latter characteristic leads
to a very efficient transfer of the initial density fluctuations
into the final-state collective flow correlations in momentum
space. Conversely, experimental measurements of the these
correlations provide a window into the the space-time picture
of the collective expansion as well as the medium properties
that drive the expansion. The measurement of harmonic
flow coefficients vn [1–4] and their event-by-event (EbyE)
fluctuations [5–7] has placed important constraints on the shear
viscosity and density fluctuations in the initial state [8–11].

Recently, similar ideas have been proposed to study the
initial-state density fluctuations in the longitudinal direc-
tion [12–15]. These longitudinal fluctuations directly seed the
entropy production at very early time of the collisions, well be-
fore the onset of the collective flow, and appear as correlations
of the multiplicity of produced particles separated in rapidity.
For example, EbyE difference between the number of nucleon
participants in the target and the projectile, NF

part and NB
part, may

result in a long-range asymmetry of the fireball [13,14,16];
the fluctuation of emission profile among participants may
lead to higher-order shape fluctuations in rapidity [13,17]
(assuming that the emission sources for particle production
can be associated with individual wounded nucleons). On
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the other hand, short-range correlations can also be generated
dynamically including resonance decay, jet fragmentation, and
Bose-Einstein correlations. These correlations are typically
localized over a smaller range of the η and can be sensitive to
final-state effects. The longitudinal multiplicity fluctuations,
when coupled with the collective transverse expansion, also
lead to rapidity-dependent EbyE fluctuations of magnitude
and the phase of harmonic flow [12,14,18,19].

Most previous studies of the longitudinal multiplicity
correlation are limited to two rapidity windows symmetric
around the center-of-mass of the collision system, commonly
known as forward-backward (FB) correlations [20,21]. They
have been measured experimentally in e+e− [22], p + p
[23–26], p + p̄ [27], and A + A [28,29] collisions where
significant FB asymmetric component has been identified.
Recently, Refs. [13,15] generalized the study of the shape
of the rapidity fluctuation by decomposing it into Chebyshev
polynomials or into principle components, with each mode
representing the different components of the measured FB
correlation. In this paper, we propose a single-particle method
that obtains these shape components directly from each event,
as well as a two-particle correlation method that gives the
ensemble RMS average of these shape components. We apply
the method to HIJING [30] and AMPT [31] models and
successfully extract the different shape components of the
multiplicity fluctuation. The first component is found to be
directly related to the long-range asymmetry of the fireball,
while the higher-order components are more related to the
short-range correlations. The extracted components are also
found to be dampened by the final-state interactions. Therefore
our method can be used for systematic study of the longitudinal
dynamics in heavy-ion collisions.

The structure of the paper is as follows. The next section
introduces the method and relates to previous observables.
Sections III and IV show the properties of the longitudinal
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shape components extracted from HIJING and AMPT models.
The meaning of the first few components are discussed within
the context of a simple wounded-nucleon and particle emission
model, and their relations to initial density fluctuations are
clarified. Section V compares between the single-particle and
correlation methods, and a procedure is introduced to further
decouple residual centrality dependence from the dynamical
FB correlations in the correlation function. Section VI dis-
cusses new analyses enabled by the method, as well as its po-
tential application for understanding the centrality bias effects.

II. THE METHOD

The FB correlation can be quantified by the two-particle
correlation (2PC) function; see, for example, Ref. [21]:

C(η1,η2) = 〈N (η1)N (η2)〉 − 〈N (η1)〉δ(η1 − η2)

〈N (η1)〉〈N (η2)〉 , (1)

where the N (η) ≡ dN/dη is multiplicity density distribution
in pseudorapidity in one event and the average is over the
event ensemble, e.g., events within a given centrality class.
In experimental analysis, the correlation function is usually
normalized to have an average value of one. The second
term in the numerator explicitly removes the self-correlation
contribution; i.e., one should not correlate a particle with itself.
This term is usually dropped in the standard notation, since
condition η1 �= η2 is implicitly assumed, but it is important in
our discussion for reasons that will be given below.

The correlation function can be related to single-particle
distribution:

C(η1,η2) = 〈R(η1)R(η2)〉 − δ(η1 − η2)

〈N (η1)〉 ,

R(η) ≡ N (η)

〈N (η)〉 , (2)

where R(η) is the observed multiplicity density distribution in
one event normalized by the ensemble average. In the absence
of EbyE fluctuations, R(η) = 1 and C = 1.

One key step in our method is to decompose R(η) into
orthogonal polynomials in the rapidity range [−Y,Y ]:

R(η) = 1 +
∞∑
n

aobs
n Tn(η), Tn(η) ≡

√
n + 1

2
Pn(η/Y ),

(3)

where the P0(x) = 1, P1(x) = x, P2(x) = 1/2(3x2 − 1), . . . ,
are Legendre polynomials, and Y characterizes the range of
the rapidity fluctuations, chosen to be Y = 6 in current study.
The superscript obs is used to explicitly denote the observed
quantity in a single event. The new bases Tn(x) are chosen
such that their orthogonality and completeness relations are
normalized as

1/Y

∫ Y

−Y

Tn(η)Tm(η)dη = δnm,

1/Y

∞∑
n=0

Tn(η1)Tn(η2) = δ(η1 − η2). (4)

Our approach is similar to that of Ref. [13] except for two
differences: (1) the decomposition is performed on deviation

from average profile obtained in narrow centrality interval,
instead of obtaining 〈N (η)〉 by averging over events with
different an values, and (2) the orthogonal bases are Legendre
instead of Chebychev polynomials; the latter has a weight
factor of 1/

√
[1 − (η/Y )2] in the normalization relation that

diverges at η = ±Y .
The R(η) observable provides a natural way to separate

the centrality dependence of the 〈N (η)〉 from the dynamical
shape fluctuations for events within fixed centrality: The
probability distribution of the N (η) of all events, p{N (η)},
can be expressed as the sum of the product of the average
shape 〈N (η)〉k and the probability distribution of multiplicity
shape p{R(η)k} for centrality class k:

p{N (η)} = �k〈N (η)〉kp{R(η)k}. (5)

Events are first divided into narrow centrality classes according
to their total multiplicity M in |η| < Y . Next, the average mul-
tiplicity distribution 〈N (η)〉 is calculated for each event class,
which is then used to calculate the EbyE R(η). The coefficients
of Tn and their statistical uncertainty are calculated as

aobs
n = �iw

n
i − δn, δaobs

n =
√

�i

(
wn

i

)2
, wn

i = Tn(ηi)

〈N (ηi)〉 ,
(6)

where the sum is over all particles in the event, and δn = 1 for
n = 0 and 0 otherwise. The δaobs

n characterizes the statistical
fluctuations due to finite number of particles in the events,
and so in principle it can be used to unfold the statistical
smearing effects in aobs

n . In this paper, however, a more robust
data-driven method is used to account for the smearing of aobs

n

due to finite number effect: For each real event, a random event
is generated with the same M by sampling the 〈N (η)〉 and its
coefficients aran

n are calculated using Eq. (5), which contains
only the statistical effects. This method provides a simple but
self-consistent treatment of the experimental effects.

Note that the Tn(η) bases are oscillating functions in pseu-
dorapidity, in a way similar to the azimuthal flow harmonics;
hence they are referred to as longitudinal harmonics. The
nonstatistical component of these longitudinal harmonics can
be obtained after averaging over many events as

〈anam〉 = 〈
aobs

n aobs
m

〉 − 〈
aran

n aran
m

〉
. (7)

A special case is the diagonal terms〈
a2

n

〉 = 〈(
aobs

n

)2〉 − 〈(
aran

n

)2〉
. (8)

The an coefficients can also be obtained from the two-
particle correlation function:

C(η1,η2) = 1 + 〈R(η1)R(η2)〉 − 〈Rran(η1)Rran(η2)〉

= 1 +
∞∑

n,m=0

(〈
aobs

n aobs
m

〉 − 〈
aran

n aran
m

〉)
Tn(η1)Tn(η2)

= 1 +
∞∑

n,m=0

〈anam〉Tn(η1)Tm(η2)

= 1 +
∞∑

n,m=0

〈anam〉Tn(η1)Tm(η2) + Tn(η2)Tm(η1)

2
,

(9)
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FIG. 1. The shape of the first few bases associated with 〈anam〉 in the two-particle correlation function. They are plotted assuming
〈anam〉 = 0.01.

where we have used the fact that the Rran(η1) and Rran(η2)
are uncorrelated except at η1 = η2. In other words, one could
construct a correlation function from random events; then it
can be shown that

Cran(η1,η2) ≡ 〈Rran(η1)Rran(η2)〉 = 1 + δ(η1 − η2)

〈N (η1)〉 . (10)

This means that the correlation function excluding self-pairs
gives directly the 〈anam〉 as the statistical effects drop out
after averaging pairs over many events. The last part of
Eq. (9) is required by C(η1,η2) = C(η2,η1). Furthermore, sym-
metric collision systems such as Pb+Pb require C(η1,η2) =
C(−η1,−η2), leading to 〈anan+1〉 = 0; i.e., odd and even
harmonics are uncorrelated. The remaining coefficients can
be calculated analytically from the correlation function as

〈anam〉 = 1

Y 2

∫
[C(η1,η2) − 1]

× Tn(η1)Tm(η2) + Tn(η2)Tm(η1)

2
dη1dη2. (11)

Figure 1 shows the expected shape of the bases in the
correlations function; they are plotted assuming 〈anam〉 =
0.01. The base for the first term 〈a1a1〉 is proportional to η1η2

and is characterized by quadratic shape along η1 = η2 and
η1 = −η2 but with opposite sign (see similar discussion in
Ref. [13]). The base for 〈a2a2〉 is characterized by four sharp

peaks at the four corners of the correlations function and a
broader peak around η1 = η2 ≈ 0.

The single-particle method denoted by Eqs. (3) and (7) and
the correlation method denoted by Eqs. (9) and (11) are math-
ematically equivalent. The single-particle method calculates
aobs

n for each event and hence allows direct correlation with
its initial geometry in model calculations. Furthermore, it also
allow study of possible non-Gaussianity in the distribution
of an. On the other hand, the correlation method calculates
all 〈anam〉 in a single pass, and systematic effects from
experiments are easier to control (e.g., via mixed events).

The discussion above can be generalized into correlations of
more than three coefficients, such as 〈anamal〉. For the single-
particle method, it just requires a simple extension of Eq. (7),
while multiparticle correlation functions are required for the
correlation method, e.g., C(η1,η2,η3).1 This is an interesting
avenue that deserves further studies.

To demonstrate the robustness and physics potential of the
method, we carried out a detailed simulation study using the
HIJING [30] and AMPT [31] models. The HIJING model
combines the lund-string dynamics for soft particle production
and hard QCD interaction for high-pT particle production,

1The multiparticle correlation function is closely related to the
multibin correlator proposed in Ref. [32].
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FIG. 2. The distributions of coefficients for longitudinal Legendre polynomials from real events aobs
n and random events aran

n for HIJING
(top row) and AMPT (bottom row) events with b = 8 fm. The panels in each row correspond to results from n = 1 to n = 5.

which naturally contains many sources of long-range and
short-range correlations. The AMPT model starts from the
particles produced by HIJING, breaks them into partons
(string melting), and runs them though partonic transport.
The partons are then recombined to form hadrons at freezeout
density, which in turn undergo hadronic transport. The partonic
transport processes generate significant collective flow and was
demonstrated to qualitatively describe the harmonic flow vn in
p + A and A + A collisions.2 Therefore, measuring the lon-
gitudinal harmonics an in HIJING and AMPT models allows
us to understand how longitudinal multiplicity fluctuations in
the early time are affected by the final-state interactions.

The HIJING and AMPT data used in this study are
generated for Pb + Pb collisions at LHC energy of

√
sNN =

2.76 TeV. All stable particles with pT > 0.1 GeV/c in the
pseudorapidity range of |η| < Y = 6 are used. In the default
setup, events are first sorted into narrow event activity classes
based on total multiplicity M; i.e., the M of all events in each
class is required to differ from the average multiplicity of event
class by at most 1%. The N (η) distribution is then obtained
for each event and the aobs

n coefficients are calculated. At the
same time, a random event containing M particles is generated
according to 〈N (η)〉 and the coefficients aran

n are obtained. The
same classification is also used for 2PC method; however, the
〈anam〉 are calculated directly via Eq. (11) without using
the random events. This event classification procedure in ob-
taining 〈N (η)〉 allows a separation of the centrality dependence
of the shape of the N (η) distribution (controlled by M) from

2The model simulation is performed with the string-melting mode
with a total partonic cross section of 1.5 mb and strong coupling
constant of αs = 0.33. This setup has been shown to reproduce the
experimental pT spectra and vn data at RHIC and the LHC.

the shape fluctuations for events with the same M . Hence we
can get a clearer understanding of the dynamic FB multiplicity
fluctuations separated from the overall multiplicity fluctuation.
For comparison, 〈N (η)〉 is also obtained using event classes
based on either Npart or impact parameter b, where much
stronger EbyE fluctuation is expected for R(η).

In the following, we discuss the properties of the an

coefficients based on results obtained from the single-particle
method. However, most of these results can be also obtained
with the 2PC method.

III. PROPERTIES OF LONGITUDINAL HARMONICS
FROM THE SINGLE-PARTICLE METHOD

Figure 2 shows the EbyE distributions of aobs
n for events

with fixed impact parameter b = 8 fm, and they are com-
pared with distributions obtained from random events aran

n .
The differences between the two types distributions reflect
dynamical fluctuations in aobs

n . These differences decrease for
larger n, and the rate of decrease is much larger in AMPT
events than in HIJING events. By n = 5, the distribution for
AMPT events is consistent with pure statistical fluctuation.
From these distributions, the 〈a2

n〉 signals are extracted via
Eq. (8) and shown as a function of n in Fig. 3. Significant
values of an are seen for all harmonics in HIJING events,
while they decrease rapidly and are consistent with zero for
n > 4 in AMPT events. This difference is mainly due to
stronger short-range correlations present in HIJING events
(see Fig. 13), but could also due to strong viscous damping
associated with final-state rescatterings in the AMPT model.
Figure 4 compares the centrality dependence of the a1, a2, and
a3 in HIJING and AMPT models. The signal strength increases
towards more peripheral collisions and the values from AMPT
model are consistently smaller than those from HIJING in all
centrality ranges.
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FIG. 3. The an vs n from HIJING (left) and AMPT(right) events with b = 8 fm.

In order to find out whether the FB multiplicity fluctuation
is related to the difference between NF

part and NB
part, aobs

n is
correlated directly with Apart, defined as

Apart = NF
part − NB

part

NF
part + NB

part

. (12)

The results for b = 8 fm from HIJING events are shown in
Fig. 5 (results for AMPT events are similar). A strong positive
correlation between aobs

1 and Apart is observed, suggesting
that the FB asymmetry in the multiplicity distribution is
indeed driven by the asymmetry in the number of participating
nucleons in the two colliding nuclei. A weak correlation is
also observed between aobs

3 and Apart, suggesting that the
FB asymmetry caused by Apart contains a small nonlinear
odd component. On the other hand, there is no correlation
between aobs

2 (rapidity even) and Apart (rapidity odd) as
expected. The width of these distributions are partially due
to statistical smearing effects in aobs

n , which can be removed
by a two-dimensional (2D) unfolding (which we leave for a
future work).

Figure 6(a) compares the centrality dependence of
√

〈a2
1〉

and
√

〈A2
part〉. The similarity in their shapes suggests that

the asymmetry between NF
part and NB

part is primarily respon-
sible for the FB asymmetry in N (η). Note that the FB
asymmetry of R(η) arising from a1 can be estimated as

AR(η) ≈
√

〈a2
1〉T1(η) =

√
3
2

√
〈a2

1〉 η
6 . The results in Fig. 6(a)

imply
√

〈a2
1〉 ≈ 0.7

√
〈A2

part〉, and hence AR(6) =
√

3
2

√
〈a2

1〉 ≈
0.86

√
〈A2

part〉. Therefore, the multiplicity fluctuations in the
very forward (backward) rapidity (±6) are mostly driven
by the fluctuations in NF

part (NB
part). On the other hand, the

fluctuation of total multiplicity M is expected to be driven
mainly by the fluctuation of Npart = NF

part + NB
part. Given that

a1 is driven by NF
part − NB

part, the fluctuation of M should not be
independent from fluctuation of a1. Figure 6(b) compares the
relative multiplicity fluctuation, σM/〈M〉, with the fluctuation
of number of participants σNpart/〈Npart〉. Indeed, the two show
very similar centrality dependence after applying a constant
scale factor.

The results shown so far are obtained by calculating 〈N (η)〉
in narrow bins of M . Figure 7 compares these with results
obtained in narrow slices of Npart or b. This comparison
is useful because experiments can only measure 〈N (η)〉 in
finite centrality interval for which the overall multiplicity
can still have significant fluctuations. Figure 7 shows that
the values of a1 and a3 have very weak dependence on the
averaging scheme, while a2 has rather strong dependence.
The latter suggests that a significant component of the a2

obtained for binning in Npart or b arises from the residual
centrality dependence in the shape of 〈N (η)〉. To see how
this residual centrality dependence can arise, Fig. 8 compares
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FIG. 4. Centrality dependence of a1 (left panel), a2 (middle panel) and a3 (right panel) for HIJING and AMPT events.
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FIG. 5. Event-by-event correlation between aobs
n and Apart for n = 1 (left panel), n = 2 (middle panel), and n = 3 (right panel) from HIJING

events with b = 8 fm.

the 〈N (η)〉 obtained for events in the upper or lower tails of
the total multiplicity distribution for all events with b = 8
fm. The ratios on the right panel show that the shape of
〈N (η)〉 can still vary significantly for events with the same
impact parameter but different M , and this variation leads to a
significant a2 contribution. Nevertheless, after removing this
residual centrality dependence by binning events in narrow M
ranges, a significant a2 signal still remains. This irreducible a2

could reflect strong event-by-event fluctuations in the amount
of nuclear stopping or shift of the effective center-of-mass of
the collisions [33,34]. Similar results are also seen in HIJING
events (not shown).

IV. CORRELATING a1 WITH SPECTATOR ASYMMETRY

If the a1 coefficient is correlated with the fluctuations
of NF

part − NB
part, then it should be anticorrelated with the

asymmetry in the number of spectator nucleons NF
spec − NB

spec

since

NF
part − NB

part = −(
NF

spec − NB
spec

)
. (13)

The number of spectator nucleons can be measured using
calorimeters placed very close to the beamline in the forward
region. For example, the zero-degree calorimeters (ZDC)
installed in all RHIC and LHC experiments can count the
number of spectator neutrons, Nneu, in each event with rather
good precision. Unfortunately, the measured neutrons only
constitute a small fraction of all spectator nucleons, and hence
the correlation between NF

part − NB
part and FB neutron asym-

metry NF
neu − NB

neu is expected to be very weak. Nevertheless,
studying the correlation between a1 and NF

spec − NB
spec provides

an independent and data-driven way for understanding the
origin of the FB multiplicity correlations.

Figure 9(a) shows the ALICE measurement of the correla-
tion of the ZDC energy with ZEM (forward electromagnetic
calorimeter) (4.8 < |η| < 5.7) energy in Pb+Pb collisions at√

sNN = 2.76 TeV [35]. The latter has a very strong correlation
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FIG. 6. Comparison between
√

〈a2
1〉 and RMS asymmetry in Npart,

√〈A2
part〉 (left panel), as well as between total multiplicity fluctuation in

terms of σNch
/〈Nch〉 and fluctuation of total Npart (right panel) in HIJING and AMPT models.
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FIG. 7. Comparison of the an obtained from three averaging methods, i.e., binning in total multiplicity, Npart or impact parameter b, for
〈N (η)〉 used in Eq. (2) for n = 1 (left panel), n = 2 (middle panel), and n = 3 (right panel).

with the silicon pixel detector (SPD) situated in midrapidity
(|η| < 1.9) as shown by the insert panel. The ZEM signal
can be mapped onto the Npart assuming EZEM ∝ Npart, and the
ZDC signal is converted to Nneu from the expected energy for
each spectator nucleon of 1.38 TeV: Nneu = EZDC/1.38. From
this, the correlation between Npart and the average number of
neutrons 〈Nneu〉 is estimated and shown in Fig. 9(b), where the
error bars indicate the approximate standard deviations. This
correlation is then down-scaled by a factor of two in both axes
to give the correlation between NF

part and 〈NF
neu〉 or between

NB
part and 〈NB

neu〉. However, the error bar is reduced only by a

factor of
√

2, assuming the sampling of NF
neu is independent of

NB
neu once the values of NF

part and NB
part are fixed in each event

(hence NF
spec = 208 − NF

part and NB
spec = 208 − NB

part are also
fixed). This new distribution is then used to generate the NF

neu
and NB

neu for each HIJING or AMPT event based on its NF
part

and NB
part values. Finally we calculate the correlation between

NF
neu − NB

neu and aobs
1 .

The results of this study for AMPT events is summarized
in Fig. 10. A clear anti-correlation is seen in midcentral
and central collisions. However, the correlation is positive in
peripheral collisions, which reflects the fact that the value

of Nneu is positively correlated with Npart in the peripheral
collisions [see Fig. 9(a)]. This correlation is very weak, aobs

1
varies by a few percent in the available range of NF

neu − NB
neu,

but should be measurable in experiments.

V. ADDITIONAL INSIGHTS FROM TWO-PARTICLE
CORRELATION METHOD

As discussed in Sec. II, an coefficients can also be calculated
from correlation method via Eq. (11). Figure 11(a) shows the
correlation function and 〈anam〉 values from AMPT events
with b = 8 fm. The shape of the correlation function already
suggests the dominance of the 〈a2

1〉 term (compare with
Fig. 1). The coefficients are compared with those obtained
from the single-particle method via Eq. (7), and identical
values are observed. This consistency is expected since the
two methods are mathematically equivalent. A selected set
of coefficients are shown in Fig. 11(b). No correlations are
observed between the odd and even coefficients as expected
for symmetric collision system, while small anticorrelations
are observed between odd or even terms, i.e., 〈anan+2〉 < 0
and 〈anan+4〉 < 0.
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FIG. 8. (a) The average multiplicity distributions for events selected in three multiplicity ranges (see insert) and (b) the ratios to the all
events. All events are generated for AMPT model with b = 8 fm.
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FIG. 9. (a) The correlation of signals in ZDC and ZEM from ALICE experiment; the insert shows the correlation of signals in ZEM and
SPD. Then number of neutrons are calculated as Nneu = EZDC/1.38. (b) The inferred correlation between Nneu and Npart used in this paper.

One important practical advantage of the 2PC method is that
it provides a natural way to separate the residual centrality de-
pendence of average shape of N (η) from the dynamical shape
fluctuations for events with the same centrality. Equation (9)
can be rewritten as

C(η1,η2) = 1 + 1

2
〈a0a0〉 + 1√

2

∞∑
n=1

〈a0an〉[Tn(η2) + Tn(η1)]

+
∞∑

n,m=1

〈anam〉Tn(η1)Tm(η2) + Tn(η2)Tm(η1)

2
.

(14)

The first term 〈a0a0〉 reflects the multiplicity fluctuation in
the given event class, which drops out from the expression
if C(η1,η2) is normalized to have a mean value of one (we
shall assume that in the following discussion). The second
term represents residual centrality dependence in the shape of

〈N (η)〉. The last term encodes the dynamical shape fluctuations
for events with fixed centrality, which can be isolated by
dividing the correlation function by its projections on the η1

and η2 axes:

CN(η1,η2) = C(η1,η2)

Cp(η1)Cp(η2)
, (15)

Cp(η1) =
∫

C(η1,η2)dη2

2Y
, Cp(η2) =

∫
C(η1,η2)dη1

2Y
.

(16)

The new correlation function ensures that any residual central-
ity dependence is taken out from the measured coefficients:

CN(η1,η2) = 1 +
∞∑

n,m=1

〈a′
na

′
m〉

× Tn(η1)Tm(η2) + Tn(η2)Tm(η1)

2
, (17)
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FIG. 10. The estimated correlation between aobs
1 and NF

neu − NB
neu for peripheral (left panel), midcentral (middle panel), and central (right

panel) Pb+Pb collisions.
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FIG. 11. The correlation function (left) and corresponding spectrum 〈anam〉 for n,m � 9 (right panel) for AMPT events generated with
b = 8 fm, where the 〈N (η)〉 is calculated in narrow multiplicity bins. The spectrum are compared with those calculated directly from the
single-particle method.

where the new coefficients are

〈a′
na

′
m〉 ≈ 〈anam〉 − 〈a0an〉〈a0am〉. (18)

They differ from the original coefficients by a small term
〈a0an〉〈a0am〉, representing the contribution from the residual
centrality dependence. Alternatively, CN can also be defined
as

CN(η1,η2) = C(η1,η2) + 1 − Cp(η1)Cp(η2) (19)

or

CN(η1,η2) = C(η1,η2) + 2 − Cp(η1) − Cp(η2) . (20)

Equation (19) practically gives the same answer as Eq. (15).
Equation (20) is not preferred as it does not remove the
〈a0an〉〈a0am〉 contribution in 〈anam〉, although in practice the
relative difference between the two is only a few percent. For
all results shown below, definition Eq. (15) is used.

Figure 12 shows the original correlation function, the
product of its projections to the two axes, and the renormalized
correlation function for AMPT events for b = 8 fm, where
the average distribution 〈N (η)〉 is calculated in one bin (as
appose to many narrow multiplicity bins then summed as
in Fig. 11). Despite the significant difference in the original
correlation function due to the residual centrality dependence,
the renormalized correlation function is very similar to that
shown in Fig. 12. The small difference in the four corners of
the correlation functions can be attributed to the difference in
〈a2

2〉 between different binning schemes shown in Fig. 7(b).
Thus the CN(η1,η2) defined in Eq. (17) provides a robust way
to extract the dynamical shape fluctuations nearly independent
of the choice of centrality classes.

Figure 13 compares the correlation functions between the
HIJING and AMPT, the correlation function from AMPT
appears much broader than the HIJING, which is partially
responsible for the faster decrease of the spectrum shown in
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FIG. 12. The correlation function (left), the product of the projections on two axes (middle), and the redefined correlation function via
Eq. (15) (right) for AMPT events generated with b = 8 fm. The 〈N (η)〉 is calculated using all events. The shallow dip structure shown in the
right panel is already present in the left panel.
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FIG. 13. The correlation function defined via Eq. (15) for AMPT (left) and HIJING (right) events generated with b = 8 fm. The 〈N (η)〉 is
calculated using all events.

Fig. 3. The AMPT events also show an interesting shallow
minimum around �η = 0 with a width of about ±0.4. Since
it is absent in HIJING events, this structure must reflect the
influence of the final-state effects implemented in the AMPT
model. The correlation function is an intuitive observable for
understanding the influence of different underlying physics.

Note that the correlation function obtained via this proce-
dure is affected by a small bias from short-range component,
denoted as δSRC(η1,η2), via the normalization procedure of
Eq. (15). The δSRC(η1,η2) distribution typically is relatively
flat along η1 + η2 with a rather narrow width in the η1 − η2

direction. In this case, one can easily see that the contribution
of δSRC(η1,η2) to Cp is not uniform in η: If the first particle
is near midrapidity η1 ∼ 0 then all pairs in δSRC(η1,η2)
contributes to Cp(η1), whereas if the first particle is near
the edge of the acceptance η1 ∼ ±Y then only half of the
pairs in δSRC(η1,η2) contributes to Cp(η1). However the
short-range component contribution can be estimated, e.g. via
an experimental procedure discussed in Ref. [36], then such
acceptance bias can be removed by redefining the projection
function and CN function as

Csub
p (η1) =

∫
[C(η1,η2) − δSRC(η1,η2)]dη2

2Y
,

Csub
p (η2) =

∫
[C(η1,η2) − δSRC(η1,η2)]dη1

2Y
, (21)

C ′
N(η1,η2) = C(η1,η2)

Csub
p (η1)Csub

p (η2)
. (22)

Therefore C ′
N is only corrected for the residual centrality

dependence and is free of bias from short-range correlations.
One can use C ′

N instead of CN to extract an spectra. The main
effect of the bias is reduce the value of CN relative to C ′

N at
the four corners of the η1,η2 phase space. We shall leave this
topic for a future study.

VI. DISCUSSION AND SUMMARY

We have introduced two complementary methods for
detailed study of the event-by-event fluctuations of particle
production in the longitudinal direction. The single-particle
method gives the coefficients in each event, which can be
directly relate to the fluctuation of the initial geometry in model
calculation. On the other hand, two-particle correlation method
suppresses the statistical noise on the ensemble basis and
hence does not require the construction of random events. The
correlation method is particularly suitable for small collision
system, such as p + p or p+Pb collisions, where the EbyE
statistical fluctuation is very large. Furthermore, the influence
of the detector effects is straightforward to remove in the
correlation method, and hence it should be considered as the
primary method in the experimental data analysis.

The correlation method discussed in this paper can be
generalized into correlation between multiplicity of particles
of any two different types. For example, one can measure the
correlation between multiplicities for positive and negative
particles:

C+−(η1,η2) = 〈N+(η1)N−(η2)〉
〈N+(η1)〉〈N−(η2)〉 , (23)

which allow the extraction of 〈a+
n a−

n 〉. Assuming equal
multiplicity for positive and negative particles, the coefficients
for positive particle a+

n and negative particles a−
n are related to

those for inclusive particles via〈
a2

n

〉 = 1
4 (〈a+

n a+
n 〉 + 〈a−

n a−
n 〉 + 2〈a+

n a−
n 〉). (24)

Due to local charge conservation effects, the correlation
between positive and negative particles is expected to be
stronger than inclusive correlation. Indeed the AMPT or
HIJING simulation studies suggest that 〈a+

n a−
n 〉 > 〈a2

n〉 >
〈a+

n a+
n 〉 = 〈a−

n a−
n 〉. The results shown in Fig. 14 implies

that the dip around η1 ∼ η2 seen in the inclusive correla-
tions for AMPT model (e.g., Fig. 11) arises mainly from
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FIG. 14. The correlation functions for same-charge pairs (left panel) and opposite-charge pairs (right panel) for AMPT events generated
with b = 8 fm.

same-charge pairs, although the opposite-charge pair cor-
relation also shows a shallow dip. Such dip is absent in
HIJING events independent of the charge combination. These
structures reflect the important role of the final-state interaction
and hardronization mechanism (via simple coalescence in
AMPT) on the charge-dependent correlations. Note that the
charge-dependent correlation function is related to the well-
known balance function B(�η) [37]:

2B(�η) = 2C+−(�η) − C++(�η) − C−−(�η). (25)

The stronger correlation strength for opposite-charge pairs
than the same-charge pairs as shown in Fig. 14 implies that
the balance function should peak around �η = η1 − η2 = 0
and fall slowly to large �η (i.e., not sensitive to the dips),
consistent with earlier observations [38,39].

Similarly, one could also divide particles into high pT and
low pT with equal multiplicity. In this case, the coefficients
can be written as〈

a2
n

〉 ≈ 1
4

(〈
aH

n aH
n

〉 + 〈
aL

n aL
n

〉 + 2
〈
aH

n aL
n

〉)
, (26)

where aH
n and aL

n are coefficients for high-pT and low-pT parti-
cle multiplicity, respectively (for example, >1 GeV/c and < 1
GeV/c). We observe that 〈aH

n aH
n 〉 > 〈aH

n aL
n 〉 > 〈aL

n aL
n 〉 (not

shown), presumably due to short-range correlations related to
jet fragmentation, which are stronger for higher pT particles.
It would be interesting to study the factorization behavior of
the multiplicity correlation by calculating a factorization ratio,
similar to what is often used in azimuthal flow correlation
analysis [40]:

rn = aH
n aL

n√〈
aH

n aH
n

〉√〈
aL

n aL
n

〉 . (27)

The breaking of the factorization can be used to understand the
pT dependence of the long-range and short-range correlations.

The an coefficients can be significantly affected by the
short-range correlations. One way to suppress such short-range

correlation is by requiring the pairs to be separated in azimuthal
angle φ [21,26].3 However, the challenge is to understand role
of the harmonic flow vn and their EbyE fluctuations, since
harmonic flow introduces nontrivial multiplicity correlations
between particles in different φ regions.

In order to study dependence of observables on the size of
the collision system, many measurements classify collisions
according to event activity or centrality in certain η range.
The key challenge in centrality definition is to understand dy-
namical multiplicity correlations between the η range used for
centrality determination and η range used for the observable.
This is an open issue particularly important in small collision
system such as p + p and p+Pb collisions, where the bias
associated with centrality selection often dominates over the
experimental uncertainties [41–45]. Our method can be used to
measure and quantify such multiplicity correlations, which can
then be used to understand the influence of centrality biases in
other measurements. Since p+Pb is an asymmetric collision
system, the correlations between odd and even terms may not
vanish, which can be studied by measuring 〈anan+1〉.

In summary, a method has been proposed to study the
longitudinal multiplicity correlations in high-energy nuclear
collisions. In this method, events are classified into narrow
event activity bins, and EbyE fluctuations are then extracted
relative to the average multiplicity distribution in each event ac-
tivity bin. This procedure allows the separation of the centrality
dependence of the multiplicity distribution from the dynamical
shape fluctuations. The multiplicity correlations are extracted
using the single-particle distribution or two-particle correlation
function. The extracted signals are decomposed into a set
of orthogonal longitudinal harmonics in terms of Legendre
polynomials, which characterize various components of the

3In principle, the full information of the transverse and longitu-
dinal multiplicity and flow fluctuations is contained in the three-
dimensional (3-D) correlation function C(η1,η2,�φ).
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multiplicity fluctuation of difference wavelength in η. The first
several coefficients an are obtained and found to decrease
slowly with n in HIJING model but very rapidly with n in
AMPT model, which could be due to viscous damping effects
of the longitudinal harmonics by the final-state rescattering
effects. The a1 signal is found to strongly correlate with the
asymmetry in the number of forward-going and backward-
going participating nucleons, while a nonzero a2 signal could
be related to the fluctuations of the nuclear stopping or shift of
the effective center-of-mass of the collisions. This geometrical
origin of the a1 can be experimentally verified by observing
an anticorrelation between a1 and the asymmetry of the
spectator nucleons detected by the zero-degree calorimeters.
Two-particle pseudorapidity correlations also reveal interest-
ing charge-dependent short-range structures in the AMPT
model but are absent in the HIJING model, suggesting that
these structures are sensitive to the underlying hadronization

mechanism. Hence measurement of the multiplicity fluctuation
in terms of longitudinal harmonics provides an promising
avenue for understanding the particle production mechanism
in the early stage of the heavy-ion collisions and for probing
the final-state rescattering effects. The proposed two-particle
correlation method is particularly suitable for high-energy
proton-lead and proton-proton collisions, where the longitudi-
nal multiplicity fluctuations are very large and are responsible
for the biases in the centrality definition. Since our method
correlates event activities between separate rapidity ranges, it
provides a useful way to unfold and quantify the centrality
correlations between different rapidity ranges.
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