
PHYSICAL REVIEW C 93, 044902 (2016)

Contribution of next-to-leading order and Landau-Pomeranchuk-Migdal corrections
to thermal dilepton emission in heavy-ion collisions
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Recently lots of effort has been made to obtain the next-to-leading-order and Landau-Pomeranchuk-Migdal
corrections to the thermal dilepton emission rate in perturbative QCD. Here we apply these results to the
plasma created in heavy-ion collisions and see whether these corrections improve the comparison between
theoretical calculations and experimental results for the invariant mass dependence of the dilepton emission
rate. In particular, we simulate the quark-gluon plasma produced at the Relativistic Heavy Ion Collider at the
Brookhaven National Laboratory and the Large Hadron Collider at CERN using 2 + 1-dimensional viscous
hydrodynamical simulations. We compare our results to those of the STAR experiment and comment on the need
for a nonperturbative determination of the dilepton rate at low invariant mass.
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I. INTRODUCTION

The theoretical study of quark-gluon plasma (QGP) [1,2]
has applications in experiments based on ultrarelativistic
heavy-ion collisions (HICs): gold ions are used at the Rela-
tivistic Heavy Ion Collider (RHIC) at the Brookhaven National
Laboratory and lead ions are used at the Large Hadron Collider
(LHC) at CERN.

Photon and dilepton pairs are excellent probes to use to
study QGP [3]. In fact, as they interact electromagnetically,
their cross section with the strongly interacting matter inside
the QGP is small. Thus they leave the QGP and reach detectors
without being rescattered and carry information from deep
into the plasma phase [4,5]. Moreover we prefer dileptons
to photons for two reasons: photons are produced from a
bigger background of decays while leptons have a non-null
invariant mass, M , which helps in disentangling various
dilepton sources [6].

In fact, the dilepton background is also not small: dileptons
are produced in every phase of HICs and in several types of
processes [7]. Here we are interested in thermal dileptons [3]
produced by the partonic interactions during the hydrodynam-
ical expansion; these dileptons can tell us about the QGP
properties. Thermal dileptons are produced mainly in quark-
antiquark annihilation and Compton scattering processes and
their contribution to the dilepton spectrum is important in the
intermediate invariant mass range, M ∈ [0.2,2.5] GeV.

The first type of background we encounter consists of
hadronic reactions at early times. They consist of jet-dilepton
conversion from the initial hadronic scattering and the photo-
production processes. These are hard processes that contribute
to the dilepton invariant mass spectrum in the high mass range
(M > 3 GeV).

Second, particle decays imprint broad peaks in the spec-
trum, for instance, the contribution from the decay of open
charm cc̄ → e+e−X is also very important in the intermediate
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mass range [8,9]. In the low mass range 0.6 < M < 1.1 GeV,
the decays of vector mesons, i.e. ρ, ω, and φ, give a sizable
contribution to the invariant mass spectrum [5,8,9]. Finally,
below M < 0.2 GeV, pion decays from the hadronic phase
dominate.

A big effort has been made to study the thermal
dilepton production from the QGP in perturbative QCD:
Ref. [3] discusses the leading-order (LO), corrections for
anisotropic plasma are given in Ref. [10], and Refs. [11,12]
supply the passage from the LO to the next-to-leading-
order (NLO) and Landau-Pomeranchuk-Migdal (LPM)
corrections.

In this work we investigate whether higher-order cor-
rections in perturbation theory can improve the agreement
between theoretical calculations for the thermal dilepton
emission and experimental results. In Sec. II, we introduce
the theoretical background, in particular, how to compute the
LO dilepton emission rate per unit four-volume and per unit
four-momentum, what the effect of NLO and LPM corrections
are, and how the invariant mass spectrum is computed. In
Sec. III, we explain how we describe the hydrodynamical
plasma evolution using SONIC and the details of the numerical
computation for the invariant mass spectrum. In Sec. IV, we
show our results and compare them to experimental data
from the STAR experiment at the RHIC [5]. We then make
analogous computations for the LHC in Sec. IV B and conclude
in Sec. V.

II. DILEPTONS IN HEAVY-ION COLLISIONS

We recall here the perturbative QCD calculations of the
dilepton rate and explain how to use them in the geometry
of heavy-ion collisions. We use natural units when not
stated otherwise and the metric signature is (+, − , − ,−). In
perturbation theory, two distinct expansions are made, one in
the electromagnetic coupling, where the LO is sufficient, and
a second one in the strong coupling. In this work we discuss
the validity of this second expansion in the case of the plasma
created in heavy-ion collisions.
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FIG. 1. LO Feynmann diagram for thermal dilepton production
from QGP.

A. Leading-order dilepton production rate

The relation between the dilepton emission rate and thermal
expectation values of the electromagnetic current correlation
function

Wμν =
∫

d4x e−iqx〈Jμ(x)J ν(0)〉 (1)

is described in Refs. [3,13,14]. Here we briefly summarize the
main results for the specific case of a qq̄ → e+e− process,
shown in Fig. 1.

The number of dileptons produced per unit volume and
emitted at a given total momentum P = (p0,pi) can be
expressed through the dilepton rate R:

dN��̄(x,P )

d4xd4P
= dR(x,P )

d4P
, (2)

which in turn can be calculated form the quark current
correlator Wμν(P ) as

dR��̄

d4P
=

nf∑
i=1

Q2
i

α2
e

24π3P 2

(
1 + 2m2

P 2

)(
1 − 4m2

P 2

) 1
2

× θ
(
P 2 − 4m2)Wμ

μ (P ), (3)

where m is the mass of the emitted leptons and Qi, i =
1, . . . ,nf , are the charges of the nf massless quarks present
in the plasma. The strong coupling only enters in the quark
current correlator Wμν(P ), which is calculated below to the
leading order but receives large higher-order corrections. If we
restrict to leading order and to the case where the lepton mass
is negligible compared to the invariant mass M =

√
P 2 � m,

which is a good approximation for electrons, we get [11]

dR��̄
LO

d4P
=

nf∑
i=1

Q2
i

α2
e

2π4

T

p

1

eE/T − 1
log

cosh E+p
4T

cosh E−p
4T

, (4)

where E = p0 and p = p2
i .

B. NLO corrections to the spectra

As emphasized before, large corrections to the leading
order dilepton rate arise. The NLO is suppressed only by αs ,
but diverges in the small invariant mass limit M → 0 (some
representative diagrams for the NLO are shown in Fig. 2).

FIG. 2. Examples of NLO Feynman diagrams for thermal dilep-
ton production from QGP.

In this soft limit a consistent result can only be obtained by
performing the LPM resummation. The LPM resummation is
a reorganization of perturbation theory that takes into account
the destructive interference effects between the prompt emitted
photons and is summarized by the Feynman diagram in Fig. 3.

In this section, we investigate how the NLO and LPM
corrections contribute to the dilepton spectra. To show the
results of NLO and higher-order corrections, we used the data
provided by Ghisoiu and Laine [11] (NLO and LPM to LO)
and Ghiglieri and Moore (for the LPM at NLO) [12]. It consists
of a database for the electron-positron and the muon-antimuon
emission rates as a function of the invariant mass M , the
temperature T , and the modulus of three-momentum P for
the NLO and the LPM corrections (available at Ref. [15]).
Note that the cusp at M/T = π is due to a change in the
running of the renormalization scale μ = min(M,πT ) used in
the previous references.

Figure 4 shows a comparison between the dielectron
emission rate at LO computed with formula (4) and the same
with NLO and NLO plus LPM corrections.

We can notice that the NLO and LPM contributions to the
emission rate are important for small values of the ratio of the
invariant mass over temperature, M/T . Surprizingly the LPM
corrections increase the dilepton rate for intermediate values
of the invariant mass. For small invariant mass, M < T , from
the NLO + LPMLO curve in Fig. 4, we see that the LPM effect
works as it should and the NLO + LPMLO curve is below the

FIG. 3. Examples of Feynman diagrams that illustrate the LPM
effect: in very dense QGP a slow quark is rescattered many times
before and after emitting a photon. Destructive interferences between
different diagrams damp the photon emission at low invariant mass.
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FIG. 4. Dielectron emission rates computed at LO, NLO [11], and
NLO plus LO LPM corrections (LPMLO) as well as LPM corrections
at NLO (LPMNLO) [12] as a function of the dimensionless quantity
M/T for the values P = 0.53 GeV and T = 0.18 GeV, and the u,
d , and s quarks have been considered. These corrections dominate at
small total momentum P .

NLO curve. In fact, at NLO, the dilepton emission rate diverges
in the limit M/T → 0. This divergence is cured by the LO
LPM effect. The fact that the LPM effect at LO is positive
for M > T is not so surprising. For M > T the destructive
interference effects are not relevant anymore and the LPM
effect only takes into account higher-order diagrams that are
not included in the NLO calculation. These diagrams happen
to give positive contributions to the dilepton rate. The LPM
effect at NLO gives an additional positive contribution to the
dilepton rate for M ∼ T , but one can see in Fig. 4 and looking
at the asymptotics given in Ref. [12] that it still damps the
dilepton rate for M 	 T .

C. Geometry of HIC and hydrodynamics of the plasma

Throughout this work we keep the longitudinal dynamics
(along the collision axis), separated from the transverse dy-
namics, described by the (2 + 1)-dimensional hydrodynamic
model in Sec. III A [16,17].

FIG. 5. Scheme of the combination of longitudinal and transverse
velocity and the final boost 
μ

ν .

We use the Bjorken model [18,19] to describe the lon-
gitudinal expansion, and thus we assume the existence of a
“central plateau” structure in the production rate of particles
as a function of space-time rapidity:

ζ = 1

2
ln

t + z

t − z
. (5)

Rapidity ζ and proper time τ = √
t2 − z2 are therefore a

convenient reparametrization of z and t to describe the
longitudinal flow:

xμ = (τ cosh ζ,x⊥,τ sinh ζ ), (6)

so that one can rewrite the differential measure of space-time
as d4X = τdτdζd2x⊥.

The longitudinal Bjorken flow [18] velocity is defined
simply as the distance covered over proper time:

uμ(t,z) = γB(1,0,0,vz) = γB

(
1,0,0,

z

t

)
, (7)

where γB = 1√
1−(z/t)2

. Furthermore, we obtain the tempera-

ture in the ζ = 0 slice, using a (2 + 1)-dimensional hydrody-
namic simulation (see Sec. III A).

D. Dilepton spectra in HICs

One can rewrite formula (4) using a new parametrization of
the four-momentum of the virtual photon [10], which is better
suited for the geometry of HICs:

pμ = (m⊥ cosh y,p⊥ cos φp,p⊥ sin φp,m⊥ sinh y). (8)

In the formula above, φp denotes the azimuthal angle, the

transverse mass is m⊥ ≡
√

M2 + p2
⊥, and y is the momentum

space rapidity:

y = 1

2
ln

p0 + pz

p0 − pz
. (9)

Using Eq. (8), we write the differential four-momentum as
d4P = MdMdyp⊥dp⊥dφp.

We are now ready to compute the invariant mass and
rapidity differential spectra:

dNl+l−

MdMdy
=

∫ pmax
⊥

pmin
⊥

p⊥dp⊥
∫ 2π

0
dφp

∫
d4X

dR��̄

d4P
. (10)

Because we are interested only in the thermal contribution to
the dilepton emission spectrum, the integration over d4X is
performed only on the quark-gluon plasma volume, i.e., in the
regions with temperature bigger than the critical temperature,
T (x⊥,τ ) > Tc = 0.17 GeV.

It is important to note that, in formula (10), the values of p⊥
are defined in the laboratory reference frame (LAB), but the
emission rate dR/d4P [in formula (4)] has been computed in
the local rest frame (LRF) of the plasma [10]. While integrating
over the plasma volume, we have to boost the observed LAB
frame momenta to the LRF of the plasma, which we can plug
into the dilepton rate formula (4) computed previously.
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E. Change of reference frame

Let us consider the integral over space-time in Eq. (10)

and write it more explicitly using Eq. (6):
∫

d4X dRl+ l−

d4P
=∫

τdτdx⊥dζ dRl+ l−

d4P
. Notice that the emission rate (4) depends

on x⊥ and τ only through the temperature T (x⊥,τ ), which is
given by the hydrodynamical simulation, while the dependence
on ζ is given by the Bjorken model as anticipated.

At the end of the previous subsection, we noticed that,
whenever we fix a LAB frame value of pμ and a volume
element in space in the integral (10), it is necessary to boost
the momentum to the LRF of the volume element from which
we want to compute the emission rate, see Fig. 5.

To do this, we need the boost 
μ
ν (uμ) that parametrizes

the change of coordinates from the LAB frame to the
LRF [10]. It is defined by the relative velocity u

μ
tot(x

μ) that
combines the Bjorken longitudinal velocity with the transverse
hydrodynamical expansion. Once we find u

μ
tot(x

μ), we are able

to compute (10) considering dRl+ l−

d4P
[
μ

ν (utot)pν
LAB]. In what

follows, we show the derivation of u
μ
tot(x

μ).
From the hydrodynamical simulations we obtain the four-

velocity of the transverse flow (for ζ = 0),

u
μ
hydro = γhydro

{
1,vx

hydro,v
y
hydro,0

}
,

where γhydro = 1/
√

1 − (vi
hydro)2 =

√
1 + (ui

hydro)2 and vx
hydro

and v
y
hydro are measured with respect to the collision axis.

However the whole system is moving along the longitudinal
axis with the Bjorken velocity vB , given by Eq. (7). Thus we
need to use the relativistic composition law to find the total
velocity with respect to the LAB frame.

The total velocity of a generic element of volume inside the
QGP is the relativistic sum of vz and vhydro.1

Applying the relativistic addition rule for perpendicular

velocities vtot = vB +
√

1 − v2
Bvhydro, one obtains utot(x) =

γtot(1,γ −1
B vx

hydro,γ
−1
B v

y
hydro,

z
t
), where γtot = γBγhydro.

III. NUMERICAL SIMULATIONS

A. SONIC

The collisions between two heavy ions are not well under-
stood at early times, before the system thermalizes. As soon as

1The sum of relativistic velocities is not commutative. According to
the Bjorken model, we make the hypothesis that, in the central rapidity
plateau, the transverse evolution of the plasma is the same at any
rapidity. Thus a generic slice of plasma at a generic rapidity ζ0 evolves
radially exactly like the ζ0 = 0 slice described by the hydro model.
We want to obtain the total velocity of a generic element of volume of
the plasma with respect to the LAB frame where pμ is measured. The
LAB frame, in our case, corresponds to the center-of-mass frame,
thus every time we fix pμ in the LAB frame we first have to make a
boost along the longitudinal axis to the center of the “ζ0-plasma slice”
and then add the transverse velocity relative to that point, obtained
with the hydrodynamics simulations.

the QGP is formed (at proper time τin ∼ 0.5 fm), its space-time
evolution is described by hydrodynamic models [20].

We simulate the hydrodynamic evolution of the QGP
using the software SONIC (Super hybrid mOdel simulatioN for
relativistic heavy-Ion Collisions), developed by Romatschke,
Luzum, and others (the code is available at the URL listed
in Ref. [21]) [16,17,22,23]. In this section we summarize the
model which SONIC is based on.

It consists of a (2 + 1)-dimensional model that takes into
account only the slice at rapidity ζ = 0, in which the center of
mass lies. It combines the pre-equilibrium flow, modeled as in
Ref. [24], the hydrodynamic phase with the equation of state
from Ref. [25] and the final hadronization [26,27] (which does
not concern this work).

SONIC simulates the highly boosted and Lorentz con-
tracted nuclei starting from their thickness function, Ttt =
δ(t + z)TA(x⊥), where the function TA has the following
form [17,28]:

TA = ε0

∫ ∞

−∞
dz

[
1 + e−(

√
x2

⊥+z2−R)/a
]−1

, (11)

R and a are the charge radius and the skin depth parameters
(the values of these parameters can be found in Table 1 in
Ref. [17]) and ε0 is a normalization constant that controls the
final charged multiplicity and it is set to reproduce the available
experimental data.

For a collision with impact parameter b, the pre-equilibrium
radial flow velocity is estimated numerically in Ref. [16]:

v⊥
i (τ,x⊥) = − τ

3.0
∂i ln[TA(x⊥)TA(x⊥ − b)], (12)

where τ = √
t2 − z2. The initial energy profile is set to be

ε(τ,x⊥) = TA(x⊥)TA(x⊥ − b). (13)

SONIC includes the relativistic viscous hydrodynamics
solver (here we use Version 1.7) that implements the evolution
of the system using the energy density from Eq. (13) and the
flow profile from Eq. (12).

The main parameters that need to be set in the hydrodynam-
ical simulation are the freeze-out temperature Tc = 0.17 GeV;
the initial central temperature, T = 0.37 GeV for the RHIC
and T = 0.47 GeV for the LHC; and the shear viscosity
η/s = 1/4π .

B. Integration of the dilepton rate

In this subsection, we spell out the details of the numerical
computation for the dilepton spectra (10).

First we must introduce the setting to the SONIC simulations.
The starting proper time is τstart = 0.5 fm and the temporal
lattice spacing is 0.001 fm. The space grid (which spans the
x-y plane) is made out of 139 lattice sites (per each dimension),
separated by dx = dy = 1 GeV−1; it covers the squared area
[−13.6,13.6]2 fm2. Every 500 time steps (0.5 fm), it takes
a “snapshot,” i.e., it writes into data files the measurable
quantities, from which we obtain the temperature and the
transverse velocity.

From the inner to outer integration in Eq. (10), we first
computed the integration over τdτdζ with the method of
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parallelepipeds. We integrated ζ in the half range [0,0.9]
divided in 20 steps and then doubled the result (the integral
is symmetric for positive and negative values of ζ ). The
other integrals (over the transverse coordinates x and y) were
computed separately with the method of trapezes on the same
lattice as the SONIC simulation.

The integral
∫

dφP was computed in [0,π/2] with four
steps and then we multiplied the result by 4 (the system is
symmetric under rotation with period π/2). The limits of
integration for p⊥ for the RHIC simulations were chosen as
in the STAR experiment: p⊥ ∈ [0.2,15] GeV (we note that
contributions from p⊥ > 15 GeV are negligible). We chose
the same p⊥ interval also for the LHC simulations, to facilitate
the comparison, and the integral was computed in 33 steps.

The values of dRl+ l−

d4P
were tabulated in advance as a function

of T , M , and p⊥ and the values of M that we plotted always
corresponded to nodes of the three-dimensional mesh on which
dRl+ l−

d4P
was tabulated.

The same procedure was not possible for p⊥ because the
boost shifts its value. Thus for given p⊥ and T we found the

corresponding dRl+ l−

d4P
by bilinear interpolation.

IV. RESULTS

In this section, we present the results for the invariant
mass dependence of the thermal dielectron spectrum (10)
of the quark gluon plasma created in Au-Au collisions at√

s = 200 GeV at the RHIC and for Pb-Pb collisions at√
s = 2.76 TeV at the LHC. Moreover we compare our results

with the experimental data from the STAR experiment.

A. Thermal dilepton emission at the RHIC

Simulating with SONIC the quark gluon plasma created
at the RHIC for different impact parameters b, we have
access to the temperature and fluid velocity dependence of

FIG. 6. Invariant mass spectra for the dilepton emission at the
RHIC computed at NLO with LPM (at NLO) corrections for different
values of the impact parameter b, for central rapidity y = 0, and for
transverse momentum p⊥ ∈ [0.2,15] GeV.

the plasma. Using this data, we can calculate the thermal
dilepton spectrum (10) as a function of the invariant mass
M , for different values of the impact parameter b and for
LO, NLO, and NLO + LPM approximations. These results
are shown in Fig. 6.

The STAR experiment measures the electron-positron pairs
from Au-Au ions collisions at

√
s = 200 GeV, as a function

of the invariant mass M of the virtual photon [5]. The STAR
experiment can capture emitted leptons at all azimuthal angles
and with momentum-space rapidity values |y| < 1. To make
a good comparison with the experiment, we also integrate
the dilepton spectrum over momentum-space rapidity values
|y| < 1. Moreover, the data are classified by centrality ranges;
thus it is necessary to average our results over the impact
parameter b to reproduce the centrality dependence. To achieve
this, we integrate over different impact parameters b as2

dN

dM
(% centrality) =

∫ bmax

bmin
dbb dN

dM
(b)∫ bmax

bmin
dbb

, (14)

where bmin and bmax can be found as a function of centrality
in Refs. [29,30].3 Figure 7 shows the dilepton spectrum for
the RHIC averaged on all the centralities 0–80%, which, for
Au-Au collisions, corresponds to b = 0–13 fm, for different
orders in perturbation theory.

Of course, the experimental data from Ref. [5] include,
in addition to the thermal dileptons, high energetic electron-
positron pairs from pre-equilibrium processes and mainly the

2The integral over y and the one in the numerator of Eq. (14)
have been computed with Simpson’s rule for parabolic integration.
Considering the dependence of the emission rate on the impact
parameter (see Refs. [29,30]), this should give the exact solution
of the integral in the range b ∈ [0,13] fm.

3Analog tables for the LHC are in Ref. [31].

FIG. 7. Invariant mass spectrum for the emitted emitted dileptons
computed at LO, NLO, and NLO + LPM corrections for the full
detected centrality range (0–80%) and comparison with the relative
data from the STAR experiment. Error bars for the STAR data can be
found in Ref. [5].
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FIG. 8. From top to bottom: Invariant mass spectra for the
dilepton emission at the RHIC computed at LO, NLO, and NLO
with LPM (at NLO) corrections, respectively, for different ranges of
centrality. In each plot our calculations are compared with the relative
data from STAR. The predicted spectra includes the rapidity range
|y| < 1 and the transverse momentum range p⊥ ∈ [0.2,15] GeV.

ones generated in the following decays: ω → e+e−π0; π0 →
e+e−γ ; η → e+e−γ,η0; ω → e+e−; ρ → e+e−; φ → e+e−;
and J/ψ → e+e−X. For large invariant mass, the thermal
contribution quickly becomes small compared to the other
contributions discussed in the Introduction [6–9]. In the high
mass range 2 < M < 3 GeV, the contribution from particle
decays is much more important than the thermal one. For
M > 3 GeV the main contribution to the spectrum is given
by dielectron couples produced in pre-equilibrium Drell-Yan
processes, and our forecasts are, of course, much smaller than
the experimental data.

The region in which the thermal contribution is dominant is
indeed very small, i.e., roughly 0.2 < M < 1.5 GeV, up to the
ρ, ω, and φ peaks. In this region the agreement can be tested.

Figure 8 shows the comparison between our calculations
and the experimental data for different ranges of centrality,
computed as in Eq. (14). Surprisingly, the LPM corrections
overestimate the number of emitted thermal dileptons at small
invariant mass and the NLO approximation is the closest to the
experimental data. In the very low mass range M < 0.5 GeV,
perturbation theory breaks down and a different approach is
required, for example, lattice simulations.

For M > 0.7 GeV, our results are a bit smaller than the
experimental data as expected, since we do not consider all
the contributions that are included in the experimental data.
Moreover, we can notice that, for large impact parameter b,
the agreement between the calculations and the experimental
data becomes poor. This is expected, because for large b the
volume of the produced plasma is smaller and so the thermal
contribution to the invariant mass dilepton spectrum is less
important.

B. Thermal dilepton emission at LHC

A similar analysis can be carried out for the LHC. Figures 9–
11 are the analog of Figs. 6–8 but for Pb-Pb collisions at

FIG. 9. Invariant mass spectra for the dilepton emission at the
LHC computed at NLO with LPM (at NLO) corrections for different
values of the impact parameter b. The curves are computed at midra-
pidity y = 0, for the transverse momentum range: p⊥ ∈ [0.2,15] GeV.
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FIG. 10. Invariant mass spectra for the dilepton emission at
the LHC computed at LO, NLO, and NLO with LPM corrections
for collisions with centrality in the range 0–80%. The curves are
computed for |y| < 1, for the transverse momentum range: p⊥ ∈
[0.2,15] GeV.

√
s = 2.71 TeV at the LHC. In the absence of experimental

results, we kept the same cuts (y < 1, p⊥ ∈ [0.2,15]) as for
the comparison to the STAR experiment. This allows for a
physical comparison between the rates at the LHC and the
RHIC.

We notice that the slope of the spectra between M = 1
and M = 3 GeV is less steep for the LHC spectrum than for
the RHIC spectrum. In fact, around M = 1 GeV, the LHC
spectrum is 4 times bigger than the one at the RHIC, but for
M = 3 GeV it is almost 12 times bigger.

Again, at large invariant mass, different processes will
contribute to the dilepton emission rate [6–9] and the thermal
dilepton emission will be a small effect. However, at small
invariant mass (but larger than the pion mass), we expect that
the thermal emission will dominate at the LHC, opening a
window where we can compare the different estimates for the
dilepton rate to experiment.

As a last remark, one can further integrate over the invariant
mass M to obtain the total number of dilepton pairs produced
thermally in one collision. If we average over centrality 0–80%
and include NLO + LPM corrections, we obtain 0.57 pairs for
the LHC and 0.22 for the RHIC.

V. CONCLUSION

The main result of this work is the comparison be-
tween the thermal dilepton rate calculated at LO, NLO, and
NLO + LPM. The higher-order corrections become important
for small values of the invariant mass of the virtual photon M .
Comparing our results with experimental data from the STAR
experiment at the RHIC, we see that for small invariant mass
the NLO + LPM rate seems to overshoot the data. This shows
that the LPM effect, even if it damps the rate at very small M ,
actually enhances the rate for M ∼ 0.5 GeV too much to be
compatible with the STAR experiment. The NLO seems to fit

FIG. 11. From top to bottom: Invariant mass spectra for the dilep-
ton emission at the LHC computed at LO, NLO, and NLO + LPM
corrections for different ranges of centrality. The curves are computed
for |y| < 1, for the transverse momentum range: p⊥ ∈ [0.2,15] GeV.
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experiment best but overshoots the data for M < 0.5 GeV.
We see there is a motivation for additional experimental
and theoretical studies of the dilepton emission rate. In
fact, for small values of M it seems that a nonperturbative
determination is a must.

We also performed calculations of the thermal dilepton
emission at the LHC, where the plasma phase might become
more important in comparison to other sources. Results from

the LHC would be very useful to settle the tension between the
STAR data and higher-order calculations of the dilepton rate.
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