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Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of
short-lived unstable nuclei, there is a need for an alternative to electron scattering.
Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)] proposed a possible way
of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross
section, σR . The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb
breakup contributions as well as density distributions improved by paring correlation.
Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb
breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross
section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in
the three-dimensional coordinate space.
Results: We analyze σR’s of 103 nuclei with Z = 20, 28, 40, 50, 70, and 82 incident on light targets, 1,2H, 4He,
and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible
uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and
the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb
excitation can safely be neglected. We find that the so-called reaction radius, aR = √

σR/π , for the proton target
is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which
three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to
extract the nuclear sizes.
Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately
determined by only the matter radius and neutron-skin thickness. If σR’s at different incident energies are
measured, one can determine both the proton and neutron radii for unstable nuclei as well. The total reaction
cross sections calculated in this paper are given as Supplemental Material for the sake of future measurements.

DOI: 10.1103/PhysRevC.93.044611

I. INTRODUCTION

Recent systematic studies of the nuclear size provide us
with information on not only the saturation property of nuclei
but also exotic structure, e.g., deformation, skin, halo, etc.
In particular, the nuclear isovector size property, the neutron-
skin thickness, that is defined by the difference between the
neutron and proton radii, δ = rn − rp, has been intensively
studied because it is essential for understanding the properties
of neutron-rich nuclei and neutron stars, and the equation of
state (EOS) of asymmetric nuclear matter [1–7]. However,
since the neutron radius is difficult to measure, the neutron-skin
thickness is still not as precisely determined as the proton
radius [8] that is extracted from the nuclear charge distribution
obtained by electron scattering.

One of the most useful observables that reflect the nuclear
size is the total reaction (σR) or interaction cross section
(σI ) at high energy. The cross section is accurately measured
with recent intense beam facilities and the measurement now
reaches beyond the sd-shell nuclei [9–11]. Compared to
other methods, e.g., proton-nucleus scattering [12–14] and
isotope shift measurements [15–17], the method has the great
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advantage that it can be applied to almost all nuclei as long
as they are produced in sufficient number. Furthermore, a
theoretical model to evaluate high energy σR values is well
established. The reliability of the reaction model combined
with a microscopic structure model has been tested in several
examples and has made it possible to reproduce the recent
experimental data with no adjustable parameters [18–22].

A charge-changing cross section can be measured by the
same setup as that of σI . As an alternative to the electron scat-
tering, the charge-changing cross section is expected to provide
us with the proton radius of light unstable nuclei [23–25].
However, since the role of a neutron contribution in the charge-
changing process, for example, has not yet been understood,
the reaction model is not reliable compared to the calculation
of σR . At present the analysis of the charge-changing cross
section requires model- and isotope-dependent corrections to
extract the proton radius [23,25].

We here focus on the use of σR to extract the nuclear sizes
because both experimental data and theoretical analysis for
that cross section appears to be the most reliable. Two of the
present authors (W.H. and Y.S.) and Inakura proposed how
to determine the matter radius and the neutron-skin thickness
using σR [26]. The idea of extracting the neutron-skin
thickness is to make use of the different energy-dependences
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of neutron-proton (np) and proton-proton (pp) total cross
sections that are basic ingredients to determine σR . A proton
target can be a sensitive probe to the neutron distribution
because the energy dependence of the np and pp cross
sections is directly reflected in σR .

Extending the previous work of Ref. [26] to heavier even-
even nuclei with mass number A = 40–214, we systematically
analyze σR and assess the applicability of the proposed method
for extracting the matter radius and neutron-skin thickness of
unstable nuclei. In this paper, we examine Ca, Ni, Zr, Sn,
Yb, and Pb isotopes, including both spherical and deformed
nuclei. For this purpose we pay due attention to the following
two points: One is a Coulomb breakup contribution to σR that
may lead to some uncertainty in the extraction of the sizes, and
the other is to clarify the sensitivity of the nuclear sizes to σR .

The total reaction cross section for a heavier projectile
contains the Coulomb breakup contribution that comes from
the Coulomb field produced by a target nucleus. In the
previous study, the projectile nuclei were limited to light
to medium mass nuclei (8 � Z � 28), so that the Coulomb
interaction between the projectile and the target was ignored.
Also, the pairing correlation was ignored in the structure
calculation but it may be important in heavier and open-shell
nuclei because the level density increases and the mixing of
single-particle levels due to the pairing correlation can be
important in determining the nuclear shape [27]. By examining
both the incident-energy and target dependence of σR with
the improved projectile density distribution, we attempt to
establish the relationship of σR to the matter radius and
neutron-skin thickness, and based on that analysis we propose
a possible way of extracting the sizes of medium to heavy
unstable nuclei. The study also aims to give data on the nuclear
radii and cross sections for the sake of convenience of future
measurements.

The paper is organized as follows. Section II explains
the reaction and structure models employed in this paper.
The inclusion of the Coulomb interaction in the Glauber
formalism [28] is discussed in Sec. II A following the
treatment of the nuclear breakup process. Since it poses a
divergence problem for the Coulomb breakup cross section, a
divergence-free approach called the equivalent-photon method
(EPM) [29–31] is presented in Sec. II B, which serves as a
standard for quantifying the Coulomb breakup cross section
in the Glauber formalism. The structure model used in the
paper is briefly explained in Sec. II C, where the wave function
and the response function of the electric dipole (E1) field are
obtained in the canonical-basis-time-dependent-Hartree-Fock-
Bogoliubov (Cb-TDHFB) theory that allows for the pairing
correlation [32]. Section III presents results in the following
way. We overview a systematic trend of the nuclear sizes of the
medium to heavy even-even nuclei in Sec. III A. The Coulomb
breakup cross section calculated by the EPM is shown for
1,2H, 4He, and 12C targets in Sec. III B, and it is compared to
the one calculated in the Glauber formalism in Sec. III C. The
ratio of the Coulomb breakup cross section to σR is examined
in Sec. III D, in order to choose a suitable target that is almost
completely free from the Coulomb breakup ambiguity. We
examine in Sec. III F the dependence of all of the calculated σR

values on the matter radius and the neutron-skin thickness, and

discuss in Sec. III G the accuracy required for the measurement
of σR in order to extract the neutron-skin thickness of 208Pb.
Conclusions are given in Sec. IV.

II. FORMULATION

A. Total reaction cross section with Glauber model

The measurement of σI or σR is mostly performed through
high-energy nuclear collisions. The Glauber theory [28] that is
based on eikonal and adiabatic approximations gives a simple
and good description of high-energy nuclear collision. In the
Glauber model, σR is obtained by integrating the reaction
probability

P (b) = 1 − |eiχ(b)|2 (1)

over a two-dimensional (2D) impact parameter vector b
perpendicular to the beam direction:

σR =
∫

db P (b). (2)

The optical phase-shift function, χ (b), contains all information
on the nucleus-nucleus collision within the Glauber approxi-
mation, and its evaluation is vital for the calculation of σR .

To incorporate the Coulomb interaction in the Glauber
theory, we take the standard approach that directly adds
the Coulomb phase to the Glauber nucleon-nucleon (NN )
phase-shift function. We start from the usual expression [28]
for χ (b) of the projectile and target collision

eiχ(b) = 〈
�P

0 �T
0

∣∣ AP∏
j∈P

AT∏
k∈T

ONN

(
sP
j − sT

k + b
)∣∣�P

0 �T
0

〉
, (3)

where �P
0 and �T

0 are, respectively, the ground-state wave
functions of the projectile and target nucleus with mass number
AP and AT , andONN is related to the NN phase-shift function
χNN (b) as

ONN (b) = eiχNN (b) ≡ 1 − �NN (b). (4)

In Eq. (3) sP
j (sT

j ) denotes a 2D position vector, perpendicular
to the beam direction, of the j th nucleon of the projectile
(target) from its center of mass. The profile function �NN

describes the NN collision at incident energy E, and it is
usually parametrized as [33]

�NN (b) = 1 − iαNN

4πβNN

σ tot
NN exp

[
− b2

2βNN

]
, (5)

where αNN is the ratio of the real to the imaginary part of
the NN scattering amplitude of forward angle, βNN is the
slope parameter of the NN elastic scattering differential cross
section, and σ tot

NN is the total cross section of the NN scattering.
Note that the np profile function is different from the pp one.
The nn profile function is taken the same as that for pp. These
parameters are tabulated in Ref. [34] for a wide energy range.

By including the Coulomb interaction, ONN (sP
j − sT

k + b)
of Eq. (3) is modified to

exp
{
i
[
χNN

(
sP
j − sT

k + b
) + εj εk�χC

(
sP
j − sT

k + b
)]}

, (6)

where εj εk is 1 when both j and k stand for protons but
otherwise 0, and �χC is the Coulomb phase causing the
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breakup

�χC(s + b) = 2η ln

( |s + b|
b

)
, (7)

where η = e2/�v is the Sommerfeld parameter with v being
the projectile’s velocity. Defining �C = 1 − ei�χC , we have

�C(s + b) = 1 −
( |s + b|

b

)2iη

, (8)

and may write the total optical phase-shift function as

eiχ(b) = 〈
�P

0 �T
0

∣∣ AP∏
j∈P

AT∏
k∈T

[
1 − �tot

(
sP
j − sT

k + b
)]∣∣�P

0 �T
0

〉

(9)

with

1 − �tot
(
sP
j − sT

k + b
) = [

1 − �NN

(
sP
j − sT

k + b
)]

× [
1 − εj εk�C

(
sP
j − sT

k + b
)]

.

(10)

An evaluation of χ (b) through Eq. (9) is in general not
easy as it involves multiple integration of a many-variable
function. The integration can be performed with a Monte
Carlo technique as shown in Ref. [35]. For an extensive
study, however, we use an optical-limit approximation (OLA)
that takes account of the leading order of the cumulant
expansion [28]

eiχ (b) ∼ exp
(
iχ (N)(b) + iχ (C)(b) + iχ (NC)(b)

)
, (11)

where the nuclear (N ), Coulomb (C), and nuclear-Coulomb
interference (NC) phases are defined by

iχ (N)(b) = −
∫∫

d rP d rT ρP (rP )ρT (rT )

×�NN (sP − sT + b), (12)

iχ (C)(b) = −
∫∫

d rP d rT ρP
p (rP )ρT

p (rP )

×�C(sP − sT + b), (13)

iχ (NC)(b) =
∫∫

d rP d rT ρP
p (rP )ρT

p (rT )

×�NN (sP − sT + b)�C(sP − sT + b). (14)

The integration is carried out using the density distributions
of the projectile and target, ρP (rP ) and ρT (rT ), and the
point-proton densities of the projectile and target, ρP

p (rP ) and
ρT

p (rT ). It should be noted that the expression includes the
Coulomb breakup effect of not only the projectile but also the
target.

For a later analysis, it is useful to decompose the reaction
probability into three terms:

P (b) = P (N)(b) + P (C)(b) + P (NC)(b) (15)

with

P (N)(b) = (
1 − ∣∣eiχ (N)(b)

∣∣2)
, (16)

P (C)(b) = ∣∣eiχ (N)(b)
∣∣2(

1 − ∣∣eiχ (C)(b)
∣∣2)

, (17)

P (NC)(b) = ∣∣eiχ (N)(b)+iχ (C)(b)
∣∣2(

1 − ∣∣eiχ (NC)(b)
∣∣2)

. (18)

Though this decomposition may not be unique, it is physically
reasonable because the interference term given by Eq. (18)
is very small as shown in Ref. [36]. Then σR given in the
leading-order approximation reads

σR = σ
(N)
R + σ

(C)
R + σ

(NC)
R , (19)

where

σ
(X)
R =

∫
dbP (X)(b) (20)

with X = N,C, or NC. If the nuclear interaction is turned off,
σR turns out to be

σC =
∫

db
(
1 − ∣∣eiχ (C)(b)

∣∣2)
, (21)

which is nothing but the Coulomb breakup cross section in the
OLA of the Glauber theory.

In this paper we consider the targets, 1,2H, 4He, and 12C.
We use the 12C density distribution obtained in Ref. [37],
and the density distributions of 2H, and 4He obtained by
few-body calculations with the Argonne V8’ potential plus
a central three-body force [38]. We fit these densities by
several Gaussian functions, and tabulate the parameters in
Supplemental Material [39]. Since the OLA works well for
proton-nucleus scattering in which the NN multiple-scattering
effect can be neglected [35], we employ the OLA for the
1H (proton) target. For the other targets we employ the
nucleon-target formalism in the Glauber theory (NTG) [36,40],
to describe the nuclear breakup part, which is formulated based
on the nucleon-target (NT ) interaction, �NT , representing
the interaction between the nucleon and the target. The NTG
approximation requires the same inputs as those used in the
ordinary OLA of Eq. (12) and reproduces σR better than
the OLA that misses some higher-order terms of �NN . For
example, σR of 12C+12C calculated with the NTG are very
much improved in a wide energy range [37].

B. Equivalent-photon method

In Sec. II A, we give the formulation to take into account
the Coulomb breakup process in the Glauber model. However,
P (C)(b) leads to a logarithmic divergence if the impact
parameter integration is performed to infinity with use of the
eikonal Coulomb phase [36], which is due to the neglect of the
energy conservation inherent in the adiabatic approximation.
A nonadiabatic treatment of the Coulomb breakup processes
is needed to correctly describe the effect of the long-range
Coulomb force. Though several attempts to avoid the diver-
gence are performed in a few-body system [41–45], they are
too computer-time expensive to apply to a nucleus-nucleus
case. A simple, practical way to avoid the divergence problem
is to replace the Coulomb phase that leads to the divergence by
a divergence-free perturbative term assuming the dominance
of the E1 field. This idea called the Coulomb-corrected
eikonal approximation works well and still makes it possible
to employ the eikonal approximation [46–48]. However, it is
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only applicable to some special cases, for example, two- or
three-body models for a halo nucleus [48–50], and it will not
give us a convenient formula for a more general case because
the knowledge of the photoabsorption cross section of each
many-body final state is required.

A systematic trend of the Coulomb breakup cross section
can be discussed by using the EPM [29–31], which gives the
simplest estimate of the Coulomb breakup contribution if the
photoabsorption response of the projectile nucleus is available.
The method is widely used and succeeds in explaining the large
Coulomb breakup cross sections of halo nuclei [51]. In fact it
is used to extract the E1 strength function of a halo nucleus
from the measurement of the neutron removal cross section
through the Coulomb breakup process [52,53]. In the EPM
the reaction probability for the Coulomb excitation, PC(b),
is expressed with the photoabsorption cross section, σγ (ω),
multiplied by the number of photons per unit area per unit
frequency, N (b,ω), as

PC(b) =
∫ ∞

0
dω σγ (ω)N (b,ω). (22)

If the photoabsorption is dominated by the E1 response, σγ (ω)
is given by the E1 strength function, dB(E1)/dE, as [27]

σγ (ω) = 16π3ω

9

dB(E1)

dE
, (23)

and N (b,ω) is given by

N (b,ω) = Z2
T e2

π2�c

(
c

v

)2
ξ 2

ωb2

[
K2

1 (ξ ) + 1

γ 2
K2

0 (ξ )

]
(24)

with the Lorentz factor γ and ξ = bω/γ v, where K0 and K1

are the modified Bessel functions of zeroth and first orders,
respectively. In general, as the incident energy decreases,
we have to take into account Coulomb multipole breakup
contributions other than the E1 multipole [29]. Evaluating
the contributions of all the multipoles is beyond the scope of
this paper. Note that PC(b) and P (C)(b) of Eq. (17) show quite
different behavior, especially at low incident energy.

The EPM is formulated in a semiclassical way and PC(b)
exceeds unity at small b. The Coulomb excitation of a giant
resonance was treated in a perturbation theory using the
eikonal approximation [54]. This theory is more satisfactory
in that the suppression of PC(b) at small b is accounted
for by the absorption of the imaginary part of the optical
potential between the nuclei. The corresponding suppression
is represented by the factor |eiχ (N)(b)|2 of Eq. (17) in our
formulation. Since our main concern here is the long-range
behavior of P (C)(b) leading to the divergence, we do not pay
much attention to the detail of the short-range behavior of the
Coulomb breakup probability and simply introduce a sharp
cutoff, bmin, for the sake of simplicity. The Coulomb breakup
cross section in the EPM is then defined as

σC =
∫

|b|�bmin

dbPC(b), (25)

where bmin is taken as
√

5/3(rP
m + rT

m) using rP
m (rT

m), the
root-mean-square (rms) radius of the projectile (target). Since
the contribution of the Coulomb interference term to σR is

small [36,55], the calculated Coulomb breakup cross section
is added incoherently to the cross section σ

(N)
R obtained only

with the nuclear interaction.

C. Densities and E1 response in Cb-TDHFB theory

Nuclear pairing correlations are important to account for
the odd-even mass difference as well as the separation energy,
especially for heavy nuclei [56]. The TDHFB theory is pow-
erful to describe the dynamics of a nuclear system including
pairing. However, due to its huge numerical cost as well as
the complexity of numerical calculations, its application is
limited to only special cases. The Cb-TDHFB was developed
to study the ground-state property as well as nuclear response
for a wide nuclear mass range [32]. The efficiency of this
method is confirmed by, e.g., the E1 response function of
172Yb, for which the Cb-TDHFB gives results consistent with
the quasi-particle random phase approximation (QRPA) [57].
The numerical cost of the Cb-TDHFB is found to be about
1/1000 of that of QRPA [58]. We briefly describe how we
obtain the density distribution and the E1 response function
that are needed for calculating σR . See Refs. [32,59] for details.

For a description of the ground state, we adopt a Skyrme en-
ergy density functional with three parameter sets of SkM* [60],
SLy4 [61], and SkI3 [62]. The SkM* is known to account well
for the properties of deformed nuclei because its parameter
is determined to reproduce the fission barrier of 240Pu. The
SLy4 is superior to SkM* in reproducing the properties of
neutron-rich nuclei. In addition to these, we employ the SkI3
parameter set, which simulates the single-particle levels of the
relativistic mean-field model, giving different characteristics
especially in the Pb region.

Each single-particle wave function is represented by the
canonical state that diagonalizes the density matrix [32]. To
describe nuclear deformations the three-dimensional (3D)
Cartesian coordinate space is chosen, which is discretized
in square mesh of d in a sphere with radius of R. Thus,
each canonical state is represented by three discrete indexes
(ix,iy,iz) for the 3D mesh points; (x,y,z) = (ix,iy,iz) × d. In
the present work, we choose d = 1 fm and R = 15 fm for all
isotopes. For the ground state, the self-consistent solution is
obtained by the procedure written in Sec. VC of Ref. [32]. The
intrinsic one-body density is expressed by the single-particle
wave functions. For the Glauber model calculation, we need
the one-body density distributions in the laboratory frame. As
was done in Ref. [21], the angle-averaged intrinsic one-body
densities are used as the projectile density distributions.

The E1 strength function is obtained by applying a weak
impulse external field to the initial state, and then its time-
evolution is described by the Cb-TDHFB equation [32]. The
linear response is calculated by the prescription given in
Ref. [63].

III. RESULTS

A. Matter radii and neutron-skin thickness

We take up 103 even-even nuclei for each of the Skyrme
interactions, 40–60Ca, 56–84Ni, 80–122Zr, 100–140Sn, 156–196Yb, and
190–214Pb, covering mainly the neutron-rich region. To avoid
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FIG. 1. Neutron and proton rms radii of Sn isotopes calculated
with HF+BCS and HF theory. The SkM* interaction is used.

spurious continuum couplings in the BCS model [64,65], we
consider only those nuclei that give the Fermi-energy higher
than 2 MeV. To know the effect of the pairing correlation on the
nuclear sizes, we compare in Fig. 1 the neutron and proton rms
radii, rn and rp, of Sn isotopes calculated by HF and HF+BCS
methods. The radii calculated with or without the pairing
correlation show almost identical results except for N = 68.
This difference is due to the deformation that enhances the
matter radius [20,21]. The deformation of the HF ground state
reaches a maximum at N = 68 (the quadrupole deformation
parameter, βp = 0.281 and βn = 0.279 for proton and neutron,
respectively), whereas the HF+BCS predicts no deformation.
Since the proton and neutron deformation parameters of 118Sn
are almost the same in the HF calculation, no neutron-skin
thickness develops at N = 68.

Let us define the matter radius, rm(N,Z), and the neutron-
skin thickness, δ(N,Z), using the proton and neutron rms radii,
rp(N,Z) and rn(N,Z), by

rm(N,Z) =
√

Z

A
r2
p(N,Z) + N

A
r2
n(N,Z), (26)

δ(N,Z) = rn(N,Z) − rp(N,Z). (27)

Figures 2 and 3 display rm(N,Z) and δ(N,Z) calculated
with SkM*, SLy4, and SkI3 interactions. The rm(N,Z) value

roughly follows an (N + Z)1/3 line for all the cases as ex-
pected. The δ(N,Z) value shows some interaction dependence.
It grows as the asymmetry parameter, (N − Z)/(N + Z), in-
creases. A spread of δ(N,Z) becomes larger as the asymmetry
parameter approaches that of the region far from the stability.
Since the nuclear sizes are interaction-dependent, it is not easy
to find out how rm and δ depend on Z and N .

B. Coulomb breakup cross sections by EPM

First we discuss a systematic trend of the Coulomb breakup
cross sections using the EPM, Eq. (25). Figure 4 plots the
Coulomb breakup cross section by a proton target. The incident
energies are 200 and 1000 MeV. Here the incident energy
means the energy per nucleon and is simply written in MeV
throughout this paper. The magnitude of σC is found to be
very small, at most 2 mb, which will be about 0.1% of σR . The
cross section increases gradually as N increases, following
the enhancement of rm shown in Fig. 2. Most of the E1
strength come from the giant resonance region. We observe
a sudden increase of the cross section for Ni isotopes beyond
N = 50 and Sn isotopes beyond N = 82, even larger in the
case of the low-incident energy, especially when the SkI3
interaction is used. This is due to the enhancement of the
low-lying E1 strength, as discussed in Ref. [59]. The photon
number (24) concentrates at the low-excitation energy and
decreases rapidly with increasing excitation energy [29]. In
that case, the cross section is more sensitive to the low-energy
strength rather than the strength in the giant resonance region.
In the high-incident energy, the photon number decreases more
slowly than in the low-incident energy. Though the Coulomb
breakup cross section by protons is small, it shows some
dependence on the incident energy and also on the interaction
used.

The upper panels of Fig. 5 display the Coulomb breakup
cross sections on 2H, 4He, and 12C targets at 1000 MeV
incident energy. The cross section behaves as a function of
N similarly to the case of the proton target but its magnitude
is approximately scaled by Z2

T , as noted in Eq. (24). In the
Coulomb breakup of the nucleus-nucleus collision, the target
nucleus can also be excited by the Coulomb force from the
projectile. That cross section contributes to σR and it is readily
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FIG. 3. Neutron-skin thickness of even-even nucleus as a functions of (N − Z)/(N + Z). Three Skyrme parameter sets are used: (a) SkM*,
(b) SLy4, and (c) SkI3.

calculated by exchanging the role of the target and projectile
in Eqs. (22) and (24), once the photoabsorption cross section
or E1 strength function of the target nucleus is available.
We make use of the following sources: the cross section of
Ref. [66] for 2H, the ab initio calculation [21] for 4He, and the
E1 strength function calculated by the Cb-TDHFB for 12C.
The lower panels of Fig. 5 exhibit the Coulomb breakup cross
sections of these targets as a functions of N of the projectile.
Since the cross section depends on Z2

P and ZP considered
here is large, the Coulomb breakup contribution of the target
is much larger than that of the projectile, especially when 2H
is a target. This is in exactly the same situation as the Coulomb
breakup of a halo nucleus by a heavy target because 2H is a
weakly bound nucleus. Hereafter we let the Coulomb breakup
cross section by EPM indicate a sum of both contributions, the
projectile breakup and the target breakup.

C. Coulomb breakup—Glauber model versus EPM

It is important for our purpose to establish a sound
procedure for taking account of the Coulomb breakup process
in the Glauber model. We here compare the results with the
Glauber model and the EPM. To avoid the divergence that the
Glauber Coulomb eikonal phase causes, we introduce a cutoff
impact parameter bmax such that σ

(C)
R of the Glauber model

σ
(C)
R =

∫
|b|�bmax

db P (C)(b) (28)

reproduces σC obtained by the EPM. Note that P (C)(b)
becomes vanishingly small for b where the projectile and
the target overlap significantly because the so-called survival
probability [67,68], |eiχ (N)(b)|2, becomes so small. See Eq. (17).
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FIG. 4. Coulomb breakup cross sections by EPM for projectile nucleus incident on proton at (top) 200 and (bottom) 1000 MeV. The
projectile density is obtained with three Skyrme interactions: (Left) SkM*, (Center) SLy4, and (Right) SkI3.
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FIG. 5. EPM calculation of Coulomb breakup cross sections for (upper) projectile by target and for (lower) target by projectile at 1000 MeV
incident energy. Three different targets are employed; (Left) 2H, (Center) 4He, and (Right) 12C. The projectile density is obtained with the
SkM* interaction.

In order to see the contribution of the Coulomb breakup
to the total reaction cross section, we plot in Fig. 6 the
decomposition of the total reaction probability into the nuclear
and Coulomb breakup probabilities in the case of 208Pb+12C
collision at 1000 MeV. The decomposition is made using
Eqs. (16)–(18). The contribution of the interference term is so
small that it is not shown. The Coulomb breakup contribution
to the cross section arises from the nuclear surface where P (N)

falls off but its magnitude is very small compared to the nuclear
one.

0

 10

 20

 30

 40

 50

 60

0 5  10  15  20  25  30

2π
bP

(b
) 

(f
m

)

b (fm)

1000 MeV

Total

P(N)

P(C)

FIG. 6. Glauber model calculation of the total reaction proba-
bility and its decomposition to the nuclear and Coulomb breakup
probabilities for 208Pb+12C collision at 1000 MeV incident energy.
The SkM* interaction is used.

For a more quantitative discussion on the Coulomb breakup
process, we compare in Fig. 7 the 208Pb+12C Coulomb breakup
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FIG. 7. Comparison of 208Pb+12C Coulomb breakup probabili-
ties calculated by the Glauber and EPM models at three incident
energies (a) 1000, (b) 550, and (c) 200 MeV. The cutoff parameter of
EPM is bmin = 10.2 fm. The SkM* interaction is used.
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probabilities calculated by the Glauber model and EPM at three
incident energies of 1000, 550, and 200 MeV. The probabilities
calculated by the Glauber model rise from a little inside of
bmin = 10.2 fm and decrease asymptotically as 1/b [36]. At the
high-incident energy, the Coulomb breakup probability given
by the Glauber model shows behavior similar to that of EPM.
This is understood by considering the spectrum of N (b,ω).
When the projectile’s velocity is high and η is small, the photon
number decreases rapidly with increasing multipolarity [29].
As the incident energy decreases below 200 MeV, the b
dependence of the Coulomb breakup probability is quite
different from that of the EPM. This can be seen by expanding
the Coulomb breakup profile function (8) at sufficiently large
b [36]

�C(s + b) → −2iη

b
(s · b̂) − iη

b2
{s2 − 2(s · b̂)2}

+ 2η2

b2
(s · b̂)2 + · · · , (29)

where b̂ = b/b. The first term does not contribute to the cross
section. For small η, the second term that induces the dipole
excitation dominantly contribute to the Coulomb breakup
probability. For large η, however, the other terms cannot be
neglected, giving a contribution of other multipoles to the
Coulomb breakup. As the incident energy decreases, the η
value increases, and thereby the E1 contribution becomes
relatively smaller and other multipole effects are amplified,
consistently with Ref. [29].

As seen above, the E1 approximation with the EPM
reasonably well takes account of the Coulomb breakup
process when the incident energy is high enough, say above
500 MeV. At the lower incident energy, the other multipole
effects (E2,E3, . . . ) should be considered for a quantitative
evaluation of the Coulomb breakup cross section. Even though
we could calculate response functions of all multipoles, the
resulting Coulomb breakup cross section would not be able to
be free from some uncertainty due to, e.g., the interaction to
be used in that calculation.

The Coulomb breakup probability calculated in Ref. [36]
employs a point charge assumption for the target. The
Coulomb breakup probability is then much larger than that
of the present calculation and can significantly contribute to
the total reaction probability. The reason for this is apparently
because the Sommerfeld parameter becomes quite large under
the point charge assumption, and other multipoles higher than
E1 contribute significantly to the reaction probability as noted
above.

D. Contribution of Coulomb breakup to total
reaction cross section

As discussed in Secs. III B and III C, neither the EPM nor
Glauber model gives a complete procedure to quantitatively
evaluate the contribution of the Coulomb breakup to σR for
arbitrary incident energies. The EPM has no problem in so far
as the E1 response predominantly contributes to the Coulomb
breakup. However, other multipoles contribute as the incident
energy decreases and calculating those responses for each
nuclear system is not very practical. The Glauber model

 1500

 2000

 2500

 3000

 3500

 4000

 20  40  60  80  100  120  140

Neutron number

(d) 12C
1000 MeV

Z=20
28
40
50
70
82

 1000

 1500

 2000

 2500

 3000

(c) 4He
1000 MeV

Z=20
28
40
50
70
82

 1000

 1500

 2000

 2500

 3000

σ R
 (

m
b)

(b) 2H
1000 MeV

Z=20
28
40
50
70
82

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

(a) proton

1000 MeV

Z=20
28
40
50
70
82

FIG. 8. Total reaction cross sections, σ (N)
R + σC , of various nuclei

at 1000 MeV incident energy. The Coulomb breakup contribution is
calculated by the EPM. The targets are; (a) proton, (b) 2H, (c) 4He,
and (d) 12C. The SkM* interaction is used.

provides us with a simple formula for including the Coulomb
breakup but to determine the cutoff parameter bmax causes
some ambiguity. It is important to quantify the extent to which
extracting the nuclear radius with σR includes uncertainty due
to the Coulomb breakup.

Figure 8 plots the σR’s of isotopes with Z = 20, 28, 40, 50,
70, and 82 on 1,2H, 4He, and 12C targets, as functions of the
neutron number. The incident energy is set to be 1000 MeV
where the E1 contribution is dominant. The cross section
reflects the sizes of both the target and the projectile if the
Coulomb breakup contribution is neglected. Since the 2H target
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FIG. 9. Same as Fig. 8 but for a fraction of the Coulomb breakup
contribution to the total reaction cross section.

has large matter radius and Coulomb breakup cross section,
its σR is comparable with that on the 4He target. We display,
in Fig. 9, a fraction of the Coulomb breakup cross section
to the total reaction cross section, σC/σR . When the proton
target is used, the contribution is small less than about 0.1%
of σR . The proton target can be safely used for extracting the
sizes for heavy nuclei even for lead isotopes. The 12C target,
which is the most commonly used target, gives at most 6%
of σR for the Coulomb contribution. The 4He target can be
used as an alternative to the 12C target, if a preparation for the
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FIG. 10. Rutherford ratios of 12C+208Pb elastic scattering at 200
and 1000 MeV incident energies. The ratio calculated by ignoring
the Coulomb breakup is also plotted for comparison. The cutoff
impact parameter bmax is 15.1 and 80.0 fm for 200 and 1000 MeV,
respectively. The SkM* interaction is employed. The experimental
data are taken from Ref. [69].

target is easier than that for the proton target. The 2H target
has smallest charge but gives large Coulomb contribution due
to the target dissociation. The contribution is at largest 10%.
Since we cannot neglect the Coulomb contribution in the
analysis of the rms radius through σR , the 2H and 12C targets
are disadvantageous in precisely determining the matter radius
for heavy projectiles due to unavoidable uncertainty from the
Coulomb excitations.

E. Comparison with experimental data

We have to make sure that the inputs needed in the Glauber
model calculation are chosen properly, that is, they should
well reproduce available experimental data. To this end, we
examine the elastic scattering cross section

dσ

d�
= |F (q)|2 (30)

with the elastic scattering amplitude

F (q) = FC(q) + iK

∫ bmax

0
db b eiq·b+iχC (b)

(
1 − eiχ(b)

)
, (31)

where FC(q) is the Rutherford phase for the Coulomb elastic
scattering and χC(b) = 2ZP ZT η ln(Kb), and q is a momentum
transfer vector. The relativistic kinematics is used for the wave
number K . Note that the optical-phase shift function χ (b), a
key quantity to determine σR , appears here as well. The cutoff
parameter bmax is determined by the same way as in Sec. III C.
Once bmax is determined, the nuclear-Coulomb interference
effect is fully taken into account, which is one of the advantages
of the Glauber formalism.

Figure 10 plots the Rutherford ratio of 208Pb+12C scattering
at the incident energy of 200 MeV where experimental data
are available [69], and at the incident energy of 1000 MeV.
The calculation reproduces the data very well up to 3 degrees.

044611-9



W. HORIUCHI, S. HATAKEYAMA, S. EBATA, AND Y. SUZUKI PHYSICAL REVIEW C 93, 044611 (2016)

10-10

100

1010

1020

1030

1040

 0  10  20  30  40  50  60  70  80  90

dσ
/d

Ω
 (

m
b/

sr
)

θc.m. (deg)

p+208Pb

1000MeV (x1035)

800 MeV (x1030)

300 MeV (x1025)

200 MeV (x1020)

182 MeV
(x1015)

155 MeV(x1010)

121 MeV (x105)

80 MeV

65 MeV (x10-5)

45 MeV (x10-10)

Cal.

Expt.

FIG. 11. Elastic differential cross sections of p + 208Pb scatter-
ing. Coulomb breakup contribution is ignored. The SkM* interaction
is used. Experimental data are taken from Refs. [13,70–84].

The density distributions and the profile function employed are
reliable for describing the forward angle reaction. Because the
calculations with and without the Coulomb breakup give only a
minor difference, we see virtually no Coulomb effect. Note that
at lower energies the condition (28) to determine bmax may not
be justified because other multipoles than the dipole contribute.
The cut-off parameters bmax for the Glauber model calculation
are 15.1 and 80.0 fm for 200 and 1000 MeV, respectively. In
fact, bmax for 200 MeV appears to be too small, that is, only
slightly larger than the touching distance of the 12C and 208Pb,
bmin = 10.2 fm. The Coulomb breakup estimation is more
reliable at 1000 MeV because the E1 transition dominates as
already discussed in Fig. 7.

Next we assess the reliability of our model using the proton-
nucleus collision. Figure 11 plots the differential cross sections
of p + 208Pb scattering in a wide range of the incident energy.
We ignore the Coulomb breakup contributions since they are
much smaller than those by the 12C target. The calculated cross
sections almost perfectly reproduce the experimental data from
low to high incident energies. Our calculation has no adjustable
parameters but nevertheless well reproduces experiment as
equally as the folding-model calculation at 65 to 200 MeV
with a recent G-matrix interaction [85]. This confirms that our
reaction model for the proton-nucleus scattering is reliable for
the wide range of the incident energies.

Finally we compare in Fig. 12 the calculated proton-nucleus
total reaction cross sections with available experimental data.
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FIG. 12. Total reaction cross sections of 40Ca, 58Ni, 90Zr, 120Sn,
and 208Pb on a proton target as functions of incident energies.
Coulomb breakup contribution is ignored. The SkM* interaction
is used. The experimental data with error bars are taken from
Refs. [86–93].

Since the data before 1970s are very much scattered, we use
the experimental data after 1970s. The theory obtains overall
agreement with the measured values, especially with the data
at the incident energy higher than 200 MeV. For 90Zr and
120Sn, even at low energy of about 60 MeV, the theoretical
cross sections are consistent with the measurement within the
error bar. For the other systems, the energy dependence of the
low-energy cross sections is well reproduced but the theory
tends to overestimate the experimental cross sections at around
50 MeV. One may think that the applicability of the Glauber
model is questionable in such low-energy scattering around
50 MeV. In fact in-medium effects such as Pauli blocking
and Fermi-motion can be important at low energies and may
modify the free NN scattering parameters [94,95]. A fully
consistent implementation of such effects in the Glauber theory
is, however, not available yet.

F. Correlation between reaction radius and nuclear sizes

As we have discussed, any targets other than the proton
cause some ambiguities concerning the Coulomb breakup con-
tribution that exhibits not only the incident energy dependence
but also higher multipole Coulomb excitations. To avoid such
uncertainty, the proton target is best to extract the nuclear
sizes. As shown in Sec. III E, our model well reproduces
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100 MeV are, respectively, shifted by 1, 2, and 3 fm for clarity. The
SkM* interaction is used.

the experimental cross sections. Therefore, by extending the
projectile from medium to heavy nuclei we can reexamine
the proposal [26] to make use of the total reaction cross
section on the proton target to extract the matter radius and the
neutron-skin thickness. For this purpose we carefully analyze
the dependence of σR on those quantities.

A ‘reaction radius’, aR , is defined as a measure of the
nuclear size that is extracted from the proton-nucleus collision
at incident energy E [26]

aR(N,Z,E) =
√

σR(N,Z,E)/π. (32)

The reaction radius may somewhat be related to the one defined
in the black sphere model [96,97]. The aR depends on E
through the different energy-dependence of the np and pp
total cross sections, σ tot

np and σ tot
pp [98], that enter the profile

function (5). This energy dependence most clearly shows up
in σR for the proton target. This is because the 2H, 4He, and
12C targets contain the equal number of protons and neutrons
and their density distributions are almost identical.

To explore the dependence of aR on E and the nuclear
sizes, we make use of our aR values obtained by the Glauber
model calculation with the HF+BCS densities. Figure 13
displays the correlation diagram of aR vs rm in the case of
the proton target. Four incident energies are chosen to show
the energy dependence: 100 and 200 MeV where σpp < σnp,
550 MeV where σpp � σnp, and 1000 MeV where σpp becomes
a little larger than σnp [98]. As already noted in Ref. [26],
aR approximately follows a straight line but some scattered
distributions are observed at the low incident energies. The
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FIG. 14. Incident energy dependence of the coefficients of the
empirical formula for the reaction radius (33) calculated with the
SkM*, SLy4, and SkI3 interactions: (a) α(E) and β(E), and (b) γ (E).

latter is understood by considering that at those energies
the proton target tends to be more sensitive to the neutron
distribution due to its larger σnp than σpp.

The sensitivity was disclosed in the behavior of the incident-
energy-dependent coefficients of the empirical formula for
aR [26]. The aR is very well approximated by a linear function
of two variables, rm and δ, as

aR(N,Z,E) � α(E)rm(N,Z) + β(E)δ(N,Z) + γ (E), (33)

where α(E), β(E), and γ (E) are the energy-dependent coeffi-
cients that will be determined empirically. Note that the above
formula should be more accurate than the one assumed by
Carlson [99] that has no δ(N,Z) term. The energy-dependent
coefficients are determined as in the previous procedure. That
is, the aR values extracted from σR obtained with the HF+BCS
densities are fit in the form (33) by the least-square method.
We calculate the mean square deviation

χ2(E) = 1

N
∑
N,Z

[
aR(N,Z,E) − aFit

R (N,Z,E)
]2

, (34)

where N , the number of nuclei considered, is 103 for all
the interactions. For all incident energies, the square roots
of χ2(E) are small, resulting in the range of 0.01–0.02 fm.
Figure 14 plots the coefficients of the empirical formula (33)
as a function of the incident energy. Results calculated with the
three Skyrme interactions are displayed to show the sensitivity
to the different density profiles. For example, when the nucleus
shows some deformation, the density profile becomes quite
different from that with the spherical one as exemplified in
Fig. 1 and in Ref. [21]. In spite of those differences, the three
Skyrme interactions lead to virtually the same coefficients.
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the data points obtained with the SkM*, SLy4, and SkI3 interactions
are plotted in dots. A solid line, y = x, is drawn as a guide of eyes.

The first term, α(E)rm, is the leading term of aR , which is a
basis to extract the matter radius from σR . The coefficient β(E)
signals the sensitivity of aR to δ. In fact, β(E) is positive at the
low incident energy, turns to be almost zero at 550 MeV where
σnp ∼ σpp, and becomes negative at higher energies because
of σnp < σpp. This sensitivity enables us to use the proton
target as a probe of the neutron-skin thickness. The last term
γ (E) follows the energy dependence of the total NN cross
sections [98]. This energy-dependence of the coefficients is
also found for light to medium nuclei [26] and their values
are consistent with those obtained here. The α(E) does not
strongly depend on the incident energy, which led to a linear
approximation in δ for the difference of the reaction radii at
two incident energies [26]

�aR(N,Z,E′,E) = aR(N,Z,E′) − aR(N,Z,E). (35)

In the present case the �aR(N,Z,E′,E) vs δ plot shows
some deviation from the linearity because the term, (α(E′) −
α(E))rm(N,Z), depending on the matter radius, cannot be
completely neglected in the heavy nuclei.

Figure 15 displays the correlation diagram of the reaction
radii, aR obtained from σR calculated using the HF+BCS
density and aFit

R of the empirical formula (33). All the 309
points follow a straight y = x line very well. We confirm that
the coefficients are universal even in heavy nuclei and does
not depend on the details of the density profile. The aR is well
approximated by Eq. (33), which makes it possible to extract
the matter and neutron-skin thickness using the total reaction
cross sections on the proton target.

TABLE I. Total reaction cross sections in mb of p + 208Pb
reactions as functions of the neutron-skin thickness δ (fm) and the
incident energy E (MeV). The Fermi-type density distributions are
assumed for both protons and neutrons. The proton radius of 208Pb is
set to fit the empirical value, 5.44 fm [100].

E δ = 0.0 0.1 0.2 0.3 0.4 0.5

100 1974 2014 2056 2098 2142 2188
120 1904 1942 1982 2023 2065 2108
140 1850 1888 1926 1965 2006 2047
160 1809 1846 1883 1921 1960 2000
180 1777 1812 1848 1885 1923 1962
200 1750 1785 1820 1856 1893 1932
240 1714 1747 1781 1816 1851 1888
300 1684 1716 1747 1780 1814 1848
425 1668 1697 1727 1757 1788 1820
550 1721 1749 1777 1807 1838 1870
650 1771 1799 1827 1856 1887 1919
700 1787 1814 1841 1870 1901 1932
800 1801 1828 1856 1885 1916 1947
1000 1807 1834 1862 1891 1921 1953

G. Feasibility of measurements to determine neutron-skin
thickness of 208Pb

We have shown that aR or σR on the proton target is model
independent, that is, only depends on the matter radius and
neutron-skin thickness. Thus far, several experimental studies
have been performed to determine the neutron-skin thickness
of 208Pb. The model independent analysis by the parity-
violating elastic electron scattering [8] gives the neutron-skin
thickness within an accuracy of 0.2 fm. Here we examine
how much accuracy of σR measurement on the proton target
is needed to deduce the skin thickness of 208Pb more reliably.

First, we assume Fermi-type density distributions for both
protons and neutrons with a common diffuseness parameter,
a, and the proton radius parameter Rp is set to reproduce the
measured proton radius of 208Pb (5.44 fm [100]). The neutron
radius parameter Rn controls the neutron radius or δ. Table I
lists the σR values calculated with different δ parameters
as a function of the incident energy. The Coulomb breakup
contribution is neglected because it is typically 1 mb and
its energy dependence is also very small, see Fig. 4. At the
lowest incident energy of 100 MeV, where the sensitivity to
the skin thickness becomes largest, the increase of σR is large,
approximately 50 mb for every increase of δ by 0.1 fm. If the
neutron-skin thickness should be determined within 0.1 fm
accuracy, the required accuracy of the measurement has to
be a few percent. With the increasing incident energy, the
change of the cross section becomes smaller. A measurement
with lower incident energy is therefore more advantageous to
extract the skin thickness. Of course it must be high enough to
assure the validity of the Glauber model.

If the proton radius is not known, we need to measure at
least two cross sections at low and high incident energies, and
then determine rp and rn so as to reproduce those cross sections
simultaneously. In order to maximize the sensitivity of σR to
δ, it is better to choose the low energy where β(E) is large
and the high energy where β(E) is small. Table II lists the
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TABLE II. Neutron-skin thickness dependence of the difference
of p + 208Pb total reaction cross sections at two incident energies,
σR(E) − σR(E′). Units of cross section, energy, and length are mb,
MeV, and fm, respectively.

(E,E′) δ = 0.0 0.1 0.2 0.3 0.4 0.5

(100,550) 253 265 278 291 304 318
(100,1000) 166 180 194 207 220 235
(200,550) 29 36 43 49 56 62
(200,1000) −56 −49 −42 −35 −28 −21

difference of σR’s calculated at different incident energies. As
seen in Table II, the cross section difference becomes largest
for a choice of the incident energies, 100 and 550 MeV, and
it is in the range of 250–320 mb, depending on the value of
δ. This value is more than 10% of σR itself, and therefore
can easily be measured with the accuracy of the present-day
cross section measurements. To determine the neutron-skin
thickness, a finer resolution is needed to distinguish a change
of δ. As shown in Table II, the cross section difference is at
most 20 mb for every change of δ by 0.1 fm. To detect this
change, one has to measure σR at least with an accuracy of 1%,
and then it is possible to determine the skin thickness within the
uncertainty of 0.1 fm. If one chooses 200 and 550 MeV, the
cross section difference becomes much less sensitive to the
change of δ, and σR has to be measured at least within
the accuracy of 0.5% to determine the neutron-skin thickness
within the uncertainty of 0.1 fm accuracy.

To reduce the accuracy needed for the size extraction, we
recommend that σR is measured at 100 MeV and at 550 MeV or
higher energy. To achieve this, σR measurement on the proton
target has to be improved up to the level of the 12C target,
which has been performed in 1% [11].

IV. CONCLUSIONS

To facilitate the study of nuclear size properties of heavy
nuclei, we have made a systematic analysis of total reaction
cross sections, σR , on various light targets, 1,2H, 4He, and
12C with the Glauber model. In order to make the systematic
evaluation of the total reaction cross sections for a wide range
of mass numbers, the Skyrme-Hartree-Fock+BCS model
is applied to generate the density distributions for more
than hundred even-even nuclei with A = 40–214 selected
from among Ca, Ni, Zr, Sn, Yb, and Pb isotopes. Three
different interactions, SkM*, SLy4, and SkI3 are employed.
The Coulomb breakup contributions to σR are systematically
investigated by the equivalent-photon method (EPM) using
the electric dipole (E1) strength function obtained by the
time-dependent mean-field theory, that is, the canonical-basis-
time-dependent-Hartree-Fock-Bogoliubov theory.

We have analyzed the Coulomb breakup contribution to
the total reaction cross section based on the optical limit
approximation of the Glauber theory. The divergence problem
of the eikonal Coulomb phase is avoided by introducing the
cutoff impact parameter determined so as to reproduce the
Coulomb breakup cross section obtained by the EPM. We have
compared the reaction probabilities obtained by the Glauber

and EPM calculations and found out that the EPM with the E1
approximation gives a fair description of the Coulomb breakup
processes for high energy heavy ion collisions.

Our analysis gives an estimate for the Coulomb breakup
contribution that is useful for a future study of heavy nuclei.
The Coulomb contributions are not negligible for large-Z
nuclei using the 12C target, which is one of the targets
commonly used for extracting the matter radius of light nuclei.
A target with smaller Z, e.g., 4He, gives smaller Coulomb
breakup cross sections. However, the use of 2H target gives
even worse results because the contribution of the Coulomb
excitation is extremely large. The analysis shows the difficulty
to find out a general trend of the Coulomb breakup cross
sections. They depend on the target, incident energy, and
interactions employed for the projectile. Higher multipole
effects other than the E1 contribution need to be taken into
account for a quantitative analysis at incident energies lower
than 550 MeV.

A proton target is the best target to extract the nuclear sizes
because the complexities of the Coulomb breakup process can
be avoided. We show that the reaction radius, aR = √

σR/π , on
the proton target actually probes the sizes of a nucleus and has
sensitivity to the neutron-skin thickness. In fact the reaction
radius is very well approximated by a linear function of rm and
δ. The incident-energy-dependent coefficients are determined
by the least-square fitting using the density distributions of
medium to heavy nuclei obtained by the HF+BCS. It is found
that the coefficients are universal functions that depend only
on the incident energy and do not depend on the interaction
employed or density profiles.

A required accuracy to extract the neutron-skin thickness
has been examined in the case of p + 208Pb. Assuming that
the proton radius of 208Pb is known, we need to measure the
total reaction cross section within a few percent accuracy
in order to determine the neutron-skin thickness and matter
radius within the accuracy of 0.1 fm. However, if the proton
radius of the projectile nucleus is unknown, less than 1%
accuracy is required to determine the skin thickness at the
accuracy of 0.1 fm. Practically, we have to measure the total
reaction cross sections on the proton target at both low and
high incident energies, and to extract the neutron and proton
radii consistently with the measured cross sections. Here ‘low’
means typically 100–200 MeV where the difference of σnp

and σpp is considerably large and in addition the Glauber
approximation can be safely applied. If we could know the
matter (proton) radius by any methods, one needs to measure
only one total reaction cross section at the low (any) energy
where the cross section has more sensitivity to the neutron
distribution. In that case, the required accuracy for the cross
section measurement will be reduced.

We conclude that making use of the energy dependence of
the total reaction cross sections on the proton target is a most
promising way to extract the matter and neutron-skin thickness
for medium to heavy unstable nuclei.
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target density distributions and (2) the nuclear properties and
the total reaction cross sections on a proton target that are
calculated, using the three kinds of Skyrme interactions, for
103 nuclei selected from among Ca, Ni, Zr, Sn, Yb, and Pb
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