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In this article we present an extension of our recent Rapid Communication [Phys. Rev. C 90, 051301(R) (2014)]
where we calculate the nuclear matrix elements for neutrinoless double-β decay of 76Ge. For the calculations
we use a novel method that has perfect convergence properties and allows one to obtain the nonclosure nuclear
matrix elements for 76Ge with a 1% accuracy. We present a new way to calculate the optimal closure energy;
using this energy with the closure approximation provides the most accurate closure nuclear matrix elements. In
addition, we present a new analysis of the heavy-neutrino-exchange nuclear matrix elements, and we compare
occupation probabilities and Gamow-Teller strength with experimental data.
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I. INTRODUCTION

The search for neutrinoless double-β decay is one of the
most interesting and intensively studied topics in modern
nuclear physics. Neutrinos are unique particles; while there are
many examples of truly neutral particles of integer spin (when
the particle fully coincides with its antiparticle, for example,
a photon or π0 meson), neutrinos are the only candidates
for truly neutral particles of half-integer spin. Explaining
this asymmetry between fermions and bosons is an ultimate
challenge in modern physics, and observation of neutrinoless
double-β decay would remove this difference and would make
a significant contribution to our understanding of Nature.

Detecting neutrinoless double-β (0νββ ) decay is no doubt
a very hard experimental task since the probabilities of
0νββ decays are extremely low. Alongside the experimental
difficulties there are certain challenges in the theoretical part
of the problem, where accurate calculations of the nuclear
matrix elements that involve the knowledge of a large number
of nuclear states in the intermediate nucleus are required.
Some recent theoretical attempts to address this problem
within different approaches and models are the quasiparticle
random phase approximation (QRPA) [1–3], the interacting
shell model (ISM) [4,5], the interacting boson model (IBM-2)
[6], the generator coordinate method [7], and the projected
Hartree-Fock Bogoliubov model [8].

The main goal of all the approaches mentioned above is
the calculation of the 0νββ nuclear matrix elements (NMEs),
which can be presented as a sum over the nuclear states of
the intermediate nucleus. In the case of 76Ge the intermediate
nucleus is the odd-odd nucleus of 76As. One characteristic
feature of most theoretical approaches is the use of the closure
approximation [9], where the energies of the intermediate
nuclear states are replaced with a constant value, the so-called
closure energy 〈E〉. The great advantage of the closure
approximation is that it allows one to analytically sum up over
all the intermediate nuclear states by using the completeness
relation. The disadvantage of this approximation is that the
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value of the closure energy is unknown and there is no good
way to calculate it. Moreover, one of the technical problems
with the closure approximation is that the terms in the sum over
the nuclear intermediate states have no unique sign, and there
are positive and negative contributions of similar magnitude in
the sum. Thus varying the closure energy, even within a wide
range of values, would not enable adequate representation of
the true value of the NME. It should be noted, though, that in
the current state of nuclear theory we cannot provide reliable
calculations of many intermediate nuclear states, especially
for odd-odd nuclei, so the closure approximation still plays a
leading role in 0νββ nuclear matrix element calculations.

In this paper, we summarize our recent progress in develop-
ing a shell-model-based method of calculation of 0νββ NMEs
beyond the closure approximation, the mixed method [10,11].
We apply the mixed method to the calculation of NMEs for
0νββ decay of 76Ge, one of the most promising candidate for
experimental observation of 0νββ decay. The most sensitive
limits on 0νββ decay half-lives have been obtained from
germanium-based experiments: the Heidelberg-Moscow ex-
periment [12], the International Germanium experiment [13],
and the GERDA-I experiment [14]. 76Ge is the only isotope
for which an observational claim has been made (though it
was not accepted by the double-β decay community) [15,16].
GERDA-II [17] and MAJORANA DEMONSTRATOR [18],
the second generation of germanium-based experiments, are
in progress.

In the mixed method the low-lying nuclear states of
the intermediate nucleus are taken into account with their
exact energies; both the wave functions and the energies
are calculated using a shell-model approach and a fine-tuned
effective shell-model Hamiltonian. For 76Ge it is impossible,
and as we show below, there is no need to calculate all the
intermediate states because the intermediate states with higher
energies can be accounted for in the closure approximation.
Thus the mixed method has two free parameters: the cutoff
parameter N , which separates the low-lying states from the
higher-energy states, and the closure energy, which is only
used for the contribution of the higher-energy states.

The advantage of the mixed method is that the sensitivity
of mixed NMEs to the variation of the closure energy is
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significantly lower than for the standard closure approximation
(see, e.g., Fig. 1 in [21]). Also, the convergence properties
of the NMEs as one increases the value of the cutoff
parameter N are incomparably better than if one considers
only the low-lying intermediate states up to N and does not
include the higher-energy states (see Fig. 4 below). Using the
shell model, one of the most successful microscopic nuclear
structure models, as the main tool of calculation brings in
all the problems and challenges usually associated with the
shell-model approach, namely, the restricted single-particle
model space and the problem of getting a reliable effective
shell-model Hamiltonian.

To calculate the NMEs of 76Ge we use the NUSHELLX@MSU

shell-model code [19]. The model space is jj44, which
has as its core 56Ni and the valence single-particle orbitals
f5/2, p3/2, p1/2, and g9/2. We use the JUN45 shell-model
Hamiltonian [20]. Based on our experience with different
nuclei, in order to achieve a reasonable accuracy for the NME
calculations one needs to calculate a very small fraction of the
intermediate states for each Jπ : about 20 states for 48Ca [10]
and about 60 states for 82Se. For the case of 76Ge we need only
about 100 intermediate states in order to reach the necessary
convergence.

In this paper we extend the analysis of the results recently
published as a Rapid Communication [21]. It contains an
extended analysis of the method used, and it presents nine
new figures and four new tables, which are used to extend
and clarify the results presented in Ref. [21]. In particular,
we present I -pair decompositions for both light- and heavy-
neutrino exchange NMEs that were recently used as a starting
point to propose a new method of calculating these matrix
elements [22] and recently used to make better estimates
of NME uncertainties [23]. We also present a new way of
calculating the closure energies, which can be used for the pure
closure approaches; we argue that using our optimal closure
energies with the standard closure approximation, one gets
the most accurate NMEs. We calculated the optimal closure
energies for the 0νββ decays of 48Ca, 82Se, and 76Ge isotopes.
The effective Hamiltonian JUN45 was extensively validated
and discussed in Ref. [20]. Here we add to those observables
studied in Ref. [20] the neutron and proton occupancies in
76Ge and 76Se and the Gamow-Teller strength in 76Ge.

II. THE NUCLEAR MATRIX ELEMENT

Assuming the light-neutrino-exchange mechanism, the
decay rate of a 0νββ decay process can be written as [1]

1

T1/2
= G0ν |M0ν |2

( 〈mββ〉
me

)2

, (1)

where G0ν is the phase-space factor [24], M0ν is the nuclear
matrix element, me is the electron mass, and 〈mββ〉 is the
effective neutrino mass, which depends on the neutrino masses
mk and the elements of the neutrino mixing matrix Uek [1],

〈mββ〉 =
∣∣∣∣∣
∑

k

mkU
2
ek

∣∣∣∣∣. (2)

The NME M0ν is usually presented as the sum of three terms,
Gamow-Teller (M0ν

GT), Fermi (M0ν
F ), and tensor (M0ν

T ) NMEs
(see, for example, Refs. [10,11,25]),

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F + M0ν

T . (3)

Here we use gA = 1.254, for comparison with older results
(using the modern gA = 1.269 would decrease the NME by
less than 0.5% [11]), and gV = 1.

In the case of 0νββ decay of 76Ge, the matrix elements
can be presented as an amplitude for the transitional process
where the ground state |i〉 of the initial nucleus 76Ge changes
into an intermediate state |κ〉 of the nucleus 76As and then to
the ground state |f 〉 of the final nucleus 76Se:

M0ν
α =

∑
κ

∑
1234

〈13|Oα|24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉. (4)

Here the sum over κ spans all the intermediate states |κ〉, in-
dices 1–4 correspond to the single-particle quantum numbers,
the label α describes different terms in the total NME, (3):
Gamow-Teller (α = GT), Fermi (α = F ), and tensor (α = T ).
The operatorsOα carry all the details of a 0νββ decay process;
they explicitly depend on the intermediate-state energy Eκ ,

Oα = Oα(E0 + Eκ ), (5)

through the energy denominators in perturbation theory.
The actual form of the Oα operators can be found in
Ref. [10]. Here, we would like only to emphasize the
energy dependence of these operators. The constant E0 =
[Egs(76As) − Egs(76Ge)] + Qββ/2 ≈ 1.943 MeV.

Exact calculation of the NMEs, (4), can be problematic due
to the sum over a large number of intermediate states. One
way to proceed in this situation is to restrict this sum by a state
cutoff parameter N ,

M0ν
α (N ) =

∑
κ�N

〈13|Oα|24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉; (6)

here and below the sum over the repeated indices 1, 2, 3, and
4 is assumed. In this running nonclosure approach, the NMEs
defined by Eq. (6) depend on the cutoff parameter N ; they
reach the exact values, (4), when N → ∞: M0ν

α ≡ M0ν
α (∞).

The success of the running nonclosure approach is defined by
the convergence properties of M0ν

α (N ) as a function of N .
Another way to proceed in this situation is to use the closure

approximation. In the closure approximation the energies of
intermediate states are replaced by a constant value as

E0 + Eκ → 〈E〉,
Oα(E0 + Eκ ) → Õα ≡ Oα(〈E〉), (7)

where 〈E〉 is the closure energy. Values of 〈E〉 from Ref. [26]
are frequently used.

We introduce two forms of the closure approximation: the
closure (or pure closure) and the running closure approxima-
tions [11]. The running closure NMEs are presented similarly
to the running nonclosure nuclear matrix elements (6):

M0ν
α (N ) =

∑
κ�N

〈13|Õα|24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉. (8)
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M0ν
α (N ) values depend both on the state cutoff parameter N

and on the closure energy 〈E〉; when N → ∞ the running
closure NMEs reach their closure values,

M0ν
α ≡ M0ν

α (∞) = 〈13|Õα|24〉〈f |ĉ†3c4ĉ
†
1ĉ2|i〉, (9)

where we could remove the sum over intermediate states
in Eq. (8) using the completeness relation

∑ |κ〉〈κ| = Î .
Equation (9) presents the standard closure approximation—the
simplest and most commonly used method for 0νββ decay
NME calculations. The closure NMEs, (9), depend on the
closure energy 〈E〉, which is not known and cannot be
calculated; this causes an uncertainty of about 10% in the
NMEs (see, for example, [10,11,25]).

In some cases, for example, the 0νββ decay of 48Ca, the
running nonclosure NMEs converge pretty rapidly and matrix
elements can be computed within the standard shell-model
approach [10]. However, the running nonclosure approach
cannot be directly used for the heavier cases, such as 0νββ
decay of 82Se and 76Ge, where only a few hundred intermediate
states can be calculated.

To resolve this problem the mixed (or just nonclosure)
method was introduced [10,11]. The mixed NMEs are pre-
sented as the following combination of the running nonclosure,
closure, and running closure NMEs:

M̄0ν
α (N ) = M0ν

α (N ) + M0ν
α − M0ν

α (N ). (10)

In the mixed method the intermediate states below the cutoff
parameter N are taken into account by the first nonclosure
term M0ν

α (N ) and the states above N are included within the
closure approach by [M0ν

α − M0ν
α (N )]. It was shown that the

mixed NMEs, (10), converge significantly more rapidly than
the running matrix elements separately. It was also shown that
the mixed NMEs have a much weaker dependence on the
closure energy 〈E〉 compared with the closure NMEs [10,11].

The nonclosure approach allows one to calculate the 0νββ
decay NMEs for a fixed spin and parity Jπ of the intermediate
states |κ〉,

M0ν
α (J ) =

∑
κ, Jκ=J

〈13|Oα|24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉, (11)

where the sum over κ spans all the intermediate states with
a given spin and parity Jπ . This J decomposition can be
obtained only within a nonclosure approach. Another way
to decompose NMEs of a 0νββ decay process is associated
with the closure approximation. In this decoupling scheme the
single-particle states |1〉 and |3〉 (proton states) and the states
|2〉 and |4〉 (neutron states) in the two-body matrix elements
〈13|Oα|24〉 are coupled to a certain common spin I ,

M0ν
α (I ) =

∑
κ

〈13,I |Oα|I,24〉〈f |ĉ†3ĉ4|κ〉〈κ|ĉ†1ĉ2|i〉; (12)

here the sum over intermediate states is not restricted (for
details see Ref. [10]). The total matrix elements can be
obtained using any of these decoupling schemes as

M0ν
α =

∑
J

M0ν
α (J ) =

∑
I

M0ν
α (I ). (13)

We also analyze the NMEs for the right-handed heavy-
neutrino-exchange mechanism, whose corresponding contri-

bution to the total decay rate can be written as
[
T 0ν

1/2

]−1
heavy = G0ν

∣∣M0ν
N

∣∣2|ηNR|2, (14)

where the heavy-neutrino-exchange matrix elements M0ν
N have

a structure similar to that of the light-neutrino-exchange
NMEs, while the parameter ηNR depends on the heavy-
neutrino masses (for more details see, for example, Ref. [4]).
One difference between the heavy- and the light-neutrino-
exchange mechanisms is that the heavy-neutrino-exchange
NMEs do not depend on the energy of intermediate states.
Thus for the heavy-neutrino-exchange mechanism the closure
approach provides the exact matrix elements.

III. NUCLEAR STRUCTURE CALCULATIONS

As we mentioned in Sec. I, we use a shell-model approach
to calculate the NMEs for 76Ge. The valence space used here is
jj44, which has as its core 56Ni and the active single-particle
orbits f5/2, p3/2, p1/2, and g9/2. A reliable effective shell-model
Hamiltonian is essential for a good description of the nuclear
structure relevant for the calculation of the NMEs. We use the
JUN45 effective shell-model Hamiltonian [20]. Reference [20]
provides extensive validation of the JUN45 Hamiltonian by
comparison with the experimental data observables such as
ground-state and excited-state energies, B(E2) values, and
magnetic moments. Significant experimental effort has been
dedicated to containing the nuclear matrix elements by investi-
gating derived observables, such as neutron/proton occupation
probabilities [27,28], pairing strength, and Gamow-Teller
strength [29]. Here we add to those observables studied in
Ref. [20] the neutron and proton occupancies in 76Se and
76Ge and the Gamow-Teller strength in 76Ge. For the shell-
model calculations we use the NUSHELLX@MSU shell-model
code [19].

Figure 1 shows the comparison between our calculated
neutron occupancies and the experimental results [27] for
the case of 76Se and 76Ge. The occupancies of the p1/2 and
p3/2 orbital are summed up and denoted (p). The occupancies
of the f5/2 orbital (f) and of the gp/2 orbital (g) are also
shown. Figure 2 shows the same comparison for the proton
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FIG. 1. Theoretical (t) and experimental (x) neutron occupancies
of the p orbitals, f5/2 orbital (f), and g9/2 orbital (g) for 76Ge and
76Se. Data are taken from Ref. [27].
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FIG. 2. Same as Fig. 1, for proton occupancies. Data are taken
from Ref. [28].

occupancies. The data are taken from Ref. [28]. We find the
agreement between the theoretical results and the experimental
data to be quite satisfactory.

The validation of the Gamow-Teller strength distribution
is particularly relevant for a good description of double-β
decay rates. In the jj44 valence space the spin-orbit partners
orbitals f7/2 and g7/2 are missing, and the Ikeda sum rule is
not satisfied. This results in missing about half of the Gamow-
Teller sum rule, although the loss is at higher energies and is not
visible in the low-energy data. A well-known problem with the
shell-model calculation of the Gamow-Teller strength is that
the shell model overestimates it, and a quenching factor for the
Gamow-Teller operator is necessary to explain the data. For
a full major shell valence space, such as the pf model space,
where all spin-orbit partner orbitals are present, a quenching
factor of about 0.74 is validated by the data. In the jj44 valence
space the violation of the Ikea sum rule requires a modification
of this quenching factor. However, the small valence space
distorts the high-energy strength to a lower energy, and for a
fine-tuned Hamiltonian such as JUN45, the quenching factor
need not be changed too much from its standard value of 0.74.
In our case we use a quenching factor of 0.64, which was
shown to describe the 2νββ NME (see Sec. IV B).

Figure 3 presents the running Gamow-Teller strength for
76Ge calculated with the JUN45 Hamiltonian and using a
quenching factor of 0.64. The horizontal axis represents the
excitation energy of the 1+ states in the final nucleus 76As. The
results are compared with the high-resolution charge-exchange
experimental data [29]. Although we found discrepancies in
the GT strength of individual states of this odd-odd nucleus,
76As, the overall theoretical Gamow-Teller strength running
sum is in reasonably good agreement with the data.

IV. 0νββ NME Results

A. The convergence of the NME

First, we studied the convergence properties of the 0νββ
decay NMEs of 76Ge. Figure 4 presents the total NME, (3), as a
function of the number-of-state cutoff parameter N calculated
within different approximations. The solid red line, which does
not change with N , shows the closure NME defined by Eq. (9).
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FIG. 3. Running sum of the Gamow-Teller strength in 76Ge: the
red line represents the calculated sum and the blue line is based on
the high-resolution charge-exchange data [29].

The running closure, (8), and the running nonclosure, (6),
NMEs are represented by the dashed red and dashed black
curves, respectively. At large cutoff parameters N the running
NMEs should approach their limits, but this does not occur.
N =100 is the maximum number of states we are able to
calculate in 76As with a computational effort of about 500 000
CPU × h, there is still a significant difference between the
running closure and the pure closure values. The mixed matrix
elements defined by Eq. (10) have much better convergence
properties; they are represented by the solid black curve in
Fig. 4. This curve starts with the closure value at N = 0 and
then slowly increases with N and flattens already after the first
50–60 states.

In the mixed method, the states above the cutoff parameter
N are included in the closure approximation, which makes
the mixed NMEs dependent on the closure energy 〈E〉.
However, this dependence is not strong. For N = 0 (the

0 20 40 60 80 100
N, number-of-states cutoff parameter
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4

mixed
closure
running nonclosure
running closure

FIG. 4. Convergence of NMEs (light-neutrino exchange) as a
function of the cutoff parameter N calculated with different approxi-
mations: mixed (solid black curve), closure (solid red curve), running
nonclosure (dashed black curve), and running closure (dashed blue
curve). All calculations were done using the CD-Bonn SRC and
〈E〉 = 9.41 MeV [26].
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mixed, CD-Bonn SRC
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mixed, AV18 SRC

FIG. 5. Dependence of mixed and closure NMEs for the 0νββ

decay of 76Ge (light-neutrino exchange) on the average closure energy
〈E〉. MNEs: closure with the CD-Bonn SRC (dashed black curve),
mixed with the CD-Bonn SRC (solid black curve), closure with the
AV18 SRC (dashed red curve), and mixed with the AV18 SRC (solid
red curve).

closure approximation), it results in a 10% uncertainty in the
total NMEs [25]. When the cutoff parameter increases, this
dependence weakens relatively rapidly. It was shown in [21]
that it is sufficient to use only the first 100 nuclear states for
each Jπ of 76As to obtain the 0νββ decay NMEs of 76Ge
within a 1% accuracy.

Figure 5 shows how the closure NMEs (dashed curves)
and the mixed NMEs calculated with N = 100 (solid curves)
depend on the closure energy 〈E〉. There are different ways
in which the short-range correlations (SRCs) can be taken
into account [25]; the upper, black curves correspond to the
CD-Bonn SRC parametrization set and the lower, red curves
correspond to the AV18 SRC parametrization set. Figure 5
demonstrates that the mixed NMEs have a much weaker
dependence on the closure energy than the pure closure NMEs.
With the closure energy varying from 2 to 10 MeV the
mixed NMEs change by about 2%, while the closure NMEs
change by 12%. This observation is consistent with the recent
calculations performed for the 0νββ decay processes of 48Ca
and 82Se [10,11,25].

B. The intermediate J and the I-pair decomposition
of the NMEs

The J decomposition [see Eq. (11)] is presented in Fig. 2
of our recent work [21]. It shows that all the spins J contribute
coherently to the total NMEs. The contribution of J = 1 is
dominant, but it provides only about 30% of the total value.
Figure 6 here presents the I decomposition [see Eq. (12)] of
the nonclosure NMEs. In Fig. 6 all the Gamow-Teller NMEs
(with both parities: positive and negative) are represented by
vertically striped blue bars and all the Fermi matrix elements
(with both parities) are presented by horizontally striped black
bars. Also, all plotted Fermi matrix elements were taken with
opposite sign and multiplied by the factor (gV /gA)2 � 0.636,
so if we neglect the tensor NMEs (which are actually small),

I=0 I=1 I=2 I=3 I=4 I=5 I=6 I=7 I=8 I=9
Spin of the neutron-neutron (proton-proton) pairs
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

GT (both parities)
F (both parities)

FIG. 6. I decomposition, light-neutrino exchange: contributions
to the running nonclosure Gamow-Teller (vertically striped blue
bars) and Fermi (horizontally striped black bars) matrix elements
for the 0νββ decay of 76Ge from the configurations when two initial
neutrons |24〉 (and two final protons |13〉) have certain total spin I ,
〈13,I |Oα|I,24〉. Both parities are included and the CD-Bonn SRC
parametrization was used.

then the total height of each bar corresponds to the total NMEs
calculated for each spin I in Eq. (3). The situation with the
I decomposition presented in Fig. 6 is different compared to
the J decomposition. There are big contributions from I = 0
and I = 2 which cancel each other. Similar effects have been
observed in the shell-model analysis [10] for 48Ca and in [11]
for 82Se. Also, this I decomposition cancellation was recently
discussed in [22], and it was used as a basis for a new method
to calculate the NMEs and to relate them to additional nuclear
structure constraints that could be obtained from pair transfer
reactions [30].

Table I summarizes the results for the light-neutrino-
exchange NMEs of 0νββ decay of 76Ge calculated within
different approximations. The mixed total matrix element is
about 7% greater than the total closure NME. This increase is
consistent with similar calculations [10,11,31].

It should be noted that the jj44 model space is incomplete
because the f7/2 and g7/2 orbitals are missing. As a result,
the Ikeda sum rule is not satisfied and some contributions
from the Gamow-Teller NME with Jπ = 6+ and 8+ and from
the Fermi NME with Jπ =1− are missing. Looking at the J
decomposition in Fig. 2 in Ref. [21], it seems safe to suggest
that the missing contributions are not very large. However,

TABLE I. NMEs for the 0νββ decay of 76Ge (light-neutrino ex-
change) calculated within different approximations. All calculations
were done with the CD-Bonn SRC parametrization scheme and the
average closure energy 〈E〉 = 9.41 MeV [26].

Closure Running closure Running nonclosure Mixed

M0ν
GT 2.95 2.50 2.70 3.15

M0ν
F −0.65 −0.58 −0.61 −0.67

M0ν
T −0.01 0.02 0.02 −0.01

M0ν
total 3.35 2.89 3.10 3.57
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TABLE II. Optimal closure energies 〈E〉 (in MeV) calculated for
different isotopes and effective Hamiltonians. Effective Hamiltonians
considered are GXPF1A, FPD6, and KB3G for Ca and JUN45 for
Ge and Se isotopes.

GXPF1A FPD6 KB3G JUN45

44Ca 0.29 1.61 2.03 –
46Ca 0.05 1.59 2.37 –
48Ca 0.22 1.85 2.46 –
76Ge – – – 3.44
82Se – – – 3.65

this deficiency is reflected in the two-neutrino NME, which
requires a quenching factor of about 0.64, smaller than the
usual 0.74, to describe the experimental data [32] (see also
Table 2 in Ref. [33]). Although the spin-isospin operators
entering the 0νββ decay NME are different from those in
the pure Gamow-Teller, some authors (see, e.g., Ref. [34])
advocate using appropriate quenching factors for contribu-
tions coming from different spins of the intermediate states.
The most important are those from Jπ = 1+ states, which
represent about 30% of the total NMEs, and from Jπ = 2−
states [34], which represent about 15% of the total NMEs. It
would be interesting to investigate whether quenching factors
obtained from other processes, such as 2νββ decay and charge-
exchange reactions, quench the corresponding contributions to
the 0νββ decay NMEs. For example, if one uses a quenching
factor of 0.642 for the contribution from the Jπ =1+ states
and 0.402 for the contribution from the Jπ = 2− [34], one
gets for the CD-Bonn SRC an NME of 2.369 rather than 3.572
(see Table I). One can view this as a lower-limit NME in our
approach.

C. The optimal closure energy

Since we can calculate both the nonclosure NME and the
closure NME, it is possible to find such optimal values for the
closure energies at which the closure approach provides the
most accurate NMEs (see, e.g., the crossing lines in Fig. 5):

M̄0ν = M0ν(〈E〉). (15)

One interesting observation is that the optimal energies
calculated for the 0νββ decay of 82Se [11] and 76Ge with
the same JUN45 effective Hamiltonian and the same jj44

model space practically coincide: they both equal about 〈E〉 ≈
3.5 MeV, although the two cases describe quite different nuclei.
It would thus be interesting to find a method to estimate the
optimal closure energies rather than using estimates from other
methods, such as those in Ref. [26]. Table II lists the optimal
closure energies calculated for the fictitious 0νββ decays of
44Ca and 46Ca and for the realistic 0νββ decays of 48Ca,
76Ge, and 82Se (see also Fig. 3 in [21]). All calcium isotopes
were calculated in the pf model space using several realistic
Hamiltonians. The 76Ge and 82Se isotopes were considered
in the same jj44 model space and with the same JUN45
Hamiltonian. The optimal closure energies are significantly
lower than the standard closure energies (7.72 MeV for Ca,
9.41 MeV for Ge, and 10.08 MeV for Se [26]), which explains
the 7%–10% growth in absolute values of the nonclosure
NMEs compared to the closure values. We conjecture that
the optimal energies depend on the effective Hamiltonian and,
possibly, on the model space. We found the optimal closure
energies for the three Hamiltonians in the pf model space:
GXPF1A [35], FPD6 [36], and KB3G [37]. However, it seems
that the energies do not depend much on the specific nucleus:
all the calcium isotopes calculated with the same Hamiltonian
and both the 76Ge and the 82Se isotopes calculated with
the same model space and with the same Hamiltonian give
similar optimal closure energies. This raises an interesting
opportunity: one could calculate the optimal closure energy
in a realistic model space with an effective Hamiltonian
for a nearby less computationally demanding isotope (for
example, 44Ca), after which one could use it for a realistic case
(for example, 48Ca). This scheme offers a consistent way of
“calculating” the closure energies that has not been discussed
before.

In Table III we compare our results for the NMEs of
0νββ decay of 76Ge (light-neutrino-exchange mechanism)
with recent calculations. Table III lists matrix elements
obtained with the interacting shell-model (ISM) approach [38];
the quasiparticle random phase approximation, Tüebingen-
Bratislava-Caltech group [(R)QRPA(TBC)] [39,40]; the quasi-
particle random phase approximation, Jyväskylä group
[QRPA(J)] [41]; the quasiparticle random phase approxima-
tion, Holt and Engel [42]; the interacting boson model (IBM-2)
[6]; and the generator coordinate method (EDF) [7]. The
value gA = 1.254 is used in most of the calculations, except
for IBM-2, which uses the axial-vector coupling constant
gA = 1.269 [43].

TABLE III. Comparison of the total NMEs for the 0νββ decay of 76Ge (light-neutrino exchange) calculated with different approaches and
with different SRC parametrization schemes. gA = 1.254 is used for the axial-vector coupling constant.

SRC M0ν
total

ISM ISM QRPA(TBC) RQRPA(TBC) QRPA(J) QRPA IBM-2 EDF
(present study) [38] [39,40] [39,40] [41] [42] [6] [7]

None 3.45 2.96
Miller-Spencer 2.72 2.30 4.68 3.33 3.77 3.83 5.42
CD-Bonn 3.57 6.32 5.44 6.16
AV18 3.37 5.81 4.97 5.98
UCOM 2.81 5.73 3.92 5.18 4.60
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FIG. 7. J decomposition, heavy-neutrino exchange: contribu-
tions of the intermediate states |κ〉 with certain spin and parity J π

to the Gamow-Teller (blue and red bars) and Fermi (black and green
bars) matrix elements for the 0νββ decay of 76Ge. Diagonally striped
bars correspond to the contributions of positive-parity states, while
horizontally and vertically striped bars represent states with a negative
parity. All calculations were done with the CD-Bonn SRC.

D. The heavy-neutrino-exchange NME

Figure 7 and Table IV summarize the results for our heavy-
neutrino-exchange 0νββ decay of 76Ge. Comparing the light-
and heavy-neutrino-exchange NMEs (compare Fig. 2 in [21]
to Fig. 7 here) one can see that the heavy-neutrino-exchange
NMEs do not vanish with the large intermediate spins J . The
heavy-neutrino potentials have a strong short-range part, so
the contributions from the large neutrino momentum, which
are responsible for the higher spin contributions, are not
suppressed.

E. The I decomposition of the closure NME

Finally, we calculated the I decompositions of the closure
NMEs, Eq. (9), for the 0νββ decay of 76Ge at the optimal
closure energy calculated specifically for 76Ge, for the JUN45
effective Hamiltonian and the jj44 model space, 〈E〉 =
3.5 MeV. Figures 8 and 9 present the matrix elements cal-
culated for the light-neutrino- and heavy-neutrino-exchange,
respectively. NMEs in these figures include both positive and
negative parities, and the Fermi matrix elements were taken
with the opposite sign and multiplied by a factor of (gV /gA)2,
so that the total height of each bar corresponds to the total

TABLE IV. Heavy-neutrino-exchange NMEs of the 0νββ decay
of 76Ge calculated with different SRC parametrization sets [25].

SRC, approximation M0ν
GT M0ν

F M0ν
T M0ν

total

CD-Bonn
Closure 162 −62.6 −0.19 202
Running closure 147 −56.5 0.22 183

AV18
Closure 105 −52.1 −0.20 140
Running closure 95.8 −46.9 0.22 126

I=0 I=1 I=2 I=3 I=4 I=5 I=6 I=7 I=8 I=9
Spin of the neutron-neutron (proton-proton) pairs
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FIG. 8. I decomposition: closure approximation Gamow-Teller
and Fermi matrix elements (both parities) for the 0νββ decay of
76Ge, light-neutrino exchange. The calculation was performed with
the optimal closure energy, 〈E〉 = 3.5 MeV. The results should be
compared with the matrix elements presented in Fig. 6.

matrix element, (3) (if the tensor matrix element is neglected).
Comparing Fig. 6 and Fig. 8 we can see a good agreement be-
tween the nonclosure and the closure approximations when the
optimal closure energy is used. It is important to note that using
the optimal closure energy for the closure NMEs provides good
results not only for the total matrix elements but also for the
individual MNEs, of different types and different spins I .

One can also note the strong cancellation between the
I = 0 and the I = 2 contributions for the light-neutrino
exchange, which leads to a rather small NME. The lack
of an I = 2 contribution, which would reduce the larger
I = 0 contribution, could explain why some methods provide
relatively larger NMEs [23]. The analog pattern for the
heavy-neutrino-exchange NMEs (Fig. 9) is similar but the
cancellation is less pronounced due to the strong I = 0 pairing
component typical for short-range operators. In this case one
should wonder whether a larger model space could bring
additional contributions to the I = 0 component [23].

I=0 I=1 I=2 I=3 I=4 I=5 I=6 I=7 I=8 I=9
Spin of the neutron-neutron (proton-proton) pairs

-50

0

50

100

150

200
GT+
F+
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FIG. 9. I decomposition: closure approximation Gamow-Teller
and Fermi matrix elements (both parities) for the 0νββ decay of 76Ge,
heavy-neutrino exchange.
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V. CONCLUSIONS AND OUTLOOK

In summary, we calculated the 0νββ decay NMEs of 76Ge
using, for the first time, a realistic shell-model approach
beyond the closure approximation. For the calculation we
used the realistic jj44 model space and the JUN45 effective
Hamiltonian, which was fine-tuned in the region of 76Ge
and 82Se. We investigated a new method, which considers
information from both closure and nonclosure approaches.
This mixed method was carefully tested in the fictitious cases
of 44Ca and 46Ca, where all the intermediate states can be
calculated. Then the mixed method was used to calculate the
0νββ decay NMEs of 48Ca, 82Se, and 76Ge isotopes, which was
the first realistic shell-model calculation of the 0νββ decay
NMEs beyond the closure approximation. We demonstrated
that the NMEs calculated with the mixed method converge very
rapidly compared to the running nonclosure matrix elements
and we found a 7%–10% increase in the total NMEs compared
to the closure values.

For the light-neutrino-exchange mechanism we predict

M0ν = 3.5 ± 0.1, (16)

where the average value and the error were estimated con-
sidering the total mixed NMEs calculated with the CD-Bonn
and AV18 SRC parametrization sets (see Table I in [21]). A
more elaborate method of estimating the error, which relies
in part on our I -pair decomposition, is presented in Ref. [23].
For the heavy-neutrino-exchange NME we get, with different
SRC parametrization sets (CD-Bonn and AV18 SRC),

M0ν
N = 202/140. (17)

We proposed a new method of calculating the optimal closure
energies with which the closure approach gives the most
accurate NMEs. We argue that these optimal closure energies
depend on the Hamiltonian and model space and have a weak
dependence on the actual isotopes. These features can be

used to determine the optimal closure energies using fictitious
double-β decay of isotopes that are easier to calculate in a given
valence space. This computational route offers the opportunity
of estimating the beyond-closure 0νββ NMEs without actually
calculating the intermediate states.

We calculated for the first time a decomposition of the shell-
model NMEs in light- and heavy-neutrino-exchange mech-
anisms for different spins of intermediate states. We found
that for the light-neutrino-exchange NMEs the contribution
of the Jπ = 1+ states is about 30% and that of the Jπ = 2−
states is about 15%. The shell-model J decomposition that we
obtained provides a unique opportunity to selectively quench
different contributions to the total NMEs, which, in the case
of 76Ge, could lead to a decrease of about 30% in the total
matrix elements. Although the QRPA approach can provide a J
decomposition, its methodology of choosing the gpp parameter
to describe the 2νββ half-life [31] could make the selective
quenching ambiguous.

We also presented I -pair decompositions for both light-
and heavy-neutrino-exchange NMEs that were recently used
as a starting point to propose a new method of calculating
these matrix elements [22] and that could lead to new venues
of constraining the NME by pair transfer experimental data.
In addition, the different levels of cancellation between I = 0
and I = 2 contributions could shed new light on the origin
of the discrepancies between NMEs calculated with different
methods [23].
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