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Coulomb excitation of 44Ca and 46Ar
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4Centre d‘Études Nucléaires de Bordeaux Gradignan-UMR 5797, CNRS/IN2P3, Université de Bordeaux 1, Chemin du Solarium,
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The reduced transition probabilities B(E2; 0+
g.s. → 2+

1 ) of the 46Ar and 44Ca nuclei were studied using the
Coulomb excitation technique at intermediate energy at the LISE/GANIL facility. The in-flight γ rays, emitted
after the Coulomb excitation of their first 2+ states, were detected in an array of 64 BaF2 crystals. The present
B(E2 ↑) value for 44Ca, 475(36) e2fm4, agrees well with the value of 495(35) e2fm4 obtained by averaging results
of previous experiments. Consistent B(E2; 0+

g.s. → 2+
1 ) values of 225(29) e2fm4 and 234(19) e2fm4 have been

obtained for 46Ar from an absolute and a relative measurement, normalized to the 44Ca value. Both results agree
with the ones obtained with the same experimental technique at the NSCL facility but are a factor of 2 smaller
than the shell model predictions. The drop in B(E2; 0+

g.s. → 2+
1 ) in the Ar chain at N = 28, confirmed in this

experiment, shows that 46Ar is sensitive to the N = 28 shell closure.

DOI: 10.1103/PhysRevC.93.044333

I. INTRODUCTION

The evolution of the N = 28 shell closure has been
investigated far from stability using several experimental
techniques. Experimental results suggest that a progressive
onset of deformation occurs below 48Ca (see, e.g., Ref. [1]).
In particular, the gradual decrease of the 2+

1 energies in the
N = 28 isotones from 3831 keV in 48Ca, 1577 keV in 46Ar
[2], 1329 keV in 44S [3], and 770 keV in 42Si [4,5] indicates
that a large deformation is steadily establishing toward 42Si.

Mean field approaches [6–9] as well as shell model calcula-
tions [10–14] predict a close-to-spherical 46Ar, a shape mixing
or shape coexistence in 44S, and a large oblate deformation
in 42Si. The properties of the recently discovered low-lying
isomeric 0+

2 state in 44S [15] supports a shape mixing between
the 0+

1 and 0+
2 states.

Being located two protons away from the doubly magic
48Ca, 46Ar should in principle be considered as a semimagic
nucleus, as confirmed by the following experimental results.
A significant drop in the one-neutron separation energy Sn is
observed in the Ar chain after having passed N = 28 [16],
which is suggestive of a shell closure. Moreover, studies of
its neutron Fermi surfaces via various transfer and knockout
reactions [17–19] on 46Ar led to the following conclusions:
(i) the neutron f7/2 orbit is about 75% full in the ground state
of 46Ar, the remaining 25% being in the p3/2 orbit, (ii) the

N = 28 gap between the f7/2 and p3/2 orbits only decreases
by about 330 keV between 46Ar and 48Ca, therefore remaining
larger than 4 MeV. The systematics of 2+

1 energies and
B(E2; 0+

g.s. → 2+
1 ) values give further support to the existence

of a shell closure at N = 28 in the Ar isotopic chain. Indeed,
an increase in 2+ excitation energy is observed for 46Ar, while
a drop in B(E2; 0+

g.s. → 2+
1 ) is derived using the values of

196(39) e2fm4 [2] and 218(31) e2fm4 [20], obtained from
intermediate energy Coulomb excitation measurements. As for
the protons, it was discussed in Refs. [17,21] that the d3/2 and
s1/2 orbits are likely degenerate and equiprobably occupied.

Two things are, however, shedding doubts concerning
our full understanding of the shell structure of 46Ar. On
the experimental side, a high B(E2; 0+

g.s. → 2+
1 ) value of

570+335
−160 e2fm4 [22] has been deduced from the lifetime of

the 2+
1 state obtained from the differential recoil-distance

Doppler-shift method. This value differs by more than 2σ

from the two other experimental values. It is, however, in
close agreement with the value of about 500 e2fm4 predicted
by shell-model calculations, in which no drop in B(E2; 0+

g.s. →
2+

1 ) at N = 28 is predicted, regardless of the interaction used
[10,12,13,23,24]. Given the presently uncertain situation, we
remeasured the B(E2; 0+

g.s. → 2+
1 ) value of 46Ar in an absolute

manner and relatively to the well-known value in 44Ca. The
latter study is interesting as it suppresses most of the systematic
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FIG. 1. Schematic picture of the experimental setup.

uncertainties inherent to the intermediate energy Coulomb
excitation measurements.

II. EXPERIMENT

The 46Ar nuclei were produced at the GANIL facility in
the interactions of a 60 AMeV 48Ca 19+ beam, at an average
intensity of ∼ 4 μA, in a 145-μm 9Be target. An additional
setting of the spectrometer was required to select the stable
44Ca nucleus that was used for calibration purpose. Both 46Ar
and nuclei 44Ca had similar midtarget energies of 38.5 MeV/A
and 36.8 MeV/A, respectively. These nuclei were separated
from other reaction products by the LISE3 spectrometer [25],
in which a wedge-shaped Be degrader of 221 μm was inserted
at the intermediate focal plane. Their Coulomb excitation was
induced by a 200-mg/cm2 208Pb target placed at the image
focal plane of the spectrometer that was surrounded by the
64 hexagonal BaF2 crystals of the Château de Cristal placed
at a mean distance of 25 cm. In total, 2.93 × 108 46Ar and
2.5 × 108 44Ca were produced with purities of 83 and 64%,
respectively.

A schematic picture of the experimental setup is shown
in Fig. 1. Two position-sensitive CATS [26] detectors were
placed 90 and 50 cm upstream of the Pb target to (i)
determine the location of the ion impacts on target from their
tracking, (ii) identify the nuclei from their time-of-flight (TOF)
measurement with respect to the cyclotron radio-frequency,
(iii) establish a time coincidence between the incoming nuclei
and their in-flight emitted γ -rays, and (iv) count the number
incident nuclei to determine reaction cross sections.

Scattered nuclei that encountered a Coulomb interaction in
the Pb target were detected in a 500-μm-thick annular double-
sided silicon strip detector (DSSSD) [27], which had a central
hole of 3-cm diameter. It consisted, on the front side, of 4
quadrants of 16 annular strips of 2 mm pitch each, on the rear
side, of 24 radial strips of 3.4◦ pitch, each grouped three by
three. The interstrip distance was 100 μm. The detector was
mounted at a distance of 41.2 cm from the secondary target.
In this way the DSSSD covered angles from 1.5 to 6.5◦ in the
laboratory frame. This angular coverage ensures that nuclei are
detected up to the grazing angle of the reaction. The scattered
ions were identified in an event-by-event basis by the combined
measurements of their energy loss in the DSSSD (�E) and
time of flight. The angular resolution of DSSSD ranged from
0.14 degrees for the most inner ring to 0.5 degrees for outer
one. The DSSSD was followed by a detector that consisted
of four nonsegmented silicon quadrants of 1500 μm thick.
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FIG. 2. Simulated efficiency of the DSSSD detector for 44Ca ions.
Angles are given in the laboratory frame.

This aimed at detecting the residual energy of the scattered
nuclei and determining their mass. Unfortunately, the signals
from this detector were not exploitable for the analysis and
a mass identification could not be made. Nuclei that passed
through the central hole of the DSSSD were identified from
their energy loss measured in a digitally processed ionization
chamber (CHIO), and from their time of flight derived from
the signals of a plastic scintillator located behind. A set of Ge
detectors was placed around the plastic scintillator to confirm
the identification procedure from the detection of known γ -
rays emitted in the isomer de-excitation of the neighboring
nucleus 43S.

A GEANT4 simulation was used to determine the geomet-
rical efficiency of the DSSSD detector, considering its dead
zones and the beam profile reconstructed at the target position.
The detector response, first considered here in the case of an
isotropic emission of ions, is presented in Fig. 2 as a function
of the deflection angle of the 44Ca nuclei. It increases steeply
between 0◦ and 2◦ and reaches a plateau at almost 80% between
3◦ and 5◦ in the laboratory frame.

When Coulomb excited, the first excited states of the 46Ar
and 44Ca nuclei decayed in-flight by the emission of γ rays,
which were detected by the 64 BaF2 crystals of the Château
de Cristal placed in two hemispheres around the target. With
a time resolution of 1 ns, and a minimum target to detector
distance of 25 cm, a time-of-flight separation between the
prompt γ -rays and neutrons, possibly evaporated by the target,
can be achieved [29]. γ -ray energies detected promptly in
two adjacent crystals were considered to be produced by a
single γ -ray that encountered a Compton scattering. Their
energies were then summed (add-back procedure), leading
to a reduction of the Compton edge in the γ -ray spectra.
The in-flight efficiency of the array was determined using
a GEANT4 simulation, whose validity was checked first
from the comparison between the simulated and measured
efficiencies obtained from stationary calibration sources. The
DWEIKO code [30] was used to determine the angular dis-
tribution of the emitted γ -rays, which was used subsequently
as an input for the GEANT4 simulation. It was checked that
the observed angular distribution match the calculated one.
A photopeak efficiency of ∼18 Å is found at 1.157 MeV.
According to the Doppler effect, γ peaks corresponding to the
in-flight de-excitation of the 2+

1 state at Eγ0 = 1157 keV in 44Ca
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are shifted as a function of their detection angle. To achieve an
optimized Doppler-shift correction, effective angles, at which
γ -rays are detected in individual crystals, were determined
using the detected peak energies Eγ :

Eγ

Eγ0

=
√

1 − β2

1 − β cos θγ

, (1)

where β = v/c is the velocity of the nucleus relative to the
speed of light. These angles were subsequently used to sum
up the Doppler-corrected γ spectra corresponding to each
detector. In this procedure, it was assumed that the γ -decay
occurred at the target position, which is a reasonable approx-
imation for a short-lived excited state. Effective angles can
deviate from the purely geometrical ones owing to several
effects, among which the mean detection depth of the γ -rays
that depends on their energy.

When dealing with beams of intermediate energies, both
Coulomb and nuclear interactions likely take place. The
Coulomb interaction dominates over the nuclear interactions
when the impact parameter b of the reaction is larger than
the range of the nuclear force. Below this impact parameter,
nuclear interactions could no longer be neglected, and the way
it has been handled in our work will be described below. Using
the prescriptions derived from Refs. [31,32], a minimal impact
parameter bmin, which depends on the interaction radius of the
target and projectile, is obtained as follows:

bmin = Rp + Rt + 6 + πa

2γ
fm, (2)

with

Rp(t) = 1.28A
1/3
p(t) − 0.76 + 0.8A

−1/3
p(t) fm, (3)

where Ap(t) is the mass of the projectile and target, respectively,
and

a = ZpZte
2

μc2β2
; γ = 1

√
1 − β2

. (4)

Here e is the electron charge, c the speed of light, μ the
reduced mass of the system, while Zp and Zt are the atomic
mass number of the projectile and target.

Using semiclassical trajectories, the minimal impact pa-
rameter bmin, below which the nuclear interaction adds to

Coulomb excitation [33], is linked to a maximal scattering
angle θmax

lab , beyond which nuclear excitations dominate. At
small scattering angles, as those discussed in the present work,
the approximation proposed in Ref. [34] holds:

θmax
lab = 2ZpZte

2

bminμc2β2γ
. (5)

III. RESULTS

A. Coulomb excitation of 44Ca

The left part of Fig. 3 displays the Doppler-corrected and
background-subtracted γ spectra of 44Ca as a function of
the scattering angle, casted in intervals of 1◦. A weak γ -ray
background component, obtained by gating on an off-prompt
time window, was subtracted in these spectra. Above 1◦,
the peak corresponding to the 2+ energy becomes clearly
visible and remains present afterwards. Using the present mean
velocity value 〈β〉 of 0.273 in Eqs. (2) and (5), it is found
that the Coulomb process dominates for impact parameters
larger than bmin = 18.4 fm, i.e., for maximum deflection
angle θmax

lab = 4.0◦. Note that this value is significantly smaller
than the grazing angle of the reaction that is 6.1◦. The
Doppler-corrected γ spectrum presented in the right part of
Fig. 3 is obtained when restricting to events with deflection
angles up to θmax

lab = 4.0◦.
The B(E2; 0+

g.s. → 2+
1 ) value of 44Ca is obtained from the

comparison between experimental and theoretical differential
cross sections. The latter were calculated with the DWEIKO

code that use the optical potential parameters optimized for
the 40Ar+208Pb [35] system as input. The same Coulomb and
nuclear potential parameters were used: a surface diffuseness
of a = 0.55 fm, a radius parameter of r0 = 1.2 fm,
and real and imaginary potential depths of V0 = 74.3 MeV
and W0 = 69.3 MeV, respectively. To allow the comparison
between theoretical and experimental cross sections (see
Fig. 4), theoretical cross sections were implemented in a
GEANT4 [28] simulation that take into account effects caused
by the incoming beam angle, its spatial extension, its angular
straggling in the target, the geometry of the DSSSD, as well as
the γ -ray detector efficiency. In a first step only the Coulomb
contribution was considered in the theory. The best agreement
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FIG. 3. Left: The Doppler corrected and background subtracted γ -ray spectra are displayed as a function of the 44Ca scattering angles, in
ranges of 1◦. Right: Same for scattering angles between θlab = 1.0◦ and θmax

lab = 4.0◦.
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FIG. 4. Comparison between the calculated angular distribution
in laboratory frame (red line) to experimental angular distribution
(black crosses), obtained with a B(E2; 0+

g.s. → 2+
1 ) value of 475 e2fm4

and neglecting nuclear excitations. To describe the experimental
angular distribution over the whole angular range, a value of
βN = 0.35(4) was implemented for the nuclear contribution (blue
line), keeping the Coulomb contribution constant.

between the calculated (red line of Fig. 4) and the experimental
(black crosses) cross sections of 53(4) mb is found in the 1◦–3◦
region using a B(E2; 0+

g.s. → 2+
1 ) value of 475(36) e2fm4. This

result is in excellent agreement with the value of 473(20)
e2fm4 [βC = 0.253(5)] adopted in the compilation of Raman
et al. [36], as well as with the values obtained via Coulomb
excitation [37,38], Doppler-shift attenuation method [39–41],
electron [42,43], and alpha scattering [44].

Beyond 3◦, experimental and theoretical cross sections pro-
gressively deviate, owing to the fact that the 2+ state becomes
excited by a combination of Coulomb and nuclear processes.
An adjustable nuclear contribution βN has, therefore, been
added to the GEANT4 simulation until matching experimental
cross section over the whole observed angular range. This
leads to the blue line of Fig. 4, which is obtained with a
nuclear excitation strength of βN = 0.35(4). This nuclear
contribution, βN , is larger than that of Coulomb one, βC =
0.253(5) [36], thus indicating that the 0+

1 → 2+
1 excitation is

dominantly excited via neutron excitations. This is in line with
what is expected for a Z = 20 proton closed-shell nucleus.
We note here that the deviation to pure Coulomb contribution,
which already occurs slightly below θmax

lab , is also partly due to

the angular straggling encountered by the ions traversing the
reaction target.

We examine here the possible contamination of the peak
corresponding to the 2+

1 state at 1157 keV in 44Ca from the
feeding of states coming from above, and decaying through
it. If populated, the 2+

2 state at 2656.5 keV decays by 90%
to the 2+

1 state via a 1499.5-keV γ -ray transition [45].
At intermediate energies, the one-step Coulomb excitation
dominates. As a result, the population of the 2+

2 states at
2656.5 keV will occur directly from the ground state, if
the B(E2; 0+

g.s. → 2+
2 ) value is large enough. We do not see

evidence of such a 1499.5-keV γ -ray in Fig. 3. Using a
GEANT4 simulation, we establish our sensitivity limit to
95 counts in the γ spectrum, meaning that a peak would
have been observed if above 95 counts. This nonobservation
corresponds to an upper B(E2; 0+

g.s. → 2+
2 ) value of about

41 e2fm4, which is consistent with the value of 41(9) e2fm4

reported in Ref. [46]. In principle, we should then subtract this
contribution to the present B(E2; 0+

g.s. → 2+
1 ), thus reducing

the B(E2; 0+
g.s. → 2+

1 ) value by a bit less than 10%. However,
as we and none of the authors of Refs. [36–44] could confirm
this feeding of this 2+

2 from the ground state, this contribution
has not been subtracted.

B. Coulomb excitation of 46Ar

The study of the Coulomb excitation of the 46Ar nucleus
was achieved by using the same procedure as for 44Ca. With a
mean β = v/c value of 0.279, a minimum impact parameter
bmin = 18.17 fm, and a maximum scattering angle θmax

lab =
3.25◦ are found from Eqs. (2) and (5). The Doppler-corrected
background-subtracted γ spectra are shown for different
angular ranges in the left part of Fig. 5. Along with the
1577 keV peak associated with the de-excitation of the 2+
state to the ground state in 46Ar, a peak is seen at 542 keV,
the amplitude of which grows with increasing angles. This
transition corresponds to the de-excitation of the first excited
state in the 45Ar nucleus, observed in the in-flight γ -ray
spectroscopy of 45Ar [47], in the one-neutron removal reaction
from 46Ar [19], as well as in the 44Ar stripping reaction [48].
As can be seen in the right part of Fig. 5, this transition is
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FIG. 5. Left: Doppler-corrected background subtracted γ -ray spectra displayed as a function of the scattering angle of 46Ar, cast in fixed
angular ranges of 1◦. Right: Same between scattering angles of θlab = 1◦ and θlab = 3.25◦.
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FIG. 6. Comparison between the calculated angular distribution
in laboratory frame (red line) to the experimental angular distribution
(black crosses) obtained by using a B(E2; 0+

g.s. → 2+
1 ) value of

225 e2fm4 and by neglecting nuclear excitations. To describe the
experimental angular distribution over the whole angular range, a
value of βN = 0.25(6) was implemented for the nuclear contribution
(blue line), keeping the Coulomb contribution unchanged.

not present in the energy spectrum for θlab<3◦, suggesting
that the 45Ar nucleus is populated by a nuclear reaction, such
as the removal of one neutron from 46Ar. The peak, possibly
observed around 1200 keV, may be due to the feeding of the
1770.3 keV state as well, that decays in 100 % cases to the
542-keV state.

As seen in Fig 6, the nuclear contribution could no
longer be neglected even below θmax

lab = 3.25◦, as the angular
straggling is bringing some of the nuclear contribution below
this angle. Therefore, the Coulomb contribution is extracted
from a fit between calculated and experimental cross sections
over a slightly smaller angular range, from 1◦ up to θlab =
3◦. A B(E2; 0+

g.s. → 2+
1 ) value of 225(29) e2fm4 is derived

from the integrated cross section of 40(5) mb. A compatible
B(E2; 0+

g.s. → 2+
1 ) value of 234(19) e2fm4 [or βC = 0.189(15)]

is derived for 46Ar, in relative to the one of 473(20) e2fm4

[36] for 44Ca, after having considered the minor differences in
efficiencies involved in the two cases. The B(E2; 0+

g.s. → 2+
1 )

values obtained via the two methods overlap within one σ
uncertainty. Both results are furthermore compatible with the
values of 196(39) e2fm4 [2] and 218(31) e2fm4 [20] obtained at
intermediate energy Coulomb excitation. Averaging of our two
B(E2) values with the two previous ones leads to B(E2) value
of 216(22) e2fm4, which is about half of the one deduced from
lifetime measurement, B(E2) = 570+335

−160 e2fm4 [22]. Since
the latter value has a very large error bar, results remain
almost compatible within 2σ . The measured reduced transition
probabilities B(E2; 0+

g.s. → 2+
1 ) in 46Ar, obtained in all the

discussed experimental works (including ours), are presented
in Table I. As in the case of 44Ca, we clearly see from Fig. 6
that a nuclear contribution has to be considered above 3◦. In
order to reproduce the experimental cross sections over the full
angular range, a nuclear contribution of βN = 0.25(6) must be
introduced. As for the case of 44Ca, the nuclear contribution is
larger than the Coulomb one.

We examine here the possibility of a side-feeding of the 2+
1

state at 1577 keV in 46Ar from a tentatively assigned 2+
2 state

at 3489 keV [47]. If populated directly from the ground state,
this state at 3489 keV would decay, according to Ref. [47],

TABLE I. Measured B(E2; 0+
g.s. → 2+

1 ) values, in units of e2fm4,
obtained for 46Ar from different experiments and the from present
work, in relative to 44Ca (Rel.) or in absolute (Abs.). The 〈B(E2)〉
value is obtained by averaging the present absolute and relative B(E2)
values with the B(E2) values derived in Refs. [2,20]

Ref. [2] [20] [22] [Rel.] [Abs.] 〈B(E2)〉
B(E2) 196(39) 218(31) 570+335

−160 234(19) 225(29) 216(22)

through a 1912-keV transition by 40%. Such a γ -ray is not
observed in our spectrum of Fig. 5. Based on a GEANT 4
simulation, our limit of nonobservation of such a peak is 52
counts. It corresponds to a maximum B(E2; 0+

g.s. → 2+
2 ) value

of 23 e2fm4, which would reduce the B(E2; 0+
g.s. → 2+

1 ) value

of 46Ar by 10% at most.

IV. DISCUSSION

Experimental 2+
1 energies of the Ar isotopes were compared

to nuclear shell model calculations using the effective interac-
tions SDPFU [10], SDPFMU [13], and SDPFK [12] that were
developed to describe nuclei in the sd-pf valence space. These
calculations have been carried out with the shell model code
NuShellX [49], using neutron and proton polarization charges
δn = δp = 0.5e that are the default values for this region [12].
The calculated E(2+

1 ) values differ by up to 30% along the
isotopic chain, depending on the choice of interaction [53].
Nevertheless, the global evolution of the E(2+

1 ) energy as a
function of the neutron number N is rather well reproduced.

As shown in Fig. 7, calculated B(E2; 0+
g.s. → 2+

1 ) values
display, despite large fluctuations that depend on the choice of
interaction, very similar trends. Surprisingly, all interactions
predict a similar B(E2) value at N = 28 that is the largest in
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FIG. 7. Measured and calculated B(E2; 0+
g.s. → 2+

1 ) values for
the Ar isotopes using SDPFK, SDPFMU, and SDPFU interactions
with standard polarization charges δn = δp = 0.5e. The B(E2; 0+

g.s. →
2+

1 ) values are taken from Ref. [36] for 36 − 44Ar and from Ref. [53]
for 48Ar. The experimental value presented for 46Ar corresponds to
the weighted average value from Refs. [2,20] and from the present
work.
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FIG. 8. Square of the phenomenological proton (continuous red
line) and neutron (dotted blue line) transition matrix elements. The
M2

p values for for 36−44Ar [36], for 46Ar extracted from the average
B(E2; 0+

g.s. → 2+
1 ) value obtained from the Coulomb excitation

experiments, and for 48Ar [53].

the Ar chain, but this is precisely where the deviation to the
experimental B(E2) is the largest.

To get some insight into the reason of this deviation,
the structure of the 0+

g.s. → 2+
1 transition has been decom-

posed into the corresponding proton and neutron interaction
strengths. The B(E2) value is linked to the proton transition
matrix element Mp, B(E2) = e2M2

p, while the combination
of inelastic (p,p′) and Coulomb excitation studies allow to
determine the ratio of neutron to proton matrix elements
Mn/Mp. This ratio has been derived for the 36,40,42,44Ar nuclei
by Khan et al. [50] and for the 46Ar nucleus by Riley et al.
[51]. Adding the information on the B(E2) values, the neutron
transition matrix elements Mn have been deduced. As for
38Ar, the mirror nucleus relation [52] was used to deduce
its Mn value. The evolution of phenomenological proton M2

p

and neutron M2
n transition probabilities is shown in Fig. 8.

Kinks in the proton and neutron transition matrix elements are
observed at the N = 20 and N = 28 neutron closed shells. The
amplitude of the M2

p depletions at the neutron closed shells
are smaller than those of the M2

n values, owing to the fact
that protons are only indirectly sensitive to the closed shell, in
contrary to neutrons.

In the generalized effective charge model [54] both the pro-
ton and neutron quadrupole matrix elements are interrelated
due to the polarization carried by each nucleon. In this model,

Mp = (1 + δp)Ap + δnAn; Mn = δpAp + (1 + δn)An, (6)

where δp and δn are the proton and neutron polarization
charges, and Ap and An are the quadrupole transition matrix
elements for protons and neutrons, respectively. Using Eq. (6)
and appropriate polarization charges, the An,Ap matrix ele-
ments can be determined, thus allowing the respective roles
of the protons and neutrons to be extracted. The square of
these matrix elements, obtained with standard δn = δp = 0.5
polarization charges, is compared to those calculated within
the shell model using the SDPFU interaction in Fig. 9. Matrix
element obtained using effective charges of δn = 0.8 and
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FIG. 9. Comparison of the square of the quadrupole matrix
elements (given in e2fm4) deduced for protons and neutrons using
the standard δn = δp = 0.5 polarization charges (solid line) and the
δn = 0.8, δp = 0.2 polarization charges proposed by Riley et al. [51]
(dotted line) with those calculated within the shell model using the
SDPFU interaction (dashed line).

δp = 0.2 as in Ref. [51], are shown as well in Fig. 9. It is found
that, independently of the used δn,p values, the An values are
steeply rising from N = 20 to 26 and decrease at N = 28. In
the shell model calculation, An increases steadily from N = 20
to N = 28, where it agrees with the experimental value. Proton
matrix elements A2

p are globally weaker than A2
n. As shown

on the righthand side of Fig. 8, experimental values decrease
steadily from N = 20 to 28. This trend is in agreement with
the shell model calculations up to N = 26, where a sudden
increase in A2

p is calculated instead. The main reason for the
too large calculated B(E2) value at N = 28 should be found
in this large deviation of A2

p at N = 28.

V. CONCLUSIONS

In summary, a reduced transition probability B(E2; 0+
g.s. →

2+
1 ) of 475(36) e2fm4 has been determined for 44Ca by using the

intermediate energy Coulomb excitation technique at GANIL.
It matches very well the adopted value of 473(20)e2fm4 [36]
and the weighted average value obtained from all experiments,
495(35)e2fm4. Consistent B(E2) values of 225(29) e2fm4 and
234(19) e2fm4 have been obtained for 46Ar from an absolute
measurement, and from a measurement relative to that of 44Ca,
respectively. These two values are, within about one σ , in
accordance with the B(E2) of 196(39) e2fm4 and 218(31)
e2fm4 obtained in Refs. [2] and [20], respectively. Combining
these four measurements, a B(E2) value of 216(22) e2fm4 is
proposed for 46Ar. This value is smaller, though still almost
compatible within 2σ , with the one obtained with marginal
statistics by means of lifetime measurement (570+335

−160 e2fm4).
This value of 216(22) e2fm4 is about a factor of two smaller
than the results of shell model calculations, whatever the
choice of interaction. This deviation between experiment and
shell model calculations for 46Ar at N = 28, that is only two
protons below 48Ca, is even more surprising since all E(2+

1 )
energies in the Ar isotopes from N = 20 to the newly studied
N = 30 48Ar [53,55] are rather well reproduced by the same
calculations. Analyzing the contributions of the proton and
neutron A2

p,n transition matrix elements, it is proposed that the
major reason for the discrepancy between experimental and

044333-6
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calculated B(E2) at N = 28 resides in the over-prediction of
the proton contribution A2

p.
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