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Deformation effects on isoscalar giant resonances in 24Mg
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Strength distributions for isoscalar giant resonances with multipolarity L � 2 have been determined in 24Mg
from “instrumental background-free” inelastic scattering of 386-MeV α particles at extreme forward angles,
including 0◦. The isoscalar E0, E1, and E2 strengths are observed to be 57 ± 7%, 111.1+10.9

−7.2 %, and 148.6 ± 7.3%,
respectively, of their energy-weighted sum rules in the excitation energy range of 6 to 35 MeV. The isoscalar giant
monopole (ISGMR) and quadrupole (ISGQR) resonances exhibit a prominent K splitting which is consistent
with microscopic theory for a prolate-deformed ground state of 24Mg. For the ISGQR it is due to splitting of the
three K components, whereas for the ISGMR it is due to its coupling to the K = 0 component of the ISGQR.
Deformation effects on the isoscalar giant dipole resonance are less pronounced, however.
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I. INTRODUCTION

Giant resonances (GRs) are the high-frequency collective
excitations of finite nuclear systems [1]. Understanding the
strength distributions of these GRs in a wide range of atomic
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nuclei yields valuable information about the finite nuclei as
well as about the bulk nuclear matter [2,3]. The isoscalar
monopole and dipole modes are the “compressional modes”
and are especially important because their resonance energies
are directly related to the nuclear incompressibility [4]. In this
context, investigating the “compressional modes” in a wide
variety of nuclei is crucial.

Giant resonances being collective excitations, their strength
distributions depend strongly on the nuclear shape [2]. Split-
ting of the isovector giant dipole resonance (IVGDR) strength
due to ground-state deformation is a well established effect,
attributed to different frequencies of oscillation along the
major and minor axes [5]. Deformation effects on isoscalar
giant monopole and giant quadrupole resonances (ISGMR and
ISGQR) have been observed in some rare-earth nuclei [6–9]
and in fission decay of 238U [10]. These are understood in
terms of K splitting: microscopic calculations based on the
quasiparticle random-phase approximation (QRPA) [11], for
example, predict K splitting of the multipole strength even in
light deformed nuclei such as 24Mg [12,13].

Identification of full giant-resonance strengths in the
lighter-mass nuclei (A < 60) has generally been a challenge
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due to fragmentation of the strength [14–22], significant
overlap of giant resonance strengths for L � 2, uncertainties
in the extraction of the strength distributions, and overlap of
the multipole strength with other direct processes (knock-
out and quasifree processes, for example). The light nuclei,
in particular the deformed ones such as 24Mg and 28Si,
provide a vital testing ground for the aforementioned QRPA
and deformed Hartree-Fock-Bogoliubov (HFB) calculations
[12,13].

Recently, we reported evidence for the splitting of ISGMR
strength in 24Mg. This was the first time that such a splitting had
been observed in a light-mass nucleus, indeed in any nucleus
other than the well-deformed Sm nuclei and 238U [23]. Owing
to directional symmetry, monopole strength cannot split itself,
but the observed “splitting” results from the mixing of ISGMR
and the K = 0 component of the ISGQR. The ISGQR and the
isoscalar giant dipole resonance (ISGDR), on the other hand,
increase in width due to the K splitting and, for the ISGDR,
also to mixing with the high-energy octupole resonance
(HEOR) [7,24]. While HFB+QRPA calculations [11] are, in
general, consistent with the experimental data for deformed
nuclei in the rare-earth region, previous measurements on 24Mg
[25–28], had not shown any discernible K splitting.

In this paper, we report ISGMR, ISGDR, and ISGQR
strength distributions in the prolate-deformed light-mass nu-
cleus 24Mg, as obtained from “instrumental background free”
386-MeV inelastic α scattering at extreme forward angles,
including 0◦. A consistent picture emerges of K splitting in
ISGMR and ISGQR strength distributions due to ground-state
deformation; the effect of ground-state deformation on ISGDR
is, however, less pronounced.

II. EXPERIMENTAL PROCEDURES

Inelastic scattering of 386-MeV α particles was measured
at the Ring Cyclotron Facility of the Research Center for
Nuclear Physics (RCNP), Osaka University. A self-supporting
foil (0.7 mg/cm2) of enriched (>99%) 24Mg was employed as
the target. Inelastically scattered α particles were momentum
analyzed with the high-resolution magnetic spectrometer
“Grand Raiden” [29]. The horizontal and vertical positions of
the α particles were measured using the focal-plane detector
system composed of two position-sensitive multiwire drift
chambers (MWDCs) and two plastic scintillators [7].

Data for elastic scattering and inelastic scattering to the
low-lying states were taken in the angular range of 3.5◦ to
26.5◦. Giant-resonance measurements were performed at the
very forward angles of the spectrometer (from 0◦ to 10.4◦).
Using the ray-tracing technique, the angular width of 1.8◦ for
each central angle was divided into five equal regions during
ofline data analysis. The angular resolution of the MWDCs,
including the nominal broadening of scattering angle due to
the emittance of the 4He2+ beam and the multiple Coulomb-
scattering effects, was about 0.15◦.

Measurements were made for two magnetic-field settings of
the Grand Raiden spectrometer, resulting in spectra covering
excitation energies of about 4 to 27 MeV and 24 to 50 MeV (the
low-Ex and the high-Ex spectra, respectively). Data were also
taken with a 12C target at each setting of the angle and magnetic
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FIG. 1. Top panel: A two-dimensional scatter plot of pulse height
from the first plastic scintillator detector versus excitation energy (Ex)
at an averaged angle, θavg = 0.7◦. Bottom panel: A two-dimensional
scatter plot of θlab versus Ex (see text).

field of the spectrometer, providing precise energy calibrations.
Energy losses of the incident beam and outgoing α particles
were taken into account in creating the final excitation-energy
spectra. The high-Ex spectrum connects smoothly, and without
any normalization, with the low-Ex spectrum, as discussed in
Ref. [23].

The MWDCs and scintillators enabled us to make particle
identification and to reconstruct the trajectories of scattered
particles. Figure 1(a) shows a typical particle identification
plot at an averaged angle, θavg = 0.7◦. The α particles are
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FIG. 2. (a) Excitation-energy spectrum at an averaged spectrome-
ter angle, θavg = 0.7◦ before subtracting the instrumental background
(gray hatched region). (b) Excitation-energy spectrum after subtract-
ing the instrumental background.
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observed to be well separated from other particles arriving at
the focal plane. Figure 1(b) shows a typical two-dimensional
scatter plot of the scattering angle, θlab, versus the excitation
energy, Ex . Different discrete states of 24Mg are clearly visible
below Ex = 20 MeV. The excitation energies of these discrete
states overlapped very well at different spectrometer angles in
the range of 0◦ to 10.4◦, establishing precise energy calibration.
Impurities of 1H, 12C, and 16O in the target were identified with
the help of kinematics. Scattering events from these impurity
nuclei were observed to be clearly separated from 24Mg except
for a few energy and angular bins.

The vertical-position spectrum obtained in the double-
focusing mode of the spectrometer was exploited to elimi-
nate the instrumental background [7,30]. Figure 2(a) shows
typical instrumental background (gray-hatched region) and
excitation-energy spectrum before the background subtrac-
tion at an averaged spectrometer angle of θavg = 0.7◦. The
excitation-energy spectrum after subtracting this instrumental
background is depicted in Fig. 2(b). The instrumental back-
ground is almost constant over the entire excitation-energy

spectrum and constitutes a maximum of around 20% of the
total spectrum at spectrometer position of 0◦, decreasing
rapidly with increasing angles.

III. DATA ANALYSIS

The excitation spectra for inelastic-scattering cross sections
were divided into energy bins of different sizes. For Ex from
4 to 20 MeV, the size of the energy bin was chosen to ac-
commodate the discrete peaks. Because the discrete structure
of the strength distribution diminishes for Ex > 21 MeV (see
Fig. 2), the bin size in this energy domain was chosen to be
1 MeV to reduce statistical fluctuations. The laboratory angular
distribution for each excitation-energy bin was converted to
the center-of-mass frame using the standard Jacobian and
relativistic kinematics. Typical angular distributions are shown
in Fig. 3. The experimental angular distributions thus obtained
consist of contributions from various multipoles; a multipole-
decomposition analysis (MDA) was, therefore, carried out to
extract the ISGMR, ISGDR, and ISGQR strengths. In the MDA

FIG. 3. Typical angular distributions of inelastic α scattering from 24Mg. The solid line (black) through the data shows the sum of various
multipole components obtained from MDA. The dash-dotted (red), dotted (blue), dash-double-dotted (green), and dashed (pink) curves show
contributions from L = 0, 1, 2, and 3, respectively, with the transferred angular momentum L specified along with the curves. The mean Ex

value as well as the bin width � are also shown for each case.
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process, the experimental double-differential cross sections
are expressed as linear combinations of calculated DWBA
double-differential cross sections for different multipoles as

d2σ exp(θc.m.,Ex)

d�dE
=

6∑

L=0

aL(Ex)
d2σ DWBA

L (θc.m.,Ex)

d�dE
(1)

where aL(Ex) is EWSR fraction for the Lth multipole,

and d2σ DWBA
L

d� dE
(θc.m.,Ex) is the calculated DWBA cross section

corresponding to 100% EWSR for the Lth multipole. The
aL(Ex) are determined using the χ2 minimization technique,
with the uncertainties estimated by changing the magnitude of
the one component aL(Ex), until refitting by varying the other
components resulted in an increase in the χ2 by 1 [7,25,27].

The DWBA calculations were performed employing the
“hybrid” optical-model potential (OMP) proposed by Satchler
and Khoa [31]. In this procedure, the real part of the OMP is
generated by single folding with a density-dependent Gaussian
α-nucleon interaction [32]. A Woods-Saxon potential is used
for the imaginary term of the OMP. Therefore, the total α-
nucleus ground-state potential is given by

U (r) = −V (r) − iW/{1 + exp[(r − RI )/aI ]}, (2)

where V (r) is the real single-folding potential obtained using
the computer code SDOLFIN by folding the ground-state density
with the density-dependent α-nucleon interaction. W is the
depth of the Woods-Saxon type imaginary part of the potential,
with the radius RI and diffuseness aI . The imaginary potential
parameters (W , RI , and aI ), together with the depth of the
real part, V , are obtained by fitting the elastic-scattering cross
sections using the computer code PTOLEMY [33,34]. The best fit
to the elastic cross-section data (normalized to the Rutherford
cross section) obtained from minimization of χ2 is shown in
Fig. 4(a). The OMP parameters thus determined are presented
in Table I.

The angular distribution for the 1.368-MeV 2+ state in 24Mg
was calculated in the distorted-wave Born approximation
(DWBA) framework using the known B(E2) value from the
literature (also provided in Table I) and the OMP parameters
thus obtained. An excellent agreement between the calculated
and experimental angular distributions for the 2+ state, as
shown in Fig. 4(b), establishes the appropriateness of the
OMP parameters. The collective isoscalar transition densities
were taken from Refs. [2,36,37]. Radial moments for 24Mg
were obtained by numerical integration of the Fermi mass
distribution assuming the mean charge radius c = 3.0453
fm and diffuseness a = 0.523 fm [38]. Using the transition
densities, the real term of the transition potential was obtained
using the computer code DOLFIN [39], whereas the imaginary
term of the transition potential was obtained from analytical
differentiation of the Woods-Saxon potential multiplied by
the corresponding deformation length. DWBA cross sections
for each excitation energy (Ex) were obtained for natural
parities of the multipolarities from L = 0–6. EWSR fractions
for each multipolarity (aL) are determined using the MDA
technique. Results of MDA fits to angular distribution data
for typical energy bins are shown in Fig. 3 along with the
contributions from the L = 0, 1, 2, and 3 multipoles. The
strength distributions are obtained from the experimentally

FIG. 4. (a) Angular distribution of the ratio of the differential
cross sections for elastic scattering to Rutherford scattering for 386-
MeV α particles from 24Mg. The solid red line is the result of a
“hybrid” optical-model fit to the data. (b) Angular distribution of
differential cross sections for the 1.368 MeV 2+ state in 24Mg. The
solid red line shows the result of the DWBA calculation (see text).

determined EWSR fraction (aL) using the relations provided
in Ref. [2]. Following this procedure, B(EL) values were
determined for several discrete states in 24Mg and compared
with the values reported in the literature, as discussed in
Ref. [23]. A close agreement with the previous results for
most of the cases further established the reliability of optical
model parameters and the MDA procedure.

The experimentally determined ISGMR strength distribu-
tion in 24Mg is shown in Fig. 5. The distribution consists of a
clear two-peak structure: a narrow peak at Ex ∼ 16 MeV and
a broad peak at Ex ∼ 24 MeV. A total of 57 ± 7% E0 EWSR
is exhausted over the excitation-energy region of 6 to 35 MeV.
The two-peak structure is in contrast with the broad ISGMR
distributions reported in previous works [25,26] and is, in fact,
very similar to the ISGMR distribution observed in 154Sm [8],
thus strongly indicative of one resulting from the deformation

TABLE I. Optical-model parameters obtained by fitting the
elastic-scattering data. Also listed is the B(E2) value for the 1.368-
MeV 2+ state in 24Mg from Ref. [35].

V W RI aI RC B(E2)
(MeV) (MeV) (fm) (fm) (fm) (e2b2)

33.1 36.1 3.87 0.778 3.04 0.0432
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FIG. 5. ISGMR strength distributions in 24Mg. The dash-dotted
(blue) and solid (red) lines show microscopic calculations for
spherical and prolate ground-state deformation, respectively.

of the ground state. A comparison of the experimental and
theoretical strength distributions further establishes that this
structure corresponds to that of a deformed nucleus.

The theoretical strength distributions were obtained as a
self-consistent solution of the deformed HFB and QRPA
equations employing the Skyrme SkM* functional [40].
Details of the calculation scheme can be found in Refs. [11,41].
In the present calculations, the smearing width of 3 MeV
was introduced to take into account the spreading effects.
The SkM* functional gives an intrinsic quadrupole moment
Q0 = 54.0 e fm2, which is consistent with the measured B(E2)
of the first 2+ state listed in Table I. In the energy region of
6 to 35 MeV, the obtained IS monopole strength exhausts 83%
of EWSR. Thus, the theoretical strengths have been scaled
down by a factor 0.57/0.83 ∼ 0.68 in Fig. 5 for comparison
with the experimental data. This mismatch between theoretical
and experimental strengths is not too worrisome considering
that the experimental strengths can have ∼20% systematic
uncertainty resulting from the choice of the OMPs used and
the DWBA calculations, as has been noted in previous works
as well [2,32,42]. In addition to the strengths obtained for
the prolate-deformed ground state, the strength distributions
are obtained for a spherical configuration for comparison.
The prominent peak around 16 MeV in the ISGMR strength
distribution appears only when the ground state is deformed.

The ISGDR strength distribution in 24Mg is shown in
Fig. 6, and consists of a broad peak centered around 25
MeV. A total of 111.1+10.9

−7.2 % EWSR is exhausted over the
excitation-energy region of 6 to 35 MeV. Unlike the ISGMR,
the deformation effects on ISGDR are not very pronounced
either in the experimental data or in the theoretical strength
distributions (also shown in Fig. 6). The rising strength at the
highest excitation energies is, most likely, spurious, resulting
from direct processes (knock-out and quasifree processes, for
example) that mimic the angular distributions of ISGDR [42].

The experimentally determined ISGQR distribution in
24Mg is shown in Fig. 7. In contrast with the pronounced
peak observed in the heavier nuclei (A � 90), the ISGQR
distribution for 24Mg is quite broad. Microscopic calculations
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FIG. 6. ISGDR strength distributions in 24Mg. The dotted (blue)
line shows microscopic calculations for the spherical ground state.
The dash-dotted (magenta), dash-double-dotted (green), and solid
(red) lines show microscopic calculations for prolate ground-state
deformation for K = 0,1 and the sum of K = 0 and 1, respectively.

for ISGQR are compared with the experimental data in the
Fig. 7. The theory predicts a peak close to 22 MeV, consistent
with 65A−1/3 MeV for a spherical ground state. Similar to
ISGMR, the prolate ground state of 24Mg pushes the ISGQR
peak to lower energies with significant broadening due to K
splitting. Theoretical prediction of the division of the ISGQR
strength into individual components, K = 0, 1, and 2, is also
shown in Fig. 7. The sum of these components in the energy
region 15–25 MeV is in reasonable agreement with the data.
Again, comparison of data with the spherical and deformed
ground-state microscopic calculations clearly indicates that
ISGQR strength fragmentation in 24Mg corresponds to a
prolate-deformed ground state. A total of 148 ± 8% E2 EWSR
is exhausted over the excitation-energy region of 6 to 35 MeV.

FIG. 7. ISGQR strength distributions in 24Mg. The dotted (blue)
line shows microscopic calculations for the spherical ground state.
The dash-dotted (magenta), dash-double-dotted (green), dashed
(orange), and solid (red) lines show microscopic calculations for
prolate ground-state deformation for K = 0,1,2 and the sum of
K = 0 to 2, respectively. The arrow indicates the peak position of
K = 0 component.
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The position of the K = 0 peak of ISGQR coincides with
the narrow peak of the ISGMR strength distribution at around
16 MeV. This clearly shows that splitting of ISGMR strength
distribution is due to mixing with the K = 0 component of
ISGQR; otherwise, the monopole has no directional projection
and therefore the ISGMR cannot itself produce the splitting of
the strength.

In summary, we have measured the isoscalar giant reso-
nance strength distributions for L � 2 in the light nucleus
24Mg via small-angle inelastic scattering of α particles. We
observe a two-peak structure in the ISGMR strength, which is
attributable to coupling to the K = 0 component of ISGQR
due to ground-state deformation. The observed strength
distributions for ISGMR and ISGQR are in good agreement
with microscopic calculations for a prolate-deformed ground
state in 24Mg, and are in contrast with those expected for a
spherical ground state. This is the first time that the K splitting

of the ISGMR and ISGQR has been observed in a very light
nucleus. The deformation effects on ISGDR are not clearly
discernible in the present data.
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