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Even-odd staggering of the spectroscopic factor as new evidence for α clustering
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We evidence a staggering effect of the experimental spectroscopic factors corresponding to even-even and
odd-mass (odd-mass and odd-odd) α emitters. The comparison to the theoretical estimate within the standard
Bardeen-Cooper-Schrieffer (BCS) approach reveals a similar staggering, but with a different behavior. It turns
out that the ratio between corresponding experimental and theoretical spectroscopic factors is proportional to the
experimental reduced decay width. A similar dependence was found in a previous work between the strength of
the quadrupole-quadrupole α-core interaction, describing the α-decay fine structure and the reduced width. Thus,
the even-odd staggering effect in the spectroscopic factor is a new evidence of the α-clustering phenomenon in
medium and heavy nuclei.
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I. INTRODUCTION

The α-decay process is explained by means of the quantum
mechanical penetration of the Coulomb barrier by a preformed
α particle [1,2]. The first shell-model microscopic estimation
of the α-particle formation probability within the R-matrix
theory [3], where only one shell model single particle (sp)
configuration was included, predicted a decay width by
many orders of magnitude smaller in comparison to the cor-
responding experimental data [4,5]. By increasing the number
of sp configurations, one increases substantially the decay
width [6,7], but still the absolute value that is found is too
small [8–10]. Later on, this result was confirmed by several
papers [11–13].

An explanation for the absolute α-decay rate was found in
terms of shell-model model plus α-cluster configurations [14].
This can be simulated by a standard Woods-Saxon sp mean
field plus an attractive pocket-like potential located on the
nuclear surface. This simple model was able to predict a
universal linear dependence between the logarithm of the
reduced width and the fragmentation potential, confirmed for
all strong emission processes, including proton emission and
heavy cluster decay [15]. This is strong evidence that the
usual sp representation should contain an additional “pocket-
like” component to the standard Woods-Saxon mean field
[16,17].

The purpose of this paper is to demonstrate that this
α-clustering property is evidenced by a new feature, namely
the even-odd staggering behavior found in the α-particle
spectroscopic factor of even-even, odd-mass, and odd-odd
nuclei [18].

II. THEORETICAL BACKGROUND

We will estimate the theoretical amplitude for the splitting
process of the parent nucleus into one α cluster and a daughter

nucleus, given by the following overlap integral [19]:

F(R) =
∫

dxα dxD

[
ψ (βα)

α (xα)�D(xD)
]∗

�P (xP ), (1)

where R is the center of mass (cm) distance and xi denotes
the internal coordinates of the fragment i. The internal α
wave function is given by the product of proton and neutron
singlet gaussian states depending on a harmonic oscillator (ho)
parameter βα ≈ 0.5 fm−1 [4]. The antisymmetrization is of
course implicit in the wave function of the parent nucleus.
Furthermore, antisymmetrization effects in the wave function
of the D + α system can be neglected, because we will
consider cm distances that are greater than the geometrical
touching point and thus Pauli correlations are small. In the
analysis, we will use the spherical approach for both parent and
daughter nuclei. The overlap integral (1) can be estimated by
using the standard coordinate sp representation of the product
between two proton and two neutron states in the harmonic
oscillator (ho) basis. We use first the recoupling from jj to the
LS scheme, then we change from absolute to relative and cm
proton and neutron pair coordinates. Finally, by recoupling
to relative and cm α coordinates one obtains the following
expansion in terms of ho wave functions depending on the
α-core cm coordinates [19]:

F(R) =
∑
Nα

W (Nα)φ(4β)
Nα0 (R), (2)

where the expansion coefficients,

W (Nα) =
∑

Nν,Nπ

Gπ (Nπ ) Gν(Nν)

×〈nα0Nα0; 0|Nπ 0Nν0; 0〉 I (β,βα)
nα0 , (3)

are written in terms of Talmi-Moshinsky brackets and overlap
integrals between ho wave functions depending on sp and α
parameters. Here, we denoted by Nk the principal quantum
numbers and by nk the radial quantum numbers for k = π,ν,α
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(proton, neutron, alpha) systems. The G coefficients contain
all recoupling transformations

Gτ (Nτ ) =
∑
n1n2j

Bτ (n1n2j )

×
〈
(ll)0

(
1

2

1

2

)
0; 0

∣∣∣∣
(

l
1

2

)
j

(
l
1

2

)
j ; 0

〉
, (4)

τ = π,ν,

where we denoted by l the angular momentum and by j the
total spin of the sp state. They are expressed in terms of the
following coefficients:

Bτ (n1n2; j ) = Xτj cn1 (τj ) cn2 (τj )

×
∑
nτ

(−)l〈nτ 0Nτ 0; 0|n1ln2l; 0〉 I (β,βα)
nτ 0 , (5)

depending on the expansion coefficients cn(τj ) of sp wave
functions with respect to the ho basis, labeled by the radial
quantum number n.

We will consider in our analysis a schematic pairing
Hamiltonian with constant strengths,

H =
∑
τ=πν

∑
j

ετjNτj −
∑
τ=πν

Gτ

4

∑
jj ′

P
†
τjPτj ′ , (6)

given in terms of the number of particles and the pair operators

Nτj =
∑
m

a
†
τjmaτjm,

P
†
τj =

∑
m

a
†
τjma

†
τj−m(−)j−m. (7)

Thus, the BCS pair amplitudes Xτj are given by

Xτj = 1

2
〈D|[aτjaτj ]0|P 〉 =

√
2j + 1

2
uτjvτj , τ = πν, (8)

in terms of standard BCS amplitudes.
Let us define the experimental spectroscopic factor for

even-even, odd-mass, and odd-odd nuclei as

Sexp = �exp

�theor
. (9)

This is the standard definition used in this field, see, for
example, Refs. [20,21] and references therein. The spectro-
scopic factor contains the information missing from the theory
that is needed to reproduce experimental data. We estimated
the decay width �theor by using a double folding α-core
potential plus an attractive pocket-shaped interaction on the
nuclear surface as in Ref. [22]. The procedure is identical
to the one used in Ref. [23], revolving around Eqs. (6)–(8)
therein. In Fig. 1 of Ref. [23] it was shown that there is a
very good proportionality between Sexp and the experimental
reduced width, which excludes the influence of the Coulomb
barrier

γ 2
0 (R) = �

2P0(R)
. (10)

Here, P0(R) is the standard Coulomb monopole pene-
trability [19] calculated at the geometric touching radius
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FIG. 1. (a) The experimental spectroscopic factors for even-even
and odd-mass nuclei pertaining to various even-Z isotope chains
versus the neutron number. (b) Same as in (a), but for the correspond-
ing BCS quantities.

R = 1.2(A1/3
D + 41/3). Notice that this quantity characterizes

the amount of α clustering [22].

III. APPLICATION

We analyzed all available α-decay data connecting ground
states on isotopic chains of reasonable length. In Fig. 1(a)
we plotted the experimental spectroscopic factor versus the
neutron number N for even-Z isotope chains. Notice the even-
odd staggering of this quantity. It becomes much larger when
crossing the magic number N = 126.

The theoretical reduced width is proportional to the for-
mation amplitude (1) [19]. In Fig. 1(b) we estimated the
theoretical counterpart of the spectroscopic factor given by

SBCS =
∫

dRR2|F(R)|2. (11)

In order to compute the BCS amplitudes defining the pair
amplitude Xτj (8), we used the sp spectrum generated by the
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FIG. 2. Same as in Fig. 1, but for odd-Z isotope chains.
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FIG. 3. The ratio between experimental and BCS spectroscopic
factors versus the reduced width multiplied by 100.

Woods-Saxon potential with universal parametrization [24]
and experimental pairing gaps estimated by using nuclear
masses [25]. For systems with an odd number of particles,
the unpaired orbital was blocked. We obtained a similar
staggered behavior, but with almost constant amplitude when
crossing the magic number N = 126 along a given isotope
chain. This feature is a clear evidence that the mean field plus
residual two-body interaction approach is not able to describe
α-clustering effects, which are very strong above the double
magic nucleus 208Pb [16] as seen in Fig. 1(a).

In Fig. 2(a) and 2(b) we plotted similar dependencies, but
for odd-Z isotope chains. One notices a similar behavior, but
with significantly smaller experimental amplitudes.

In order to understand this behavior, we plotted the
ratio Sexp/SBCS in Fig. 3, versus the experimental reduced
width (10), with filled circles for N > 126 and with open
circles for N < 126. One notices a clear correlation between
these quantities. The parameters of the corresponding fitting
lines are given in Table I.

Thus, the ratio Sexp/SBCS is proportional to the α clustering
defined by the reduced width (10). It is known that α clustering
is stronger for nuclei above the neutron shell closure and
decreases by increasing the difference N − Nmagic [22]. This
property is also supported by the above mentioned ratio, as it
is shown in Fig. 4.

In Ref. [22], we analyzed the α-decay fine structure
for even-even emitters in terms of the α-core quadrupole-
quadrupole (QQ) interaction. There, we evidenced a strong
correlation between the reduced width and the strength of the
QQ interaction. In Ref. [26], we confirmed this observation
for the case of odd-mass nuclei. In Fig. 5 we summarize these

TABLE I. Fitting parameters for the lines ax + b, (x = 100γ 2
0 )

in Fig. 3.

Region a b σ

N < 126 5.833 2.498 1.907
N > 126 14.425 1.731 3.485
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FIG. 4. The ratio between experimental and BCS spectroscopic
factors versus the difference between neutron number and the closest
magic number.

results in order to show that the correlation in Fig. 3 is similar
to the dependence of the QQ strength C versus the reduced
width, given in Fig. 5(a) for even-even emitters and Fig. 5(c)
for odd-mass emitters. The dependence of the QQ strength
versus N − Nmagic, given in Figs. 5(b) and 5(d) is similar to
the correlation in Fig. 4.

The fitting parameters for the linear dependence of C on
the reduced width and its quadratic dependence on the neutron
number, in the cases of even-even and odd-mass nuclei having
N > 126, are given in Table II. It is interesting to observe
that the linear correlation with the reduced width is much
more evident for favored α transitions to the bandhead of
angular momentum projection � in the case of odd-mass nuclei
than the transition to the ground state in the even-even case.
However, the parabolic correlation between C and the neutron
number is better established in the even-even case.
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FIG. 5. (a) QQ coupling strength versus the reduced width
multiplied by 100 for even-even emitters. (b) QQ coupling strength
versus N − Nmagic for even-even emitters. (c) Same as in (a), but for
odd-mass emitters. (d) Same as in (b), but for odd-mass emitters.
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TABLE II. Fitting parameters for the curves ax2 + bx + c in
Fig. 5, in the region N > 126.

x Case a b c σ

100γ 2
0 even-even − 0.376 − 0.031 0.143

100γ 2
� odd-mass − 0.101 0.037 0.021

N − 126 even-even 0.00127 − 0.06481 0.88594 0.060
N − 126 odd-mass 0.00012 − 0.00806 0.18682 0.023

IV. CONCLUSIONS

We evidenced a staggering effect in the α-particle spec-
troscopic factors for even-even and odd-mass/odd-mass and
odd-odd α emitters. We have shown that the ratio between
experimental and BCS spectroscopic factors is proportional to
the experimental reduced width. Our calculations evidenced
that the standard BCS approach to estimate the α-particle
formation probability, shown in Figs. 1(a) and 2(a) is not

able to explain the experimental trend shown in Figs. 1(b)
and 2(b). We connected this drawback to the missing clustering
feature not included in the formalism. An effective way to
cure for this deficiency is proposed in Ref. [27], where an
additional pocket-like interaction simulating clustering effects
is considered in the sp mean field. In Fig. 7 of this reference,
it is shown that indeed the strength of this interaction is
proportional to the experimental reduced width. This effect
is similar to the dependence between the strength of the
QQ α-core interaction and the experimental reduced width.
Therefore this feature is a new evidence of the α-clustering
phenomenon in medium and heavy nuclei.
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