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We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and
model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus 162Dy,
representing a heavy deformed nucleus, and 148Sm, representing a nearby heavy spherical nucleus with strong
pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov
approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well
as the level density at the neutron resonance threshold, with shell model Monte Carlo calculations, which are
accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are found to
be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry
breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that
the usual saddle-point approximation to extract the number-projected densities is not a significant source of
error compared to other errors inherent to the mean-field theory. We also present an alternative formulation
of the saddle-point approximation that makes direct use of an approximate particle-number projection and
avoids computing the usual three-dimensional Jacobian of the saddle-point integration. We find that the pairing
condensate is less amenable to approximate particle-number projection methods because of the explicit violation
of particle-number conservation in the pairing condensate. Nevertheless, the Hartree-Fock-Bogoliubov theory is
accurate to less than one unit of entropy for 148Sm at the neutron threshold energy, which is above the pairing phase
transition. This result provides support for the commonly used “back-shift” approximation, treating pairing as
only affecting the excitation energy scale. When the ground state is strongly deformed, the Hartree-Fock entropy
is significantly lower than the shell model Monte Carlo entropy at low temperatures because of the missing
contribution of rotational degrees of freedom. However, treating the rotational bands in a simple model, we find
that the entropy at moderate excitation energies is reproduced to within two units, corresponding to an error in
the level density of less than an order of magnitude. We conclude with a discussion of methods that have been
advocated as beyond the mean-field approximation, and their prospects to address the issues we have identified.
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I. INTRODUCTION

Nuclear level densities are important input in the theory of
low-energy nuclear reactions. In situations where the reactions
cannot be studied in the laboratory, the need for a reliable
theory is evident. Many treatments of the level density of heavy
nuclei start from a mean-field theory in the Hartree-Fock (HF)
or Hartree-Fock-Bogoliubov (HFB) approximation [1–4]. We
mention in particular the work by Hilaire and Goriely [2],
which presents results of a comprehensive survey based on the
HFB approximation.

While the HF and HFB [5,6] mean-field approximations
have been widely applied and taken as a starting point for
more sophisticated theories [7,8], their inherent accuracy has
not been well studied. Our goal in this article is to assess
these mean-field approximations by taking the Hamiltonian as
known and testing them against a theory that is accurate up
to well-controlled statistical errors. The auxiliary-field Monte
Carlo method, known as the shell model Monte Carlo (SMMC)
in nuclear physics [9,10], fulfills this requirement. Given the
Hamiltonian and a model space, the only inaccuracy is a
controllable statistical error associated with the Monte Carlo
sampling. As a finite-temperature method, SMMC is particu-
larly suitable for the calculation of level densities [11,12].

The SMMC starts from a Hamiltonian that is somewhat
restricted but that reproduces all the long-range correlations
in a realistic way. These include deformations, pairing gaps,
and low-energy collective excitations. It is thus well-suited
to provide a benchmark for testing the validity of the mean-
field treatments of nuclear thermal and statistical properties.
We note that the SMMC applies to all nuclei irrespective of
whether they are deformed or spherical and independently of
the existence of a mean-field pairing condensate. In contrast,
the formulas for level densities in HF and HFB depend on the
character of the mean-field solution.

In Sec. II we summarize the statistical and thermodynamic
tools we use for the analysis and comparisons. In Sec. III we
present in some detail the results of the SMMC calculations for
two nuclei, 148Sm and 162Dy. The first is a spherical nucleus
having a strong pairing condensate in HFB. The second is
a well-deformed nucleus with a weak pairing condensate;
here the HF is an appropriate mean-field approximation. In
Sec. IV we present the HF approximation and its results for
162Dy, while in Sec. V we discuss the HFB approximation and
its results for 148Sm. In Sec. VI we summarize our findings
regarding the accuracy of the HF and HFB approximations
with some remarks on prospects for extending the mean-field
approach to level densities. Finally, the data files and some of
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the codes used to generate the results reported in this article
are provided in the Supplemental Material [13] depository
accompanying this article.

II. TOOLS OF STATISTICAL THEORY

A. The canonical entropy

A good meeting point for comparing different statistical
theories is the canonical entropy function Sc(β,Np,Nn), i.e.,
the entropy of the canonical ensemble of states having fixed
numbers of protons and neutrons Np,Nn and at inverse
temperature β. In the SMMC, the quantity that is most
directly computed is the thermal energy Ec(β) of the canonical
ensemble. The entropy can then computed by integrating the
thermodynamic relation,

dSc = β dEc, (1)

as

Sc(β) = Sc(0) −
∫ Ec(0)

Ec(β)
β ′ dEc. (2)

This allows one to calculate the partition function Zc from
Zc = exp(−βEc + Sc). Alternatively, Zc can be calculated
directly from Ec by integrating the relation,

d ln Zc = −Ecdβ, (3)

and the canonical entropy is then calculated from Sc = ln Zc +
βEc. Finally, the density of states ρ(E,Np,Nn) at given energy
E and particle numbers Np,Nn is obtained from Zc by an
inverse Laplace transform, carried out in the saddle-point
approximation,

ρ(E,Np,Nn) = 1

2πi

∫ i∞

−i∞
dβ ′ eβ ′EZc

≈
(

2π

∣∣∣∣∂E

∂β

∣∣∣∣
)−1/2

eSc(β), (4)

where β in the above expression is determined as a function
of E from the saddle-point condition,

E = −∂ ln Zc

∂β
= Ec(β). (5)

The entropy of a system whose Hamiltonian is defined in
a finite-dimensional model space satisfies a sum rule obtained
from (2) in the limit β → ∞,∫ E(β=0)

E(β=∞)
β dE = S(0) − S(∞). (6)

For a finite-dimensional model space, the entropy at both end
points β = 0 and β = ∞ is finite and can be determined
analytically. In particular, for even-even nuclei, the entropy
at zero temperature Sc(∞) must be zero.

In the configuration-interaction (CI) shell model, we have
a certain number Np,Nn of nucleons in single-particle model
spaces of dimensions Dp,Dn giving a canonical entropy at
β = 0 of

Sc(0) = Sp(0) + Sn(0) = ln

(
Dp

Np

)
+ ln

(
Dn

Nn

)
. (7)

We have found the sum rule in Eq. (6) useful for testing the
computer codes we have employed in this study, and also for
setting end points on the entropy plots we show later.

B. The grand canonical entropy

The finite-temperature HF (FTHF) and finite-temperature
HFB (FTHFB) approximations are defined in the framework of
the grand canonical ensemble which depends on the additional
independent variables αi (i = p,n), related to the chemical
potentials μi by μi = αi/β.

The grand canonical entropy Sgc, when expressed as a
function of the energy Egc and the average number of particles
Ni,gc of type i in the grand canonical ensemble, satisfies

dSgc = βdEgc −
∑
i=p,n

αidNi,gc, (8)

and can be calculated as in Eq. (2) for fixed Np,gc,Nn,gc, i.e.,
when the grand canonical energy Egc is expressed as a function
of β and the given particle numbers Ni,gc.

The grand canonical entropy at β = 0 is also a simple
function of the dimension of the single-particle shell-model
space in the CI shell model, because all correlations disappear
in that limit. Choosing values for αp = βμp,αn = βμn (where
μp,μn are chemical potentials) to produce average particle
numbers Np,Nn, we have at β = 0

Sgc(0,Np,Nn) = −
∑
i=p,n

Di[fi ln fi + (1 − fi) ln(1 − fi)],

(9)
where fi = Ni/Di are occupation factors for i = p,n.

The grand canonical partition Zgc = Zgc(β,αp,αn) satisfies

d ln Zgc = −Egcdβ +
∑

i

Ni,gcdαi. (10)

The Legendre transform of ln Zgc with respect to αi is a func-
tion of β and Ni,gc defined by ln Z̃gc = ln Zgc − ∑

i αiNi,gc

and satisfies

d ln Z̃gc = −Egcdβ −
∑

i

αidNi,gc. (11)

Thus we can alternatively calculate the grand canonical
entropy by integrating −Egc(β,Ni,gc) with respect to β at
fixed Ni,gc to determine ln Z̃gc and then find the entropy from
Sgc(β,Ni,gc) = ln Z̃gc + βEgc.

The state density ρ(E,Np,Nn) is related to the parti-
tion function Zgc(β,αp,αn) by the three-dimensional inverse
Laplace transform,

ρ(E,Np,Nn) = 1

(2πi)3

∫ i∞

−i∞
dβ

∫ i∞

−i∞
dαp

∫ i∞

−i∞
dαn

×eβE−αpNp−αnNnZgc(β,αp,αn). (12)

Normally one carries out the integration over all three variables
in the three-dimensional (3D) saddle-point approximation,
resulting in the formula for the state density [14],

ρ(E,Np,Nn) = 1

(2π )3/2

∣∣∣∣∂(E,Np,Nn)

∂(β,αp,αn)

∣∣∣∣
−1/2

eSgc , (13)
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where the values of β,αp,αn are determined from E,Np,Nn

by the saddle-point conditions,

E = − ∂ ln Zgc

∂β
= Egc(β,αp,αn),

Ni = ∂ ln Zgc

∂αi
= Ni,gc(β,αp,αn). (14)

Using Eq. (14), the Jacobian in (13) can be written as
the determinant of the matrix of second derivatives of the
logarithm of the grand canonical partition function with respect
to β,αp,αn.

C. Ensemble reduction

To compare the mean-field entropies to the canonical
SMMC entropies we need to reduce the grand canonical en-
semble of the mean-field formalism to the canonical ensemble.
For approximate theories such as the HF and HFB, the only
consistent way (in the sense of Appendix B) to carry out the
reduction is the variation-after-projection method (VAP), but
this is difficult and as far as we know, has never been put
into practice for calculating level densities in heavy nuclei.
We will therefore only consider simpler reduction methods,
recognizing that they cannot be free from ambiguity.

A straightforward way to determine a canonical entropy is
to separate the 3D saddle-point integration Eq. (12) into two
steps, integrating first over the chemical variables (αp,αn).
This yields the following expression for the integrand of the β
integration:

ζ−1Zgc(β,αp,αn)eβE−∑
i αiNi , (15)

where

ζ = 2π

∣∣∣∣∂(Np,Nn)

∂(αp,αn)

∣∣∣∣
1/2

, (16)

and αp,αn are determined by the 2D saddle-point conditions
Ni = ∂ ln Zgc/∂αi (i = p,n). Comparing with the integrand
in Eq. (4), we can identify the approximate canonical partition
function as

ln Zc ≈ ln Zgc −
∑

i

αiNi − ln ζ. (17)

If we carry out in a second step the β integration of Eq. (15),
we obtain an expression of the same form as in Eq. (4) where
the approximate canonical entropy is given by

Sc ≈ Sgc − ln ζ. (18)

The expression we find for the state density ρ is equivalent to
Eq. (13) of the 3D saddle-point approximation.1

However, the above result does not take into account the
variation of the prefactor ζ with respect to β. If we consider this
dependence explicitly when we perform the β integration, the
saddle-point condition that determines β in terms of the energy

1The equivalence follows directly from the identity for symmetric
matrices A: det A = det B(a11 − �a1 · B−1 · �a1), where a11 is the
element of A in the first row and column, B is the minor obtained
from A by striking out the first row and column, and �a1|i = a1,i+1.

E becomes E = Eζ , where Eζ is an approximate canonical
energy given by

Eζ = Egc − δE, with δE = −d ln ζ

dβ
. (19)

The level density is then given by the canonical form (4), where
the canonical entropy is

Sc(β,Np,Nn) = Sgc − ln ζ − βδE. (20)

A simple model is presented in Appendix A, showing that the
saddle-point shift δE in Eq. (19) improves the accuracy of the
calculated Sc(β) and ρ(E).

D. Discrete Gaussian model and the particle-number fluctuation

Another source of error may arise from the Gaussian
approximation in the 2D saddle-point integration used to
derive Eq. (16). For example, suppose that the grand canon-
ical partition function were dominant by a single nuclide
(Np,Nn) in some range of αp,αn. Then we could approximate
Zgc(β,αp,αn) ≈ Zc(β,Np,Nn) exp(αpNp + αnNn). Treating
this in the saddle-point Gaussian integration gives ζ = 0
(because Ni are independent of αj ), rather than the correct
answer of ζ = 1. The problem can be repaired by recognizing
that Np and Nn are discrete integers, not continuous variables.
We calculate the matrix ∂Ni/∂αj as before but now we
calculate ζ as a discrete sum over particle numbers Ni ,

ζ =
∑
N ′

i ,N
′
j

exp

(
− 1

2

∑
i,j

∂N

∂α

∣∣∣∣
−1

ij

(N ′
i − Ni)(N

′
j − Nj )

)
.

(21)

Expression (21) for ζ reduces to the saddle-point result (16)
in the limit when the right-hand side of (16) is large, but has
the advantage that it is always larger than 1 and it approaches
1 when the right-hand side of (16) goes to 0.

To see more physically how the approximation (21) works,
consider the case when there is only one type of particle, say
neutrons, and the Hamiltonian used in the Gibbs density oper-
ator is independent of β and αi . The required derivative is then

∂2 ln Zgc

∂α2
n

= ∂Nn

∂αn

= 〈(	Nn)2〉, (22)

where 〈(	Nn)2〉 = 〈N̂2
n 〉 − N2

n is the neutron-number
fluctuation in the grand canonical ensemble. Carrying out the
Gaussian saddle-point integration, ζ−1 in the 2D saddle-point
approximation (15) becomes

ζ−1
n = (2π〈(	Nn)2〉)−1/2. (23)

ζ−1
n is just the ratio of states with particle number Nn to the

total number of states in an ensemble in which the particle
number N ′

n is distributed as a discrete Gaussian,

PN ′
n
= ζ−1

n e−(N ′
n−Nn)2/2〈(	Nn)2〉, (24)

in the limit that 〈(	Nn)2〉 	 1.
The finite-temperature mean-field approximation also pro-

vides a many-particle density matrix, so that the particle-
number fluctuation can be calculated directly from this density
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matrix [see Eqs. (37) and (47) below]. In fact, this direct
calculation is much easier to carry out than calculating
numerically the matrix of second derivatives of the logarithm
of the partition function. However, because the canonical
reduction is not carried out in a variational way, the two
methods are not guaranteed to give the same answer. In the
sections below, we will examine and compare both methods
of carrying out the canonical reduction.

A simplifying approximation that will be examined in
Sec. IV below is to assume that the off-diagonal particle-
number correlations 〈	Ni	Nj 〉 vanish for i 
= j . Then ζ
factorizes into two separate factors for protons and neutrons,

ζ = ζpζn, where ζi =
∑
N ′

i

e−(N ′
i −Ni )2/2〈(	Ni )2〉. (25)

ζi in Eq. (25) can be considered as the partition function which
describes the fluctuations in the number of particles of type
i. The reduction from the grand canonical to the canonical
partition function is then given by

Zgc(β,αp,αn)e− ∑
i αiNi ≈ Zc(β,Np,Nn)ζpζn. (26)

Relation (26) describes the factorization of the grand canonical
partition function into a canonical partition function and
particle-number fluctuation partition functions. It is exact in
the simple model presented in Appendix A.

In summary, the saddle-point approximation breaks down
when 2π〈(	Ni)2〉 � 1. However, ζ in the discrete Gaussian
model [Eqs. (25) and (26) or Eq. (21)] always satisfies ζ � 1
and can be used even when the particle-number fluctuation is
small. We will demonstrate the improvement to the saddle-
point formula in this limit in the case of 162Dy (Sec. IV B)
where pairing correlations are weak.

E. Spin-parity projected level density

The ultimate goal is to calculate the spin-parity projected
densities ρJπ (E), defined as the number of levels of given
angular momentum J and parity π per unit energy, not
counting the 2J + 1 magnetic degeneracy of the levels.
The spin-dependent level densities ρJπ (E) can be calculated
through an angular momentum projection. The present paper
is mainly focused on the total state density and we will not
examine in details spin-projection methods. However, to make
at least a tentative comparison of the level density at the
neutron resonance threshold we will calculate them taking
a simplified model for the spin-parity projection. We follow
common practice and assume the spin distribution is Gaussian
in the three components of the angular momentum vector
�J [15]. Then the fraction of levels having angular momentum
J is given by

PJ ≈
√

1

2π

J + 1
2

σ 3
exp

(
−

(
J + 1

2

)2

2σ 2

)
. (27)

Here a pre-exponential factor of (J + 1
2 )2, arising from the

three-dimensional volume element of �J , is reduced to the
first power of (J + 1

2 ) by dividing out the (2J + 1) magnetic
degeneracy factor. The parameter σ , known as the spin cutoff

TABLE I. Model space parameters for the SMMC Hamil-
tonian in 162Dy and 148Sm and corresponding canonical and
grand canonical entropies at β = 0. The single-particle ba-
sis employed in the CI spherical shell model consists of
the orbitals 0g7/2,1d5/2,1d3/2,2s1/2,0h11/2,1f7/2 for protons and
0h11/2,0h9/2,1f7/2,1f5/2,2p3/2,2p1/2,0i13/2,1g9/2 for neutrons. The
numbers of the single-particle states (including their magnetic
degeneracy) are Dp = 40 and Dn = 66. Ni are the number of valence
particles of type i (where the index i distinguishes neutrons and
protons), and di is the dimension of the many-particle model space
for particles of type i. The canonical and grand canonical entropies
Sc,i(0) and Sgc,i(0) are calculated from Eqs. (7) and (9), respectively.

Ni di Sc,i(0) Sgc,i(0)

148Sm n 16 8.5 × 1014 34.38 36.55
148Sm p 12 5.6 × 109 22.44 24.43
162Dy n 26 1.6 × 1018 41.95 44.25
162Dy p 16 6.3 × 1010 24.86 26.92

parameter, is estimated from the second moment of Jz,

σ 2 = 〈
J 2

z

〉
. (28)

The normalization condition of PJ in (27) is
∑

J (2J + 1)PJ =
1. Assuming equal positive- and negative-parity level densities
(usually justified at the neutron separation energy), we have

ρJπ (E) ≈ 1

2
PJ ρ(E). (29)

III. SMMC RESULTS

The SMMC method is formulated in the framework of a
CI spherical shell-model Hamiltonian. The CI Hamiltonians
shown to be amenable to Monte Carlo sampling contain one-
plus two-body operators, with the two-body part restricted to
interactions that have a “good sign” in the grand canonical
formulation.2 In finite nuclei, the method is implemented with
particle-number projection [16] for both protons and neutrons,
and the calculated observables are the expectation values in the
canonical density matrix. In particular, we consider here the
nuclei 148Sm and 162Dy. The nucleus 148Sm is an example of
a heavy spherical nucleus whose ground state has significant
correlation energy associated with pairing, while the nucleus
162Dy has a deformed ground state with weak pairing.

The parametrization of the Hamiltonian and other aspects of
the SMMC calculation have been published elsewhere [17,18].
For reference, Table I and its caption describes the model space
employed in the calculations.

The canonical energy Ec = 〈Ĥ 〉Np,Nn
and the mean-square

angular momentum 〈Ĵ 2〉Np,Nn
at fixed numbers of protons and

neutrons are calculated directly in SMMC as a function of β.
Table II shows the SMMC energies at β = 0 (i.e., the infinite
temperature limit) and at high β extrapolated to infinity. The
energy at β = 0 is largely determined by the one-body part of
the Hamiltonian in the grand canonical ensemble.

2Small bad-sign interaction terms can be treated using the extrapo-
lation method of Ref. [10].
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TABLE II. Limiting values of the energies (MeV) calculated by SMMC, HF, and HFB for 148Sm and 162Dy. The HF/HFB correlation
energy is the energy difference between HF and HFB ground states for 148Sm, and the difference between spherical and deformed ground
states for 162Dy. The term “missing” denotes the differences between the HFB energies (with both pairing and deformation) and the SMMC
ground-state energies. The SMMC energies at β = ∞ include extrapolation and statistical sampling errors [17].

Nucleus β SMMC HF HFB Correlation energy

HF/HFB Missing

148Sm 0 −119.15 −119.0 −119.0
∞ −235.65 ± 0.015 − 230.69 − 232.51 1.82 3.14

162Dy 0 −238.35 − 238.12 − 238.12
∞ −375.39 ± 0.02 − 371.78 − 371.91 11.41 3.48

The variation of the excitation energy Ex with β is shown in
Fig. 1 using a logarithmic scale for the energy. The excitation
energy of 162Dy is higher than that of 148Sm from β = 0 to
β ≈ 1.5 and is then lower up to β ≈ 3.5. The higher excitation
energy in 148Sm near β = 3 is likely from the collapse of strong
pairing in that nucleus. Similarly, the higher 162Dy excitation
energy at β ≈ 1 may be ascribed to the loss of deformation
energy in that temperature region.

We also need the 〈Ĵ 2〉 ensemble averages to calculate the
spin-dependent level densities. These are shown in Fig. 2 for
148Sm and 162Dy. The higher values of 〈Ĵ 2〉 of 162Dy at high β
are largely from its deformation and its low-lying first excited
2+ state at ∼0.08 MeV. In contrast, 〈Ĵ 2〉 for 148Sm decreases
dramatically at high β, as expected for a nucleus with a J = 0
ground state and a gap of ∼0.5 MeV to the first excited J =
2 state. At low β, the remaining enhancement for 162Dy is
because of its larger number of active valence nucleons in the
model space. The errors shown in Fig. 2 are statistical errors
from the Monte Carlo sampling.

We next apply Eq. (2) to compute the canonical SMMC
entropy. We start from β = 0 with the initial value of the
canonical entropy given by Eq. (7) and use the relation,∫ Ec(0)

Ec(β)
β ′dEc = −βEc(β) +

∫ β

0
Ec(β ′)dβ ′, (30)

FIG. 1. Canonical excitation energies Ex (on a logarithmic scale)
versus β calculated by the SMMC for 148Sm (open squares) and for
162Dy (solid circles), with lines drawn to guide the eye. The inset
shows the large β values using a linear scale for the excitation energy.
The Monte Carlo statistical errors are about 0.1 MeV or smaller.

where Ec(β) is the canonical thermal energy calculated in
SMMC as the thermal expectation value of the Hamiltonian.
The results are shown in Fig. 3, with the main figure showing
the low to intermediate values of β, and the inset showing the
large values of β.

The 148Sm and 162Dy entropies are nearly equal for β in the
range 1.5–3.0 MeV−1. We do not know any obvious reason
why that should be the case. At higher values of β, shown in
the inset, one observes a difference between the two nuclei.
For 148Sm at β � 6 MeV−1 the entropy is essentially zero,
as expected at low temperatures for even-even nucleus with a
pairing gap. On the other hand, the entropy of 162Dy remains a
couple of units higher than zero up to at least β ∼ 10 MeV−1.
This is because of the low excitations associated with the
ground-state rotational band, together with the weak pairing
in this nucleus.

The state densities calculated from Eq. (4) are shown in
Fig. 4. As expected, the state density is higher for 162Dy than
148Sm at low excitation energy. Interestingly, they become
much closer at excitation energies in the range 5–10 MeV. As
a check on the quality of the CI Hamiltonian, we compare
the calculated level densities with the experimental s-wave
resonance spacings D = [

∑
J ρJπ (E)]−1, measured at an

energy E that corresponds to the neutron separation energy.
These are calculated from the spin-parity dependent level

FIG. 2. SMMC values of 〈J 2
z 〉 = 〈 �J 2〉/3 (shown using a logarith-

mic scale) vs β in the canonical ensembles for 148Sm (open squares)
and 162Dy (solid circles). The inset shows 〈J 2

z 〉 = 〈 �J 2〉/3 (using a
linear scale) for larger β values.
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FIG. 3. SMMC entropies of 148Sm (open squares) and 162Dy
(solid circles) for β < 3 MeV−1. In this range, the Monte Carlo errors
are the size of the symbols or smaller. The inset shows the entropies
for the larger β values.

density (29) and (27), taking the spin cutoff parameter σ from
Eq. (28). The results are shown in Table III. The agreement
to within a factor of two or better gives us confidence that the
Hamiltonian is realistic enough to provide useful tests of the
HF and HFB approximations.

IV. THE FINITE-TEMPERATURE HF APPROXIMATION

The finite-temperature theory is derived from a variational
principle based on the grand potential � as a function of
an uncorrelated trial density [5,6]. We first consider the HF
approximation, where the density is uniquely characterized by
a one-body density matrix �kl , where k,l label single-particle
orbitals in the model space.

For simplicity, we consider only one type of particles and
the results are easily generalized to both protons and neutrons.
At the FTHF minimum, the one-body density � satisfies the

FIG. 4. State densities vs excitation energy Ex calculated in
SMMC using the saddle-point expression Eq. (4) for 162Dy (solid
circles) and 148Sm (open squares). The range is truncated at the lower
end because the saddle-point approximation breaks down when there
are only a few levels in a range β−1 around E.

TABLE III. s-wave resonance spacings D at the excitation energy
Ex that corresponds to the neutron separation energy. J π are the
values of spin and parity of the relevant neutron resonance levels.
The SMMC, HF, and HFB results are compared with the experimental
values from Ref. [32]. The HF spacing is calculated using the model
of Sec. IV B 5 to estimate the contribution of rotational bands.

Nucleus Ex (MeV) J π D (eV)

SMMC HF HFB Expt.

148Sm 8.1 (3−,4−) 3.7 ± 0.6 4.1 5.7
162Dy 8.2 (2+,3+) 2.4 ± 0.3 0.5 2.4

self-consistent equation,

� = 1

eβh�−α + 1
, (31)

where h� = t + v� is the one-body HF Hamiltonian, ex-
pressed, respectively, in terms of the one- and two-body
matrices t and v of the configuration-interaction shell model
Hamiltonian. The value of � at the HF minimum is given by

β�HF = − ln ZHF = βEHF − SHF − αNHF, (32)

where ZHF is the HF approximation to the grand canonical
partition function. The thermal HF energy EHF is calculated
as

EHF = tr(t�) + 1

2
tr(�v�), (33)

the entropy SHF is given by

SHF = −tr(� ln �) − tr[(1 − �) ln(1 − �)]

= −
∑

k

fk ln fk −
∑

k

(1 − fk) ln(1 − fk), (34)

and the average number of particles NHF is computed as

NHF = tr �. (35)

The occupation probabilities fk = [1 + eβ(εk−μ)]−1 are the
usual Fermi-Dirac occupations where εk are the single-particle
HF energies at inverse temperature β.

It is not obvious from Eqs. (32), (33), and (35) that ln ZHF

satisfies the thermodynamic derivative relations (14) because
of the dependence of the HF single-particle energies and
density on α and β. Nevertheless, the contributions to the
derivatives that originate in the implicit dependencies on α
and β vanish. In particular, the quantities defined in the HF
theory satisfy

−∂ ln ZHF

∂β
= EHF ,

∂ ln ZHF

∂αi

= Ni,HF (36)

for i = p,n. The proof is provided in Appendix B. The
validity of these relations in FTHF guarantee that the grand
canonical HF entropy SHF satisfies the relation dSHF = βdEHF

at fixed average particle numbers Ni,HF = Ni , and thus we can
compute the entropy in the same way as we did in the SMMC.
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A. Approximate canonical projectors in FTHF

The canonical partition function can be approximated
either in the saddle-point approximation of Sec. II C or
in the discrete Gaussian model of Sec. II D. However, the
connection to particle-number fluctuations is more tenuous
because the second derivative expressions for ln Zgc in terms
of particle-number fluctuations such as Eq. (22) no longer
holds for ln ZHF. Nevertheless, it is interesting to compare ζ
computed with the full matrix ∂Ni/∂αj to that computed from
the particle-number fluctuations. We make such a comparison
for 162Dy in the next section.

B. Application to 162Dy

Here we discuss the strongly deformed nucleus 162Dy.
The pairing in this nucleus is weak, so that the FTHF is the
appropriate mean-field theory.

1. Number partition function ζ

We first examine the number partition function ζ obtained
from the approximations we presented in Sec. II. The diagonal
particle-number fluctuations in FTHF are given by

〈(	N̂i)
2〉 = tr[�i(1 − �i)], (37)

and the off-diagonal ones are zero. The corresponding ζ
obtained from Eq. (25) is shown as the dashed line in
Fig. 5. This is compared to ζ calculated from Eq. (21)
(using the matrix ∂Ni/∂αj ), shown as the solid line. They
differ by less than 10%, except for a tiny region near the
spherical-to-deformed phase transition. There the ζ calculated
from the Jacobian of ∂Ni/∂αj diverges (when approached
from the deformed side). Thus, it appears to be a very
good approximation to calculate ζ in terms of the individual
particle-number fluctuations as in Eq. (25). In the next section,
we shall see that this is not the case for the FTHFB theory
in the presence of strong pairing correlations. In any case, we
will use Eq. (21) in the results shown below.

FIG. 5. ln ζ vs β in FTHF for 162Dy. (Solid line) ln ζ calculated
from Eq. (21). (Dashed line) ln ζ calculated from Eq. (25).

2. Thermal excitation energy

The range of FTHF energies as a function of β is shown
in the fourth column of Table II. The high-temperature limit
is very close to the SMMC value, because all correlation
energies disappear in that limit. At the other limit of large
β, at or near the ground state, the SMMC energy is about
3.5 MeV lower than its HF value. The HF ground-state energy
has the correlations associated with the static deformation,
but is missing the rotational energy and other correlation
effects. It can also be seen from the fifth column of Table II
that the HFB approximation hardly lowers the energy. The
excitation energy Ex(β) is shown in Fig. 6, comparing its
HF value (solid line) with the SMMC thermal energy (solid
circles) from Fig. 1. The HF density is spherical for β < 0.9
and becomes deformed above that value. The energy of the
spherical HF solution at higher values of β is shown in Fig. 6
by the dashed-double dotted line. We observe that the HF
energy has a cusp at the onset of deformation. Extrapolating
the energy of the spherical solution to large β, we find that
the deformed ground-state solution is lower in energy than
the spherical solution by 11.4 MeV. The SMMC energy,
shown by the solid circles, is remarkably close to the HF
energy in the region 0 < β < 3 MeV−1 except in the vicinity
of the shape phase transition. The cusp in the HF energy
function disappears in the SMMC energy, leaving no trace
of a shape phase transition. The fact that mean-field theory
overemphasizes phase transitions in finite systems is well
known in nuclear theory; see, e.g., in Refs. [1,19–21]. The inset
in Fig. 6 shows Ex(β) at higher values of β using a finer energy
scale. We observe that at large β the grand canonical HF energy
(dashed line) overestimates the excitation energy but that the
approximate canonical energy Eζ of Eq. (19) (solid line) is in
overall good agreement with the SMMC excitation energy.

FIG. 6. The HF excitation energy of 162Dy vs β. The grand
canonical HF energy (dashed line) is compared with the approximate
canonical energy Eζ (solid line) from Eq. (19). The latter omits the
region near the shape transition point, where ζ becomes singular (see
solid line in Fig. 5). We also show the energy for the spherical HF
solution (dashed-double dotted line) with respect to the deformed
ground-state energy. The solid circles are the SMMC excitation
energies from Fig. 1. (Inset) Expanded energy scale for higher β

values.
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FIG. 7. Entropy of 162Dy in the FTHF approximation, comparing
the grand canonical entropy (dashed line) with the canonical entropy
defined in Eqs. (20) and (19) (solid line). The dashed-dotted line
is the approximate canonical entropy (18) in the 3D saddle-point
approximation, i.e., without the correction term in Eq. (19). The inset
shows the large β value. The calculations use the discrete Gaussian
model formula (21) for ζ . The dotted line in the inset uses the saddle-
point expression Eq. (16) for β > 5 MeV−1.

3. Entropies

The grand canonical HF entropy SHF is shown in Fig. 7
as a function of β (dashed line) and compared with the
approximate canonical entropy (20) with ζ from the discrete
Gaussian formula Eq. (21) (solid line). At β = 0, the grand
canonical HF entropy is larger than the canonical entropy
because of particle-number fluctuations. The entropies at large
values of β are shown in the inset. The grand canonical HF
entropy vanishes in the limit β → ∞, as expected. However,
the saddle-point canonical entropy calculated from Eqs. (15)
and (16) increases at large values of β (dotted line in the inset),
indicating the breakdown of the saddle-point approximation
to the particle-number projection. In contrast, the discrete
Gaussian treatment (21) gives an entropy that approaches
zero at high β, thus satisfying the sum rule Eq. (6). For
moderate and small values of β, the entropy (20) of the
discrete Gaussian model (21) essentially coincides with the
saddle-point canonical entropy. As noted earlier, the SMMC
entropy remains nonzero in the range 8 < β < 20 MeV−1. We
examine this further in the next paragraph.

To compare the projected HF and SMMC entropies in more
detail, we have replotted them in Fig. 8 with some additional
information. Both curves start at the same value at β = 0
because the model spaces are identical. In the limit of large β,
the SMMC entropy does not approach zero as fast as the canon-
ical HF entropy. This is because the SMMC entropy includes
a contribution from the ground-state rotational band, most
visible at β > 5 MeV−1. We can estimate this contribution as
follows. The moment of inertia Igs of the ground-state band
of 162Dy was determined to be Igs/�

2 = 35.8 ± 1.5 MeV−1

by fitting the low-temperature SMMC values of 〈 �J 2〉 to
〈 �J 2〉 = 2(Igs/�

2)T [17]. For β < 20 MeV−1, T > �
2/2Igs ,

and we can treat the rotational motion classically. The classical

FIG. 8. Approximate canonical HF entropy defined by Eqs. (20)
and (19) for 162Dy (solid line) is compared with the SMMC entropy
(solid circles). The dashed-double dotted line is the canonical entropy
of the spherical HF solution in the same approximation. The inset
shows the entropies at large values of β. The dotted line in the inset
is the ground-state rotational band contribution (38).

partition function of the rotational band J = 0,2, . . . is given
by Zrot = IgsT /�

2. We can then calculate its entropy from
Srot = −∂Frot/∂T , where Frot = −T ln Zrot is the free energy
of the ground-state rotational band. We find

Srot = 1 + ln

(Igs

�2
T

)
. (38)

This contribution is described by the dotted line in the inset of
Fig. 8, and is in good agreement with the SMMC entropy at
large β with no adjustable parameters.

We also show in Fig. 8 the canonical entropy of the spher-
ical HF solution (dashed-double dotted line). This entropy
approaches a finite nonzero value in the limit β → ∞ (see
inset) because of the large degeneracy of the spherical HF
solutions at T = 0. There are two valence protons in the 0h11/2

orbitals and six valence neutrons in the 0h9/2 orbitals, leading
to a highly degenerate ground state with a canonical entropy

of ln [(12
2 )(10

6 )] = 9.54. The grand canonical HF entropy in this

limit is even larger. It can be calculated assuming the uniform
filling of the valence degenerate orbitals in the T → 0 limit
of the HF approximation. The corresponding formula has the
form of Eq. (9), where Dp = 12, fp = 2/12 and Dn = 10,
fn = 6/10, and gives a grand canonical entropy of 13.33.

4. Angular momentum fluctuations

In HF, the variance of the angular momentum components
Jq (q = x,y,z) can be calculated using Wick’s theorem as

〈(	Jq)2〉 = 〈
Ĵ 2

q

〉 − 〈Ĵq〉2 = tr[jq (1 − �)jq �], (39)

where jq is the matrix representing Ĵq in the single-particle
space. When the HF equilibrium ensemble is axially symmet-
ric around the z axis, � is invariant under rotations around the z
axis, and 〈Ĵx〉 = 〈Ĵy〉 = 0. Assuming time-reversal invariance,
we also have 〈Ĵz〉 = 0. It follows that the variances of the
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FIG. 9. Second moments of the angular momentum in 162Dy.
The solid lines are the HF results which exhibit a kink at the shape
transition point. The dashed line describes the spherical HF solution
for temperatures where the lowest equilibrium solution is deformed.
These HF moments may be compared with the SMMC moments
shown by solid circles. The SMMC moments satisfy 〈J 2

x,y〉 = 〈J 2
z 〉 =

〈 �J 2〉/3.

angular momentum components are the same as the mean-
square moments. In Fig. 9, we compare the HF mean-square
moments of Ĵx and Ĵz (solid lines) with the SMMC moments
〈Ĵ 2

x 〉 = 〈Ĵ 2
y 〉 = 〈Ĵ 2

z 〉 = 〈Ĵ 2〉/3 (solid circles) in 162Dy. The HF

mean-square moments of Ĵx and Ĵz coincide above the shape
transition temperature, where the HF solution is spherical.
However, at large values β, the HF mean-square moment of
Ĵx is much larger than the respective moment of Ĵz. Because
the deformed intrinsic ground state has good K = 0, 〈Ĵ 2

z 〉
approaches zero in the limit β → ∞, while 〈Ĵ 2

x 〉 remains finite
and large in this limit. We also show by dashed line 〈Ĵ 2

x 〉 for
the spherical HF solution.

5. State density and level spacing

In Fig. 10 we show the HF density vs Ex in the saddle-
point approximation (4) (solid line) [where the approximate
canonical entropy and energy include the δE correction in
Eqs. (20) and (19), respectively], and compare it with the
SMMC state density (solid circles). The kink in the HF
density at Ex ≈ 31 MeV signifies the shape transition from
a deformed to spherical shape. At lower excitation energies,
the HF state density underestimates the SMMC values; the
SMMC density includes a contribution from rotational bands
that are built on top of intrinsic K states, and are not captured
in the HF approximation. Above the shape transition energy,
the equilibrium shape is spherical and no longer supports
rotational bands. The HF density is then very close to the
SMMC density.

We can try to repair the HF approximation by recognizing
that each of the deformed HF configurations represents a
band [22]. The angular momentum Jz corresponds to the
K-quantum number of the band. Assuming that K is Gaussian
distributed, the K-dependent HF state density ρK can be

FIG. 10. The HF density of 162Dy calculated in the saddle-point
approximation (4) using Eqs. (19) and (20) for the approximate energy
and canonical entropy (solid line) is compared with the SMMC state
density (solid circles) as a function of excitation energy Ex . The gap
in excitation energy reflects the discontinuity of the energy at the
shape transition as is seen in Fig. 6. The dashed-dotted line is the
approximation in which the δE correction is neglected in the saddle-
point energy Eq. (19) and in the approximate canonical entropy of
Eq. (20). The inset shows an expanded scale at low excitation energies.

expressed

ρK (E) = PKρHF(E), (40)

where

PK = 1

(2πσ 2)1/2
exp

(
− K2

2σ 2

)
, (41)

and

σ 2 = 〈
J 2

z

〉
. (42)

For each positive K there will be a rotational band with J =
K,K + 1, . . .. For K = 0 the sequence may skip odd or even
J values. For a complete treatment of the band model one
next introduces a moment of inertia of the band to calculate
the J -dependent level density. However, we do not wish to
introduce new parameters that take us beyond the HF theory
so we assume that all the levels in a band are degenerate. The
level density is then

ρJπ (E) ≈ 1

2

J∑
K=0

ρK (E), (43)

treating the K = 0 bands the same as the others. The factor of
1/2 is for parity projection. The resulting average resonance
spacing at the neutron threshold of E = 8.2 MeV for 162Dy is
reported in Table III. It underestimates the SMMC value by a
factor of ∼5. This is a substantial disagreement; in our view
this uncovers a serious problem with the HF theory of level
densities in deformed nuclei.

6. Frozen-potential model

An approximation adopted in a number of previous works is
to take the HF or HFB ground-state mean fields, and assume the
excited states can be calculated with a single-particle potential
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FIG. 11. The particle-projected FP density of 162Dy (dashed line)
based on the zero temperature HF single-particle levels is compared
with the HF density (solid line from Fig. 10) as a function of excitation
energy Ex .

based on that field. For example, this is done in what is
called HF-BCS or HFB approximations in Refs. [1,2,4], and in
the combinatorial level-density model presented in Ref. [23].
Because the potential field does not depend on the presence of
particle excitations, we will call them frozen-potential (FP)
models. For an axially deformed nucleus such as 162Dy,
the single-particle HF levels come in doubly degenerate
time-reversed pairs and for an even number of particles the
ground state is nondegenerate, so that the T = 0 entropy is
zero. It is somewhat easy to carry out the exact particle-number
projection in the HF FP approximation [24], so we will use it
in the comparison.

In Fig. 11, we compare the FP state density with the FTHF
density determined by using Eq. (20) for Sc. They agree
very well at low excitation energy. At the neutron separation
energy, Sn ≈ 8.2 MeV, the FP state density is lower than
the FTHF density by less than a factor of 2. However, the
discrepancy increases with excitation energy, exceeding one
unit entropy beyond 15 MeV of excitation energy. At the shape
phase transition, the FP approximation underestimates the HF
density by more than two orders of magnitude. We conclude
that the FP model is a good approximation at excitation
energies that are small compared to the shape transition energy,
but not near and above this transition energy.

V. THE FINITE-TEMPERATURE HFB APPROXIMATION

The HFB is the preferred mean-field approximation for
nuclei exhibiting strong pairing correlations. Like the FTHF,
the FTHFB is based on the grand canonical ensemble. How-
ever, unlike the FTHF, the simple approximate particle-number
projection onto a canonical ensemble is not expected to be a
good approximation at low temperatures. This will be evident
as we go through the steps to calculate the level density of
148Sm, starting from the HFB energy function EHFB(β). To
simplify the notation, we consider only one type of particles
as we did in the FTHF. The HFB thermal energy is expressed

in terms of the normal and anomalous densities �,κ as

EHFB = tr(t�) + 1

2
tr(�v�) + 1

4
tr(κ†vκ). (44)

The HFB entropy SHFB(β) is given by

SHFB = −
∑

k

fk ln fk −
∑

k

(1 − fk) ln(1 − fk), (45)

where

fk = 1

1 + eβEk
(46)

are the quasiparticle occupations expressed in terms of the
quasiparticle energies Ek .

The HFB partition function satisfies relations similar to
Eq. (36), and thus the entropy can be computed from the energy
function by an integral similar to Eq. (2). All the expressions
regarding the level density in Sec. IV carry over to the HFB
approximation, except that the particle-number variance in
Eq. (37) is now calculated using all three Wick contraction
terms in the expectation value 〈a†

kaka
†
l al〉. This leads to an

additional contribution from the anomalous density κ ,

〈(	N̂ )2〉 =
∑

k

�kk −
∑
kl

|�kl|2 +
∑
kl

|κkl|2. (47)

A. Application to 148Sm

The mean-field ground state of 148Sm is spherical and has
a substantial pairing condensate. Thus FTHFB is the proper
mean-field theory for this nucleus. The pairing correlation
energy, defined as the difference between the HF and HFB
ground-state energies, is 1.82 MeV (see Table II). Also shown
in Table II is the correlation energy of the SMMC ground state
with respect to the HFB solution (i.e., the difference between
the HFB and SMMC ground-state energies). This correlation
energy is labeled “missing” in the table and is about 3 MeV
for 148Sm. The pairing transitions for protons and neutrons
occur at β = 2.1 MeV−1 (Ex = 5.9 MeV) and β = 2.7 MeV−1

(Ex = 3.4 MeV), respectively.
We first examine ζ , the factor used to convert the grand

canonical quantities to canonical in the HFB. Naively, we
may try using the HFB particle-number fluctuation in Eq. (47)
in Eq. (25). The resulting ζ is shown as the dashed line in
Fig. 12. This approximation is bound to fail at low temperatures
because of the mixed particle number in the HFB ground state.
We have also calculated ζ from Eq. (21) using the full ∂Ni/∂αj

matrix suggested by the 3D saddle-point approximation. This
gives a better result for β > 2 MeV−1, as may be seen by the
solid line in Fig. 12. We will therefore use this method for the
canonical quantities calculated below.

1. Excitation energies

The 148Sm thermal excitation energy function Ex vs β
in FTHFB is compared with the SMMC results in Fig. 13.
The HFB energy is shown by the dashed line. The excitation
energies at β = 0 are nearly equal, differing only by the
missing correlation energy. The two kinks in the HFB curve,
visible in the inset, are associated with the neutron and proton
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FIG. 12. ln ζ vs β in FTHFB for 148Sm. Lines are as in Fig. 5.

pairing phase transitions. The HFB excitation energy is higher
than that of the SMMC, as to be expected from the higher
limiting entropy of the grand canonical ensemble. We next
calculate the approximate canonical projection of the HFB
energy using Eq. (21). The result is closer to the SMMC for
high β. We note that for β < 2 MeV−1(i.e., for temperatures
above the pairing transitions), the absolute HF and HFB
energies coincide, so that the HF excitation energy is lower
than the HFB excitation energy by exactly the amount of
pairing correlation energy in the ground state.

2. Entropies

The grand canonical HFB entropy (dashed line) and SMMC
entropy (open squares) functions in 148Sm are shown in Fig. 14
vs β. Their absolute values are set by integrating from the
β = 0 point, where their respective values are given in Table I.
Both entropy functions approach zero at large β, confirming

FIG. 13. Excitation energy of 148Sm as a function of inverse
temperature β for 0 < β < 2 MeV−1, comparing the grand canonical
HFB energy in Eq. (44) (dashed line) with the approximate canonical
energy in Eq. (19) (solid line) and the SMMC results (open squares).
The inset shows an expanded energy scale.

FIG. 14. Entropy functions of 148Sm. The grand canonical HFB
entropy (dashed line) and the approximate canonical HFB entropy in
Eq. (20) with ζ given by Eq. (21) (solid line) are compared with the
SMMC entropy (open squares). The dashed-dotted line is the entropy
associated with the 3D saddle-point approximation, i.e., omitting the
βδE term in Eq. (20). The inset shows an expanded entropy scale at
large β values.

the sum rule (6). The neutron and proton pairing transitions
are also visible as kinks in the HFB entropy curve.3

We also show in Fig. 14 the approximate canonical
HFB entropy in Eq. (20) where ζ is given by Eq. (21) in
the discrete Gaussian model. Because the particle-number
fluctuations in FTHFB remain relatively large even at low
temperatures, similar results for ζ are found in the saddle-point
approximation Eq. (16).

This approximate canonical entropy coincides with the
SMMC at low values of β and overestimates the SMMC
entropy around β ∼ 2 MeV−1, i.e., in the vicinity of the
proton pairing transition. At larger values of β, for which a
nonzero pairing condensate exists, the approximate canonical
entropy is in overall agreement with the SMMC entropy up
to β ∼ 3.5 MeV−1 but at lower temperatures it becomes
negative with a value of about −2 at β ∼ 7 MeV−1 when the
system reaches its HFB ground state. We note that if ζ were
to be calculated using the HFB particle-number fluctuations
[Eq. (47) in Eq. (25)], the large-β entropy would have been
even more negative at ∼ − 4 units. A negative entropy at zero
temperature is unphysical because there is only one state in the
ensemble at zero temperature and the entropy should be zero.
The HFB ground state violates particle-number conservation;
the probability ζ−1 of having the proper proton and neutron
numbers for 148Sm at β = 7 MeV−1 is only ∼0.17, hence the
unphysical negative entropy at low temperatures.

To summarize the results of this section, we have not found a
simple procedure to project the HFB onto a canonical ensemble
if we require the correct entropy at high temperature and

3The mean-field phase transition can be seen even more clearly as
a discontinuity in the heat capacity C = βdS/dβ.
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FIG. 15. Mean-square angular momentum 〈J 2
z 〉 in 148Sm, com-

paring the HFB results (solid line) with the SMMC results (open
squares). The dashed-double dotted line corresponds to the spherical
HF solution.

an error of less that one unit at low temperatures. We will
comment further on this situation in the conclusion.

3. Angular momentum fluctuations

Equation (39) which describes the angular momentum
fluctuations in the FTHF approximation, has an additional
contribution in FTHFB from a contraction in Wick’s theorem
that involves the anomalous density κ ,

〈(	Jq)2〉 = 〈
J 2

q

〉 − 〈Jq〉2

= tr[jq (1 − �)jq �] − tr[jq κj ∗
q κ∗]. (48)

The additional contribution is negative, leading to a reduction
in the mean-square moment of the angular momentum. This
is just what one would expect as an effect of the pairing
correlations.

In Fig. 15 we show the angular momentum fluctuations
in 148Sm as a function of β. The HFB solutions in 148Sm is
spherical at all temperatures so all 〈J 2

q 〉 are equal and we only
need examine one of them. We compare 〈J 2

z 〉 for HFB (solid
line) with its SMMC (open squares) values. Below the pairing
transition temperature, the HFB values are strongly suppressed
compared to the spherical HF solution (dashed-double dotted
line), a known effect of pairing correlations. The SMMC values
are further suppressed compared with HFB, in particular in
the vicinity of the pairing transition. We observed substantial
suppression also above the pairing transition temperature,
indicating the persistence of pairing correlations in the SMMC
results, even when the mean-field condensate no longer exists.

While the deficiency of the HFB around the phase transition
is interesting, the magnitude of the error is not large enough
to be of concern in calculating level densities.

4. State densities and level spacing

In Fig. 16 we show the HFB density of 148Sm (solid
line) in comparison with the SMMC state density (open
squares). The HFB density was calculated with the canonical
saddle-point approximation (4), taking the canonical entropy
from Eq. (20) and ζ from Eq. (21). The result is practically

FIG. 16. State densities in 148Sm. The HFB density (solid line)
calculated from Eqs. (4), (20), and (21) is compared with the SMMC
state density (open squares). The dotted line is the HFB density with ζ

calculated from the particle-number fluctuations, Eq. (25). The inset
is an expanded scale at low excitation energies.

indistinguishable when the δE term in Eq. (20) is omitted.
We observe good agreement between the HFB and SMMC
densities for excitation energies above the pairing transitions
Ex � 7 MeV. At those energies, the HFB solution coincides
with the HF solution, and the only role of the pairing is to
reset the origin of the excitation energy scale by the pairing
correlation energy. This good agreement may be fortuitous
in view of two compensating errors in the HFB: the missing
correlation energy in the ground state resets the excitation scale
to lower the level density, while the many-body correlations
increase the level density. This is seen as an increase in
the effective mass of the quasiparticles [25]. Beyond that,
for attractive interactions, the RPA correlation energy further
raises the level density [26]. Nevertheless, we can take the
present agreement as support for a popular model of the
level density, namely the back-shifted Fermi gas. That model
assumes that pairing correlations only affect the origin of the
excitation energy scale.

At the same time, the calculated HFB level density is
too small at low excitation energies. As with the calculated
canonical entropy coming out negative, the problem relates to
the violation of particle-number conservation in HFB.

Lastly we compute the neutron resonance spacing at
threshold. For that we need the spin dependence of the level
density. We use Eqs. (29) and (27), as was done for the SMMC,
except that now ρ(E) is taken to be the HFB density. This is
justified because the HFB solution is spherical. The spin cutoff
factor σ is taken from the HFB variance of Jz (see Fig. 15). As
discussed previously, these fluctuations are larger in the HFB
than in SMMC. However, this difference will affect the level
density by less than a factor of two. We find in HFB a neutron
resonance spacing at the neutron threshold of 4.1 eV, in very
good agreement with the SMMC value of 3.7 eV (see Table III).

VI. CONCLUSION AND OUTLOOK

Our benchmarking of the finite-temperature HF and HFB
approximations for level densities in heavy nuclei provides
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a quantitative assessment of the limitations of these mean-
field theories. It also justifies their use under fairly broad sets
of conditions. We have emphasized the relation between the
grand canonical and canonical statistics because the mean-field
theories are formulated in the grand canonical ensemble while
the actual level densities are canonical. We first summarize
our findings in Sec. VI A, then briefly survey the literature
on the mean-field methods in use in Sec. VI B, and finally
offer some remarks on promising directions for improvement
in Sec. VI C.

A. Findings

(1) An important finding that echoes early work [15] is
that the state density can be accurately calculated from the
canonical entropy function by the saddle-point method (which
approximates the inverse Laplace transform of the canonical
partition function). We improve upon this by showing that
in simple cases (e.g., the independent-particle model with
equidistant single-particle levels) one can obtain accurate
results also starting from the grand canonical entropy.

(2) Absent any broken symmetry in the mean-field solution,
the particle-projected FTHF approximation gives accurate
entropies and state densities.

(3) Again echoing previous studies [27,28], the phase
transitions found in mean-field theory are washed out.

(4) The pairing condensate phase in HFB is quite prob-
lematic because of the inherent violation of particle-number
conservation. Nevertheless, level densities of strongly paired
nuclei can be often calculated reliably at the neutron separation
energy because the pairing condensate is no longer present at
this energy, provided one can determine a reliable ground-state
energy (which is affected by pairing correlations). This justifies
the use of the back-shift approximation in simplified empirical
theories [1,29–31].

(5) The spherical-to-deformed phase transition is problem-
atic for a different reason. The ground state of a deformed
nucleus has a continuous degeneracy in an unrestricted HF
approximation. On the other hand, restricting the HF to axially
symmetric fields gives a state density that is too low at
low excitation energies. These states can be interpreted as
intrinsic states on top of which rotational bands are built.
However, when the state density is estimated by a simple
approximation of rotational bands built on top of intrinsic
mean-field states, the resulting neutron resonance spacing at
the neutron separation energy is too small (by about a factor
of 5 in 162Dy).

(6) The frozen-potential (FP) approximation to FTHF is
good for well-deformed nuclei up to the neutron separation
energy (which is well below the shape transition excitation
energy for a strongly deformed nucleus).

B. Implications

The current state-of-the-art methods for calculating level
densities may be identified in the methods used in the RIPL
compilation [32,33]. Most of these methods are essentially
phenomenological [34], but the HF is also used in the FP
approximation. From our findings, that approximation is

quite reasonable and easily compensated for by parameter
adjustment. The RIPL compilation makes a strong distinction
between the statistical and combinatorial methods. According
to our finding 1 in Sec. VI A, these two methods should give
almost identical results in the FP approximation. In fact, this
was already seen in Ref. [2]. However, the contribution of the
pairing condensate is included in the combinatorial method
by a simple modification of the single-particle spectrum,
which may not accurately reflect the many-body nature of
the condensate. Another combinatorial method was recently
proposed in Ref. [23]. While this method treats the pairing
condensate self-consistently, it is unclear how the reduction
from the grand canonical to the canonical ensemble is carried
out.

The calculations based on the FP approximation often
include a phenomenological enhancement factor attributed to
vibrational collective degrees of freedom. Such an enhance-
ment is well-founded as an extension of mean-field theory
to include small-amplitude quantal fluctuations of the fields
around the mean-field solution [7]. However, in the early
literature this effect was found to be somewhat small [26], and
for the Hamiltonian employed here, we find no compelling
need for it.

In view of our comparative benchmarking of a deformed
and of a spherical nucleus, it would be interesting to revisit
the arguments presented by Bjornholm, Bohr, and Mottelson
regarding the effects of rotational-symmetry breaking on the
level density [22]. There is only a small difference between the
experimental level densities or the benchmark level densities
of the two nuclei we examined, 162Dy and 148Sm. In fact, we
followed for 162Dy the prescription described in Eqs. (8)–(10)
of Ref. [22] for extracting the level densities from the band-
head densities, and obtained a level density that is too high.
Also, the benchmark entropies of both 162Dy and 148Sm are
very similar for values of β in the range ∼1.5−3 MeV−1.
We conclude that, except for the lowest excitation energies,
deformation is less important than commonly assumed.

C. Outlook

It is clear that serious problems arise in the self-consistent
mean-field theory and that some extension of the theory is
needed if it is used to calculate level densities in the presence
of mean-field condensates that are associated with symmetry
breaking. In a deformed nucleus it is necessary to take into
account an enhancement from rotational bands, and in a
nucleus with a strong pairing condensate we found no simple
way to project from the grand canonical to the canonical
ensemble. One desirable goal is a computational framework
that applies equally well to spherical and to deformed nuclei, as
well as those in between. The static path approximation (SPA)
with the inclusion of number-parity projection (to capture
pairing effects) satisfies this condition. The SPA was studied
in the context of schematic Hamiltonians with promising
results [28,35]. One difficulty that has to be addressed is how
to obtain an accurate ground-state energy, necessary to set the
excitation energy scale for the level density.

The random-phase approximation (RPA) provides a pow-
erful method to treat correlation energies beyond the
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mean-field approximation, even in the presence of degenera-
cies that are associated with the broken symmetries. With some
exceptions [8,36], the RPA has mostly been applied in the
framework of the SPA. In early studies it was found that the
ground-state energy obtained in the SPA is not accurate enough
to be useful for setting the excitation energy scale for the
level densities. However, later model studies that included the
RPA corrections to pairing have been quite successful [20,35]
and the method was applied to physical systems [21]. We
note also that the SPA+RPA with the inclusion of number-
parity projection describes well thermodynamic properties of
superconducting nanoscale metallic grains [37]. In the nuclear
context it would be interesting to carry out a systematic study of
the accuracy of the SPA and of the SPA+RPA for shell-model
Hamiltonians such as the ones used in the SMMC.

A different approach to nuclear level densities is the
moment method, also known as the statistical spectroscopy
approach. It requires the calculation of at least the first and
second moments of the Hamiltonian, and so far it has been
applied up to mid-mass nuclei [38,39]. Recent progress in
understanding of the four lowest moments of the Hamiltonian
were reported in Ref. [40]. However, as with the SPA, accurate
ground-state energies are needed to set the scale of excitation
energies. It might also be interesting to carry out a comparative
study similar to what we have done here for the mean-field
approaches.
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APPENDIX A: ACCURACY OF THE SADDLE-POINT
APPROXIMATION

Here we use a simple model to assess the accuracy
of the saddle-point approximations for the state density in
Sec. II A and the approximate particle-number projections
in Secs. II C and II D for the entropy. The model describes
independent fermions populating equidistant energy levels.
The only parameter in the model (in the limit when the
number of single-particle levels is large) is the spacing of
the single-particle states δ. The Hamiltonian of this system is

H = δ

D−1∑
i=0

(i + 1/2)a†
i ai, (A1)

where δ is the single-particle level spacing and D is the total
number of single-particle levels.

We first show that the factorization (26) of the grand
canonical partition function is essentially exact in this model

when T/δ, the temperature in units of the single-particle
mean-level spacing, is much smaller than both the number
of particles N and D − N . The key observation is that
under these conditions the canonical partition function Zc(β),
calculated with respect to the ground-state energy of the N
particles (i.e., in terms of excitation energy) is independent
of N . Changing N shifts the Fermi energy but because
the single-particle spectrum is invariant under such a shift,
the particle-hole excitations remain unchanged. A typical
particle-hole excitation energy is of order T so the number of
excited particles is typically smaller than N (under the above
conditions).

The canonical partition function of a system with ground-
state energy E0 is given by e−βE0Zc(β) where Zc(β) is the
partition calculated using the excitation energies. The N
particle ground-state energy of the Hamiltonian (A1) is given
by E0 = N2δ/2, and thus the N particle canonical partition is

Zc(β,N ) = e− 1
2 βN2δZc(β). (A2)

We expand the grand canonical partition function Zgc(β,α) for
a value α = α0 that gives an average number of particles N0,

α0 = βN0δ, (A3)

and use Eq. (A2) to find

Zgc(β,α0) ≈
∑
N

eα0N− 1
2 βN2δZc(β). (A4)

The quasiequality “≈” is a reminder that the formula is valid
for T/δ  N,D − N . Using (A3) we have

Zgc(β,α0) ≈
∑
N

e−β
(N−N0)2

2 δe
1
2 βN2

0 δZc(β). (A5)

With the help of Eq. (A2) for N = N0, we can rewrite the last
relation in the form,

Zgc(β,α0)e−α0N0 = Zc(β,N0)

(∑
N

e−β
(N−N0)2

2 δ

)
. (A6)

This relation describes the factorization (26) of the grand
canonical partition. The quantity in parenthesis is the partition
function ζ of the discrete Gaussian model [see Eq. (25)],
provided that the particle-number variance is (βδ)−1. Indeed,

〈(	N )2〉 =
D∑

m=0

fm(1 − fm) ≈
∫ D

0
dm

eβmδ−α

(eβmδ−α + 1)2
= 1

βδ
,

(A7)

where we have used βN0δ 	 1 and β(D − N0)δ 	 1.
It is instructive to see how the particle-number projection

works with a numerical example. We take the ensemble as
a finite space, (D,N ) = (40,20), chosen to have dimensions
comparable to those we dealt with in the text.

The exact canonical entropy Sc(β) (obtained by using exact
particle-number projection) is shown in Fig. 17 by the solid
line. It starts at S(0) = ln

(40
20

) = 25.65 and approaches zero at
large β.

We next turn to the grand canonical ensemble, in which we
fix the chemical potential at each value of β to get the desired
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particle number in the ensemble average. The grand canonical
entropy for the (40,20) model is shown as the dashed curve in
Fig. 17. Here the β = 0 entropy from Eq. (9) is 27.73, larger
than the canonical entropy by 2.08 units. The approximate
reduction to the canonical ensemble is carried out by Eq. (20).
The result is shown as the dot-dashed curve in Fig. 17. It
is accurate to within 0.1 of a unit over the entire range of
β. We also show for comparison the entropy calculated with
Eq. (20) without the δE correction (dotted line). It is much
less accurate, differing from the exact value by more than a
half-unit for βδ > 1.

The entropies of Fig. 17 are replotted in Fig. 18 as a function
of excitation energy (in units of δ) Ex/δ. The dashed line is the
grand canonical entropy. The entropy shown by the dot-dashed
line is the approximate canonical entropy of Eq. (20) which
includes the contribution from δE; that contribution is omitted
in the entropy shown as the dotted line. The two are very close
except at low excitation energies (see inset). The difference
of the approximate canonical entropy from the true canonical
entropy (solid line) can hardly be seen in the figure.

We next turn to the state density itself. The excitation energy
spectrum is nδ (n = 0,1,2, . . .), and the state density for N
particles is given by

ρN (Ex) =
∑
n=0

δ(Ex − nδ)a(n), (A8)

for n < min(N,D − N ). Here a(n) = 1,1,2,3,5,7,11, . . . is
the well-known partition of the integer n [41,42]. The
saddle-point approximation for the state density is also well
known [42] and it was shown to be accurate enough for our
purposes for n > 2 [15].

Figure 19 shows as solid circles the state density as the
number of states within energy bins of width δ [i.e., the
numbers a(n)]. The ground state and first excited state are
unique, and then there is an increasing density up to half
the maximal energy. For comparison we also show by solid line
the level density calculated from (4) using the canonical energy
and entropy obtained by exact particle-number projection.

FIG. 17. Entropy of the (D,N ) = (40,20) model as a function of
β. See text for explanation.

FIG. 18. Entropy of the (D,N ) = (40,20) model as a function of
excitation energy Ex/δ. See text for explanation.

The state density in the standard saddle-point approxima-
tion is shown by the dotted line, while the state density of
Eq. (4), in which the saddle-point prefactor is calculated from
dEζ /dβ [see Eq. (19)] gives the dashed-dotted line. This curve
is hardly distinguishable from the solid line and improves the
agreement with the exact result at low excitation energies.
We observe that the improved saddle-point expression (20)
and (19) is accurate to better than 10% to energies as low as
2δ. Because the low-lying region of the spectrum would be
calculated by explicit methods anyway, we conclude that the
improved saddle-point approximation is entirely adequate for
statistical purposes.

APPENDIX B: THERMODYNAMICAL CONSISTENCY OF
THE HF AND HFB APPROXIMATIONS

The key consistency condition of a finite-temperature
theory in the grand canonical ensemble is the relation between
Sgc and Egc given by the equation analogous to Eq. (2) for
the canonical ensemble. It can be easily derived from the
relations (14) satisfied by the first logarithmic derivatives
of Zgc = Tr exp(−βĤ + αN̂ ). However, these derivatives are

FIG. 19. State density for the Hamiltonian (A1) with (D,N ) =
(40,20). See text for explanation.
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more subtle in the case of a mean-field Hamiltonian because
the effective Hamiltonian in the density operator depends on
the temperature and chemical potentials.

Here we prove that similar relations Eq. (36) are indeed
valid in the FTHF approximation. The proof follows from the
fact that the theory is derived from the variational principle for
the grand potential � [5,6]. We write expression for the HF
grand potential �HF in the form,

− ln ZHF = β�HF = βEHF − SHF − αNHF, (B1)

where EHF,SHF were defined in Eqs. (33) and (34).
The derivative of Eq. (B1) with respect to β has a

contribution EHF from the explicit dependence on β. However,
there is in principle also a contribution from the implicit
dependence on β in EHF,SHF, and NHF. To see that they vanish
we go back to the many-body uncorrelated density matrix D̂HF

that is the trial density of the variational principle. Taking that
as the fundamental variable, the relevant derivative is

− ∂ ln ZHF

∂β

∣∣∣∣
α

= ∂(β�HF)

∂β

∣∣∣
α

= EHF + δ(β�HF)

δD̂HF

∣∣∣∣
β,α

∂D̂HF

∂β
.

(B2)

Because D̂HF is a variational solution at fixed β and α, it
follows that

δ(β�HF)

δD̂HF

∣∣∣∣
β,α

= 0, (B3)

and the second contribution on the right-hand side of
Eq. (B2) vanishes. The thermodynamic consistency of
the finite-temperature HFB can be proven in the same
way.
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