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Two-particle two-hole (2p2h) effect on the Gamow-Teller (GT) transition for neutron-rich nuclei is studied by
the second Tamm-Dancoff approximation (STDA) with the Skyrme interaction. Unstable 24O and 34Si and stable
48Ca nuclei are chosen to study the quenching and fragmentation of the GT strengths. Correlation of the 2p2h
configurations causes about 20% quenching and downward shift of GT giant resonances (GTGRs). The residual
interaction changing relative angular momentum that appeared in the tensor force part gives a meaningful effect
to the GT strength distributions. In this work, 17–26% of the total GT strengths are brought to high-energy
region above GTGRs. In particular, the tensor force brings strengths to high energy more than 50 MeV. STDA
calculation within a small model space for 2p2h configuration is also performed and experimental data of 48Ca
is reproduced reasonably.

DOI: 10.1103/PhysRevC.93.044319

I. INTRODUCTION

The Gamow-Teller (GT) transition is a suitable probe
to investigate nuclear spin-isospin responses as well as the
information on spin-dependent channels of the nuclear force.
It also contributes to matrix elements of the nuclear β-decay
and double β-decay. The former has to do with the time
scale of rapid neutron-capture process (r-process) [1] and the
prediction of decay heat of fission products important for the
reprocessing of nuclear waste. The latter gives an important
insight on the mechanism of neutrino mass [2]. Low-lying GT
state also points out the existence of SU(4) “supermultiplet”
symmetry in nuclei [3,4].

It is well known that the total sum of GT strengths follows
the model independent Ikeda sum rule [5], which is defined as
S− − S+ = 3(N − Z). Here, S± denote the total sum of GT
strength for β± transitions. However, experimentally observed
GT strengths around GT giant resonances (GTGRs) are only
50–60% of the total value for the wide range of nuclei [6–8].
The leading origin of this damping (so-called quenching)
mainly lies in the coupling with �-hole state or the cor-
relation with higher-order configurations (see Refs. [8–10],
and references therein). A recent experiment implies that the
mixing of second-order configuration such as two-particle
two-hole (2p2h) state is more important than �-hole coupling
[8,11]. The mixing of 2p2h states also accounts for the
spreading width of GT strengths, which is studied by various
theoretical approaches [12–18].

In the higher-order configuration mixing, the tensor force
comes to play an important role, because it becomes more
effective when the momentum transfer between two particles
is high. Bertsch and Hamamoto studied the effect of the tensor
force on the total sum of GT strength of 90Zr including 2p2h
states perturbatively and found that it plays a comparable
role to the central force [19]. Orlandini et al. obtained the
same result in doubly magic N = Z nuclei by using an
energy-weighted sum-rule approach [20]. It was also shown
that tensor force plays a important role in matrix elements
of στ+ operator at low energies (see Ref. [21], and references

therein). Drożdż et al. also studied the effect of the tensor force
by second random-phase-approximation (SRPA) [22], which
includes 2p2h states in a similar way to the standard RPA.
However, their result showed a moderate effect of the tensor
force in contrast to the other works. This difference might be
because they used a weaker tensor force than others. However,
any of the above works does not consider the self-consistency
in their formalisms, which is essential to satisfy the Ikeda
sum rule, so that the effects of the tensor force may not be
represented correctly. Here, self-consistency means that one
uses a same interaction both in the ground state and the residual
two-body interaction. In addition, they investigated excitation
energy up to at most 50 MeV. Bai et al. reported with a
self-consistent RPA [23] that the tensor force can bring the
GT strengths above 50 MeV already in a one-particle one-hole
(1p1h) level.

The 2p2h configuration mixing also affects the β-decay.
It is studied for light nuclei neighboring the β-stability line
[21,24]. In case of nuclei far from the β-stability line, several
authors discussed the β-decays with the finite rank separable
approximation (FRSA) [25] and the particle vibration coupling
(PVC) [26], which consider the 2p2h configuration mixing
effectively via coupling to phonon states on the top of
quasiparticle RPA (QRPA). The tensor force induces further
modification of the low-lying GT state, and it is already studied
in 1p1h level [27,28] and FRSA [25].

In this paper, we refocus the tensor force effect on the
GT transition with the self-consistent second Tamm-Dancoff
approximation (STDA). As target nuclei, unstable 24O and
34Si are chosen for future study of the 2p2h effect on β-decay.
We also investigate 48Ca for comparison with experimental
data. STDA is, in fact, of a form omitting the ground-state
correlation part of second RPA (SRPA). However, it is not so
significant in the case of the GT transition [18,29], so that
STDA is suitable for the present purpose, because we are able
to carry it out within a less-computer resource than SRPA. In
addition, STDA as well as SRPA is able to include a large
model space and respects the Pauli principle, which PVC and
FRSA cannot take into account properly.
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The content of this paper is the following. Section II
provides formalism of STDA and discusses the model space
to be used in this work. Section III discusses our result of
GT strength distribution and the quenching. In Sec. IV, the
conclusion of present work and future plan are given.

II. THEORETICAL METHOD

The numerical calculation of the self-consistent STDA and
SRPA had been difficult to be carried out until recently, but
is now developed together with the evolution of computer
resources and numerical technique, and is used to study
monopole, dipole, quadrupole, and octupole transitions up to
90Zr nuclei by realistic interaction [30,31] as well as effective
interactions such as Skyrme [32–34] and Gogny forces [35].
The present status of the self-consistent SRPA is summarized
in Ref. [36]. We therefore illustrate our formalism used in this
work briefly in Sec. II A, and discuss model spaces for STDA
to be considered in Sec. II B.

A. STDA formalism

STDA in this work uses single particle levels obtained
by the Skyrme-Hartree-Fock (SHF) method [37] assuming
spherical nuclear shape. We define the ground state of a nucleus
as |SHF〉. SHF is solved in the coordinate space with a box
boundary condition, rbox with a step size �r = 0.1 fm. We use
SGII Skyrme effective interaction for the central and spin-orbit
forces [38], and Te1 for the tensor force [39]. Variations
of energy density and the spin-orbit potential by adding
tensor force can be found in several papers, for example,
Refs. [23,40].

The basic formalism of STDA is the same as SRPA
formulated in Refs. [31,32,41,42]. An excited state |λ〉 with
respect to the ground state |0〉 is described by

|λ; JM〉 = Q
†
λ;JM |0〉, Qλ;JM |0〉 = 0, (1)

where the phonon creation operator, Q†, are defined as

Q
†
λ;JM =

∑
mi

Xλ;JM
mi O

JM†
mi +

∑
m � n,i � j

Jp,Jh

X λ;JM
mnijJpJh

OJM†
mnijJpJh

.

(2)
The indices m and n denote particle states, while i and j

denote hole states. The operators O
JM†
mi and OJM†

mnijJpJh
create

1p1h and 2p2h states coupled to the angular momentum J and
its projection to z-axis M , respectively [31]. The two particle
states and two hole states in the operator O are coupled to the
angular momentum Jp and Jh, respectively. Compared with
the phonon creation operator of SRPA [31], the backward
amplitudes characterized by OJM

mi and OJM
mnijJpJh

are omitted.
Instead, the ground state of STDA |0〉 is exactly identical to
|SHF〉.

We define the numbers of 1p1h and 2p2h configurations in a
given model space as N1 and N2, respectively. Only �Tz = ±1
configurations are involved and noncharge exchange (�Tz =
0) and double-charge exchange (�Tz = ±2) configurations
are decoupled from the phonon creation operator to reduce the
dimension of STDA.

The coefficients X and X are determined by solving the
STDA equation,(

A A12

A21 A22

)(
Xλ

X λ

)
= Eλ

(
Xλ

X λ

)
. (3)

The N1 × N1 submatrix A is the standard 1p1h RPA matrix.
The submatrices A12 (N1 × N2 matrix) and A21 (N2 × N1)
describe the coupling between 1p1h and 2p2h states, and A22

(N2 × N2) describes the coupling between 2p2h states. The
analytical forms are given in Ref. [32]. We calculate the matrix
elements in the submatrices self-consistently, namely, the same
interaction as the ground state is used. The rearrangement
term appearing in matrices A [43] are also included. Since the
matrix in the left hand of Eq. (3) is symmetric Hermite one,
we can obtain eigenvalues, Eλ, directly by diagonalization,
avoiding the imaginary solution problem, emerged in case
of SRPA [31,32,36]. Taking advantage of sparse matrices A,
Eq. (3) is solved by an appropriate numerical method. In this
work, the FEAST linear algebra solver [44] is used.

If one omits the coupling between the 2p2h states, A22

becomes diagonal and reads

[A22]mnij,m′n′i ′j ′

= (εm + εn − εi − εj )δmm′δnn′δii ′δjj ′χ (m,n)χ (i,j ), (4)

where the ε are the single-particle energies, and χ (m,n) and
χ (i,j ) are the antisymmetrizers between m and n states, and
i and j states, respectively. This prescription is what is called
the diagonal approximation, which reduces a computational
task considerably. If this approximation works well, it would
be useful for a qualitative discussion of GT quenching. We will
discuss the validity of the diagonal approximation in Sec. III D.

Transition matrices of an operator F̂ is given by

〈λ; JM|F̂ |0〉 =
∑
mi

Xλ;JM
mi fmi +

∑
mnij

X λ;JM
mnijJpJh

fmnij , (5)

where fmi ≡ 〈m|F̂ |i〉 and fmnij ≡ 〈mn|F̂ |ij 〉. In case of the
GT transition, where F̂ = ∑

mi〈m|�στ±|i〉a†
mai , the strength

function B±(GT ) is written as

Bλ
±(GT ) =

∣∣∣∣∣
∑
mi

Xλ;J
mi 〈m||στ±||i〉

∣∣∣∣∣
2

. (6)

The 2p2h amplitudes X do not contribute B±(GT ) in the case
of the one-body external field as the present case.

Hereafter, “GT” denotes a β−-type transition.

B. Model space

Before carrying out the calculation of GT transition, we
sought for an appropriate model space. In our calculation, the
continuum states are discretized by introducing a box boundary
condition. Cutoff energy of unperturbed 1p1h states is fixed to
E

1p1h
cut = 100 MeV because it is insensitive to results. We also

define the cutoff energy of unperturbed 2p2h state as E
2p2h
cut .

First of all, we assessed the boundary box size denoted
by rbox and a quantum number, N ≡ 2n + l, where n and
l are the number of node and orbital angular momentum
of the single particle wave functions, respectively. The test
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FIG. 1. GT strength distribution of 24O calculated by STDA(D)
with various box boundary conditions from rbox = 8 to 14 fm. The
upper and lower panels show the result for (a) N = 8 and (b) N = 13,
respectively. The strengths are smeared by the Lorentzian function
with a width 1 MeV. E

1p1h
cut is set to be 100 MeV.

was performed for 24O and 48Ca under the condition of
the diagonal approximation denoted by STDA(D), by setting
E

2p2h
cut = 100 MeV. The results are shown in Figs. 1 and 2 for

24O and 48Ca, respectively. The horizontal line corresponds

FIG. 2. Same as described in the caption of Fig. 1, but for 48Ca.
The upper and lower panels show the result for (a) N = 8 and (b)
N = 12, respectively.

FIG. 3. GT strength distributions of 24O and 48Ca calculated by
STDA(D) with different cutoff energies of unperturbed 2p2h states
denoted by E

2p2h
cut from 80 to 120 MeV.

to excitation energy of daughter nuclei. We used Qβ of the
AME mass table [45]. Let us begin with Fig. 1(a). This is the
result of N = 8 with different rbox. The strength distributions
from E = −5 to 20 MeV do not converge for any rbox. As
we increase N , we found that the strength distributions for
different rbox come close to each other. We finally obtain a
good convergence for N = 13 as shown in Fig. 1(b). The
similar result is obtained for 48Ca. In Fig. 2(a), the lines for
different rbox do not converge for N = 8, while they become
almost the same shape for N = 12, as shown in Fig. 2(b). It
means that it is enough to include a large N even in a relatively
smaller rbox in order to obtain a reasonable convergence, at
least within the present condition. We also notice from Figs. 1
and 2 that, in contrast to the energy region from −5 to 20 MeV,
the strength distributions at high energies are insensitive to rbox

and N .
Next, we sought for appropriate E

2p2h
cut . The test calculations

is performed altering E
2p2h
cut from 80 to 120 MeV by fixing

N = 13 for 24O and N = 12 for 48Ca. The result is shown
in Fig. 3. The GT resonances up to 10 MeV show a weak
dependence on E

2p2h
cut . Since we use the zero-range interaction

in the residual interaction, it is not obvious how large E2p2h

should be taken into account. In other words, we have to
introduce an appropriate cutoff energy as long as we use the
zero-range interaction. However, it would not be so rough
to choose a particular E

2p2h
cut from 80 to 120 MeV in order to

discuss the average behavior of the GT quenching, considering
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this weak dependence. We again notice that the GT strength
distributions in a high-energy region are less sensitive to E

2p2h
cut .

Finally, we adopt rbox = 10 fm, E
2p2h
cut = 100 MeV, and

N = 13 for 24O and N = 12 for 48Ca, in this work. The same
model space as 48Ca is adopted for 34Si. Under this condition,
the dimensions N1 + N2 are about 9 × 104, 1.4 × 105 and
2.5 × 105 for 24O, 34Si, and 48Ca, respectively.

III. RESULTS

A. 2p2h effects on GT distributions

We first discuss 24O. The GT strength distribution as
a function of excitation energy of daughter nucleus from
−15 to 30 MeV is plotted in Fig. 4. The GT strengths are
smoothed by the Lorentzian function with a width of 1 MeV,
which represents the coupling to more complicated states.
The position of experimentally observed 1+ state (1.8 MeV)
is indicated by the arrow. Figure 4(a) illustrates the TDA
result. The GTGR appears at about 17 MeV both for SGII
and SGII+Te1. The low-lying resonances can be seen around
9 MeV for SGII and they are disturbed for SGII+Te1. In case
of the STDA shown in Fig. 4(b), the strength distribution of
STDA is systematically lower than TDA by about 6 MeV for
SGII and the GTGR appears at about 11 MeV. This shift can
be seen more strongly for SGII+Te1 and several GT peaks
appear at negative energies.

The shift of resonances to lower-energy region by the
coupling with 2p2h states has been commonly observed and
discussed in the other SRPA calculations [30–32,36]. We will
discuss this problem later in Sec. III B.

Let’s return to Fig. 4. The peak height of GTGR for TDA is
about 12. It is quenched to 8 for STDA as expected from 2p2h
configuration mixing. TDA does not show any peaks around
1.8 MeV where the experimentally observed 1+ exists. On the
other hand, STDA produces several resonances around this
energy by shifting the low-lying GT resonances appearing at
about 9 MeV for TDA. The height of the low-lying resonance is
not changed as much as GTGRs. This result is natural because
GT states at low energies have less states to be coupled with
them than those at high energies. Therefore, the contribution
of the 1p1h configuration to this state is still dominant.

As seen in Fig. 4, GT strengths are distributed to other states
by the 2p2h configuration mixing. To see it more clearly, we
plot the discrete GT strength in logarithmic scale in Fig. 5.
Figures 5(a) and 5(b) are the result of SGII and SGII+Te1,
respectively. B(GT) of STDA are widely distributed, while that
of TDA gives only several peaks around this energy region.

Figure 6 shows the GT distribution of 34Si as a function
of excitation energies of its daughter nucleus from −15 to
30 MeV, calculated by (a) TDA, (b) STDA, and (c) STDA(D).
Two experimentally observed 1+ states are denoted by the
arrows, one of which is identical to the ground state of
the daughter nucleus. The effects of 2p2h correlation and
the tensor force are qualitatively the same as 24O. The GT
resonances of STDA are lower than TDA by about 7 MeV
for SGII and roughly produce several resonances at which
the observed 1+ states exist. SGII+Te1 again shifts the GT
resonances downward more strongly in the case of STDA and

FIG. 4. GT strength distribution of 24O as a function of excitation
energy with respect to its daughter nucleus. The upper, middle,
and bottom panels are the results for (a) TDA, (b) STDA, and (c)
STDA(D), respectively. The solid and dashed lines indicate the results
calculated with SGII and SGII+Te1 parameter sets, respectively.
The arrow indicates the experimentally observed 1+ state [46]. The
strengths are smeared by the Lorentzian function with a width 1 MeV.

produces the negative resonances. Similar to 24O, the heights
and widths of low-lying resonances are also insensitive to the
2p2h effect.

Figure 7 shows the GT strength distribution of 48Ca. We
plot experimental data measured by Yako et al. [47] as well.
TDA roughly reproduces the position of experimental GTGR
for SGII and SGII+Te1. The low-lying resonance at 2.5 MeV
is also reproduced fairly if we use SGII. However, widths of
the resonances are not reproduced at all due to the lack of
coupling with higher-order configurations. STDA produces a
slightly wider width; however, the position of GTGR seems
rather low and the negative resonances appear as well as 24O
and 34Si.
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FIG. 5. B(GT) of 24O for (a)SGII and (b)SGII+Te1. The solid and
dashed spikes indicate the results of STDA and TDA, respectively.

FIG. 6. Same as described in the caption of Fig. 4, but for 34Si.

FIG. 7. GT-strength distribution of 48Ca as a function of excita-
tion energy with respect to its daughter nucleus. The upper, middle,
and bottom panels are the results for (a) TDA, (b) STDA, and (c)
STDA(D), respectively. The solid and dashed lines indicate the results
calculated with SGII and SGII+Te1 parameter sets, respectively. The
experimental data is taken from Ref. [47]. The strengths are smeared
by the Lorentzian function with a width 2 MeV for comparison with
the experimental data as adopted in Ref. [48], which is the order of
the experimental resolution.

B. Tensor force effect and appearance of negative GT resonance

We observed that the GTGRs are significantly moved to
lower energies by the tensor force in the case of STDA. As a
consequence, we obtained the unphysical negative resonances.
In particular, the shifts induced by the tensor force were
stronger than that by the central force. This would be because
the tensor force becomes effective by high momentum transfer
between two particles being possible.

In order to investigate the tensor force effect more clearly,
we pay attention to the role of the residual interaction. The
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characteristic of the tensor force is to couple one state formed
by two particles with another state different in relative orbital
angular momentum L by 2 as well as 0. Extracting the relevant
angular momentum parts of the interaction matrix elements of
tensor forces V tensor, emerged in A of Eq. (3), we obtain

V tensor
μνμ′ν ′ ∝

∑
J ′

(−1)J
′
{
J ′ jν jμ

1 jμ′ jν ′

}

×
∑
L,L′

(−1)L
′
L̂L̂′

{
L 1 J ′
1 L′ 2

}

×
⎧⎨
⎩

lμ lν L
1/2 1/2 1
jμ jν J ′

⎫⎬
⎭

⎧⎨
⎩

lμ′ lν ′ L′
1/2 1/2 1
jμ′ jν ′ J ′

⎫⎬
⎭, (7)

where μ and ν can be both particle and hole states, and jμ and
lμ are the total and orbital angular momentums of the state μ
[see Ref. [49] for derivation of Eq. (7)].

We also consider the residual interaction of the central
force, where there is a component interacting only among
L = 0 or 2 states. The relevant angular momentum parts of
the interaction matrix elements V center are

V center
μνμ′ν ′ ∝

∑
L=0,2

〈lμ||YL||lμ′ 〉〈lν ||YL||lν ′ 〉

×
⎧⎨
⎩

lμ lμ′ L
1/2 1/2 1
jμ jμ′ 1

⎫⎬
⎭

⎧⎨
⎩

lν lν ′ L
1/2 1/2 1
jν jν ′ 1

⎫⎬
⎭. (8)

Note that the pairs of orbital angular momentum coupled to L
(or L′) are different in the center and tensor terms. Therefore,
we consider them separately. We impose a simple condition
that the interaction matrix elements of Eqs. (7) and (8) are zero
unless the following case is satisfied:

(i) case A : L = 0 for Eq. (8) (tensor part is excluded)
(ii) case B : L = 0,2 for Eq. (8) (tensor part is excluded)
(iii) case C : L = L′ for Eq. (7) (central part is excluded)
(iv) case D : L = L′& �= L′ for Eq. (7) (central part is

excluded).

Case A retains the relative angular momentum of pairs [μμ′]
and [νν ′], and case B allows to exchange it by 2. Case C also
retains the relative angular momentum of pairs [μν] and [μ′ν ′],
and case D allows it to change.

With the above conditions, we calculate the GT strength
distribution for 24O. The center of mass of the GT peaks,
defined as

Ecm =
∑

i∈Ei<30MeV EiB
i
−(GT )∑

i∈Ei<30MeV Bi−(GT )
, (9)

are also calculated and listed in Table I. Figure 8 shows the
results of the central part of the residual interaction, comparing
with the Hartree-Fock (HF) result. For TDA shown in Fig. 8(a),
the GT resonances for case A appear at higher energies with
respect to the HF result and form two sharp peaks. On the other
hand, case B gives a minor change and shift Ecm upward only
by 0.2 MeV as seen in Table I. Namely, the GT resonances in
the 1p1h level is mainly produced for case A and the L = 2
terms of case B are not of importance. However, we obtain the

TABLE I. Center of mass of the GT peaks of 24O defined as Ecm

[see Eq. (9)] in unit of MeV.

HF Case A Case B Case C Case D

TDA 8.7 15.4 15.6 9.7 8.8
STDA 8.7 11.2 9.4 5.9 −0.9
STDA(D) 8.7 10.3 7.9 5.6 −0.7

different result for STDA shown in Fig. 8(b). Case A doesn’t
push the GT resonances as highly as TDA and case B shifts
them to lower energies.

Figure 9 shows the results of the tensor part of the residual
interaction. For TDA shown in Fig. 9(a), the GT strength
distributions of case C and D aren’t significantly different
from the HF result. Ecm for case C and D are hence close to
the one of the HF result, respectively, as shown in Table I.
For STDA shown in the Fig. 9(b), the resonances of case C
move to lower energies with respect to the HF result and Ecm

is lowered by 2.8 MeV. Further downward shift can be seen
for case D and Ecm is 6.8 MeV lower than the one of case C.
In particular, the low-lying GT peak appearing around 1 MeV
for case C shifts downward by as much as −10 MeV for case
D and appears at around −9 MeV. The same result is obtained
for other nuclei. Therefore, the residual interactions of the
tensor force changing the relative orbital angular momentum
significantly contributes the downward shift of the GTGRs.

FIG. 8. GT strength distribution of 24O calculated various condi-
tions of the central part of the residual interaction for (a) TDA and (b)
STDA(D). The thin solid line indicates the HF solution. The dashed
and bold lines are cases A and B, respectively (see the text).
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FIG. 9. Same as Fig. 8, but for the tensor part of the residual
interaction. The thin solid line indicates the HF solution. The dashed
and bold lines are case C and D, respectively.

The center force part interacting between L = 2 states has
also similar effect, however, its effect is not as strong as the
tensor force.

Besides the above discussions, one might think that the
use of zero-range interaction contributes the strong shift of
GT resonances in case of STDA. It is known that zero-range
interactions such as the Skyrme force is not able to properly
describe pairing correlation unless an appropriate cutoff
energy is introduced [50]. Similarly, the use of zero-range
interaction in STDA (SRPA) may induce a deviant value in 3
particle-1 hole or 1 particle-3 hole matrix elements appeared in
A of Eq. (3), when high momentum transfers between particles
(holes) occur. If one uses a finite-range interaction, a natural
cutoff is able to be introduced. However, the downward shift
is still commonly observed even when one uses finite-range
interactions [31,35,51].

It was recently pointed out that the downward shift obtained
in the higher-order RPA is substantially attributed to the double
counting occurring between the residual interaction and the
static response of the ground state [52,53]. To overcome
this problem, a subtraction method was suggested [52]
and applied to calculations with quasiparticle time-blocking
approximations [54,55]. Gambacurta et al. recently applied
the subtraction method to SRPA and studied monopole and
quadrupole responses. They showed that too low distributing
strength functions obtained by the conventional SRPA were
pushed up to as high-energy region as RPA. From these facts,
it is considered that the GT resonances appearing at negative

FIG. 10. GT strength distribution of 24O as a function of excita-
tion energy with respect to its daughter nucleus. In contrast to Fig. 4,
the horizontal axis is extended up to 100 MeV. The upper panel and
lower panels are (a) TDA and (b) STDA(D) results, respectively. The
resonances are smoothed by a Lorentzian function with 1 MeV width.

energy regions are also due to the double counting. It would
be therefore important as a future work to study the 2p2h
effects on GT resonances, eliminating it in some way like the
subtraction method.

C. Fragmentation and quenching of GT strength

We observed the fragmented GTGR in STDA and STDA(D)
in the previous sections. Some of them are expected to be
brought to higher excitation energies. To see them, we plot the
GT strength distributions of 24O, 34Si, and 48Ca in high-energy
regions above 20 MeV. Because of computational limits, we
could not perform STDA at these energy regions so that only
STDA(D) was carried out.

Let’s start by looking at the result of 24O shown in Fig. 10.
For TDA shown in Fig. 10(a), SGII does not give any
significant peaks above 50 MeV, while SGII+Te1 produces
a number of peaks there. This result is consistent with that
pointed out in Ref. [23], in which it is shown that the tensor
force brings GT strengths to higher energies even with 1p1h
RPA. In the case of STDA(D) shown in the Fig. 10(b), we can
see two marked results. The one is that SGII and SGII+Te1
bring more strengths above 20 MeV than TDA. The second
is that SGII+Te1 significantly enhances the strengths in the
energy region above about 60 MeV, while it suppresses them
around 30–45 MeV than SGII. Figures 11 and 12 plot the
results of 34Si and 48Ca at high-energy regions, respectively.
For both nuclei, STDA(D) brings a number of strengths
to higher-energy regions and SGII+Te1 further enhances
them above approximately 60 MeV and suppresses around
30–40 MeV as well as 24O.

To see the enhancement at high energies quantitatively, the
sums of the GT strength of 24O, 34Si, and 48Ca in percentages
of the Ikeda sum rule are listed in Tables II, III, and IV,
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FIG. 11. Same as described in the caption of Fig. 10, but for 34Si
in the energy region from 20 to 85 MeV.

respectively. We divide the energy region into three parts,
which are E < 20, 20 < E < 50, and 50 < E MeV (we
sought the eigenvalues up to 150 MeV by the FEAST solver).
We also list the energy-weighted sum rule, m1, for numerical
check of the present code. Let’s first see the result of 24O. For
SGII of TDA, 98.7% of the Ikeda sum rule is already exhausted
in E < 20. For SGII+Te1 of TDA, it is reduced to 95.2%. For
SGII of STDA(D), the sum of the GT strengths in E < 20 MeV
is meaningfully quenched by 2p2h configuration mixing, being
79.9%. SGII+Te1 further promotes the quenching and the sum
becomes 74.3%. For STDA, the quenching becomes moderate
as compared to STDA(D) and we obtain 86.7% for SGII and
77.8% for SGII+Te1 of the Ikeda sum rule in E < 20 MeV.

Looking at the high-energy regions above 20 MeV, a
significant influence of the 2p2h configuration mixing can be

FIG. 12. Same as described in the caption of Fig. 10, but for 48Ca
in the energy region from 20 to 80 MeV.

TABLE II. Sum of GT strengths of 24O in percentages of the
Ikeda sum rule for different energy regions. Energy weighted sum
rule, m1, are also listed.

24O E < 20 20 < E < 50 50 < E Total m1

TDA SGII 98.7 1.4 0.0 100 103
SGII+Te1 95.2 3.4 1.7 100 149

STDA(D) SGII 79.9 12.4 8.0 100 104
SGII+Te1 74.3 9.1 17.1 101 152

STDA SGII 86.7 – – – –
SGII+Te1 77.8 – – – –

seen. For STDA(D), totally 20.4% and 26.2% of the Ikeda
sum rule are brought to E > 20 MeV for SGII and SGII+Te1,
respectively. In particular, 8.0% of the Ikeda sum rule is found
in 50 MeV < E for SGII and 17.1% for SGII+Te1.

The same results are seen for 34Si as well. In Table III,
STDA as well as STDA(D) invokes the quenching in the
energy region E < 20 MeV. STDA gives a somewhat weaker
quenching than STDA(D). The tensor force further promotes
the quenching and the sums in E < 20 MeV are reduced by
6.2%. In energy region 20 MeV < E, 17.0% and 24.9% of the
Ikeda sum rule are found for SGII and SGII+Te1, respectively,
and we can still find meaningful GT sums above 50 MeV.

For 48Ca, the quenching below 20 MeV and enhancement
above 20 MeV are qualitatively the same as 24O and 34Si.
The preceding work, the SRPA calculation [18,22], estimates
that 76% and 71% of the Ikeda sum rule are found in about
E < 20 MeV with and without the tensor force, respectively.
These values overestimate the experimental data of 58.1%
[47]. In the present calculation, we obtain 88.5% and 80.3% in
E < 20 MeV for SGII and SGII+Te1 of STDA, respectively,
which are about 10% larger than the SRPA calculation. On
the other hand, the tensor force effect is closer to the SRPA
calculation [18,22] rather than Bertsch and Hamamoto’s result
[19]. The present result is also close to that obtained in the
PVC calculation [48], in case of SGII.

It is known that nonenergy (m0) and energy-weighted sum
rules (m1) of SRPA are analytically identical to those of RPA
[56]. It also holds for TDA and STDA. To see it, total GT sum
(Total) equivalent to m0 and m1 are listed in Tables II, III, and
IV. We can confirm that TDA and STDA(D) give close values
for all the nuclei.

TABLE III. Same as Table II, but for 34Si.

34Si E < 20 20 < E < 50 50 < E Total m1

TDA SGII 99.8 0.6 0.0 101 129
SGII+Te1 96.2 3.6 0.7 101 159

STDA(D) SGII 83.5 10.0 7.0 100 130
SGII+Te1 77.3 6.8 16.5 101 157

STDA SGII 88.2 – – – –
SGII+Te1 79.8 – – – –
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TABLE IV. Same as Table II, but for 48Ca.

48Ca E < 20 20 < E < 50 50 < E Total m1

TDA SGII 99.0 1.7 0.0 101 250
SGII+Te1 95.8 4.2 0.1 101 308

STDA(D) SGII 83.3 11.3 6.2 101 249
SGII+Te1 77.0 8.1 15.7 101 303

STDA SGII 88.5 – – – –
SGII+Te1 80.3 – – – –

D. Diagonal approximation

In this section, we see how the diagonal approximation
given in Eq. (4) works. Returning to Figs. 4, 6, and 7, we can see
the GT resonance positions of STDA(D) are lower than those
of STDA for all the nuclei. Besides it, three interesting findings
can be observed from these figures. One is that the difference of
GT resonance position between STDA and STDA(D) becomes
smaller as we go from 24O, which is the lightest nucleus in
this work, to the heaviest nuclei, 48Ca. The second is that
the difference between TDA and STDA(D) is much smaller
in case of SGII+Te1 than SGII. It implies that the diagonal
matrix elements of the tensor force part would be larger than
the off-diagonal ones. We can confirm that it is not a wrong
anticipation by looking at Ecm listed in Table I. For case
B, which considers only the central residual interaction, the
difference of Ecm between STDA and STDA(D) is 1.5 MeV.
On the other hand, if one considers only the tensor residual
interaction, that is, case D shows only 0.2 MeV difference
between STDA and STDA(D). The third finding is that the
overall GT resonance shape is not significantly different
between STDA and STDA(D), for example, relative positions
of low-lying GT resonance and GTGR.

From the above results, we would say that the diagonal
approximation is a qualitatively good approximation when
one calculates heavier nuclei or the tensor force is included.

E. Smaller model space

To take into account the 2p2h configurations as effectively
as possible, a large model space has been introduced in the
previous sections. However, the theoretical results do not
necessarily reproduce experimental data, especially of 48Ca.

Toyama and Nakatsukasa studied giant dipole resonances
in the N = 82 isotones by the SRPA calculation. They used
a contact force in the residual interaction and a restricted
model space smaller than the present study, and reproduced
experimental data reasonably well [34]. PVC [26,48,57–59]
also reproduced experimental data successfully using a re-
stricted model space of phonons coupling to 1p1h states. An
approach beyond RPA [29] also adopts a relatively smaller
model space and shows a good agreement with experimental
data.

We also performed a calculation with a smaller model
space. As Toyama and Nakatsukasa did [34], we con-
sider the single particle levels near the Fermi energy of
1d5/2,1d3/2,2s1/2,1f7/2,2p3/2,2p1/2, and 1f5/2 orbits of proton
and neutron to make the 2p2h states. The neutron and proton

FIG. 13. Same as described in the caption of Fig. 7 in the case of
the restricted model space (see the text for the detail).

orbits are assumed to be fully occupied up to 1f7/2 and 2s1/2,
respectively. The result is shown in Fig. 13. The downward
shift of GT resonances is inhibited as compared with Fig. 7.
GTGR appears at around 11 MeV, which is close to the
experimental one. The energy of the low-lying resonance
is also reasonably reproduced. The obtained GT strength
distribution is similar to that obtained in PVC [48]. The GT
resonances of SGII+Te1 locate at higher energy than SGII by
about 2 MeV. This is opposite to that obtained when the larger
model space is considered. However, as we increase active
single particle levels for 2p2h states, the GT resonances of
SGII+Te1 move to lower energies. The sum of GT strengths
is also calculated and about 90% of the Ikeda sum-rule is
exhausted for SGII and SGII+Te1 in case of STDA, which is
still higher than the experimental value.

IV. CONCLUSION

We studied the 2p2h effect on the GT strength distribution
for 24O, 34Si, and 48Ca. The strength distributions were shifted
to a lower-energy region by the 2p2h configuration mixing.
The tensor force also induced further downward shift of the
GT resonances. We showed that the tensor residual interac-
tions changing relative orbital angular momentum contributes
the strong downward shift. The central residual interaction
exchanging relative orbital angular momentum also played a
similar role, but its effect was relatively small.

One of the purposes of this paper was to see if we are
able to describe the quenching of GT strengths by the self-
consistent STDA. We have obtained the results that the sum of
GT resonances below 20 MeV was quenched significantly
in the case of STDA. The tensor force further promoted
the quenching and brought the missing strengths to higher
excitation energies. In spite of these results, however, we
couldn’t reproduce the experimental data of 48Ca, and no
improvements from the preceding SRPA [18,22] was obtained.
It was also found that the effect of the tensor force used in this
work was similar to the result obtained in the preceding SRPA
calculation, which gave a more moderate tensor force effect
than the perturbation approach [19].
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In the diagonal approximation, the GT resonances system-
atically appeared at a lower energy region than full STDA.
However, we found that the diagonal approximation worked
relatively well, as we calculated heavier nuclei or included the
tensor force.

Following the method of Tohyama and Nakatsukasa
[34], we calculated the GT distribution of 48Ca with the
smaller model space. The obtained result reproduced the GT
distribution of experimental data reasonably, although the
restricted model space of the single-particle levels were chosen
appropriately. At the moment, use of a rather restricted model
space or cutoff of insignificant matrix elements, as in Ref. [60],
are the only approaches to apply STDA and SRPA to heavier
or deformed nuclei, in which much larger computer resource

is usually required. The small model space would be therefore
helpful to obtain a physical insight of 2p2h effects as Tohyama
and Nakatsukasa did [34].

It is considered that the GT resonances appearing at negative
energies in this work are due to the double-counting problem
(see Sec. III B). It will be important as a future work to resolve
this problem in some way like the subtraction method.
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F. R. Xu, Phys. Lett. B 675, 28 (2009).
[24] K. Shimizu, M. Ichimura, and A. Arima, Nucl. Phys. A 226, 282

(1974).
[25] A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev,

and Nguyen Van Giai, Phys. Rev. C 90, 044320 (2014).
[26] Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Rev. Lett.
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