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Background: Studies of fission dynamics, based on nuclear energy density functionals, have shown that the
coupling between shape and pairing degrees of freedom has a pronounced effect on the nonperturbative collective
inertia and, therefore, on dynamic (least-action) spontaneous fission paths and half-lives.
Purpose: The aim is to analyze the effects of particle-number fluctuation degrees of freedom on symmetric and
asymmetric spontaneous fission (SF) dynamics, and to compare the findings with the results of recent studies
based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method.
Methods: Collective potentials and nonperturbative cranking collective inertia tensors are calculated using the
multidimensionally-constrained relativistic-mean-field (MDC-RMF) model. Pairing correlations are treated in
the BCS approximation using a separable pairing force of finite range. Pairing fluctuations are included as
a collective variable using a constraint on particle-number dispersion. Fission paths are determined with the
dynamic programming method by minimizing the action in multidimensional collective spaces.
Results: The dynamics of spontaneous fission of 264Fm and 250Fm are explored. Fission paths, action integrals,
and corresponding half-lives computed in the three-dimensional collective space of shape and pairing coordinates,
using the relativistic functional DD-PC1 and a separable pairing force of finite range, are compared with results
obtained without pairing fluctuations. Results for 264Fm are also discussed in relation with those recently obtained
using the HFB model.
Conclusions: The inclusion of pairing correlations in the space of collective coordinates favors axially symmetric
shapes along the dynamic path of the fissioning system, amplifies pairing as the path traverses the fission barriers,
significantly reduces the action integral, and shortens the corresponding SF half-life.
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I. INTRODUCTION

Important advances have recently been reported in micro-
scopic modeling of the dynamics of spontaneous and induced
fission, based on nuclear density functional theory (DFT) [1].
Within this framework, spontaneous fission (SF), in particular,
is described by quantum tunneling through potential barrier(s)
in a multidimensional space of coordinates that parametrize
large-amplitude collective motion. Most calculations of SF
lifetimes are based on the semiclassical Wentzel-Kramers-
Brillouin (WKB) approximation for the one-dimensional
barrier tunneling. The dynamics of the SF process is governed
by the potential energy surface (PES) as a function of the
collective coordinates, and by the collective inertia along the
fission path. The path along which the nucleus tunnels is
determined by minimizing the fission action integral in the
multidimensional collective space [2,3].

The PESs can be computed using the macroscopic-
microscopic (MM) model, or a number of self-consistent
mean-field (SCMF) approaches based on microscopic effec-
tive interaction or energy density functionals. In most recent
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studies the multidimensional collective inertia tensor is usually
determined using the adiabatic time-dependent Hartree-Fock-
Bogoliubov (ATDHFB) method with the perturbative cranking
approximation (neglecting the contribution from time-odd
mean fields and treating perturbatively the derivatives of
single-nucleon and pairing densities with respect to collective
coordinates) or the nonperturbative cranking approximation
(the derivatives with respect to collective coordinates are com-
puted explicitly). Although perturbative cranking ATDHFB
collective masses has extensively been used in SF fission
half-life calculations [2,4–7], a number of recent studies [8–10]
have indicated the essential role of the nonperturbative
cranking ATDHFB approximation to the collective inertia for
a quantitative dynamic description of SF.

In the first approximation the effective collective inertia
M ∝ �−2, and the collective potential V ∝ (� − �0)2, where
� is the pairing gap and �0 corresponds to its self-consistent
stationary value. When the gap parameter is treated as a
dynamical variable, an enhancement of pairing correlations
reduces the effective inertia and thus minimizes the action
integral S along the fission path [11]. A number of studies of
SF have shown that the coupling of pairing fluctuations with
the fission mode can significantly reduce the estimated fission
lifetimes [12–19].
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In recent studies dynamic fission paths determined with
the least-action principle have been investigated using the
Hartree-Fock-Bogoliubov (HFB) framework based on the
Barcelona-Catania-Paris-Madrid [20], Gogny D1M [20], and
Skyrme SkM∗ [21,22] energy density functionals. The pairing
gap parameter has been included as a dynamical variable in
the collective space. As a result, an enhancement of pairing
correlations along fission paths and the speedup of SF have
been predicted. It has also been noted that pairing fluctuations
can restore axial symmetry in the fissioning system [21,22],
although the triaxial quadrupole degree of freedom is known
to play an important role around the inner and even outer
barriers both along the static fission path for actinide nuclei
(Ref. [23] and references therein), and in the dynamic case
when the influence of pairing fluctuations is not taken into
account [9,10].

In Ref. [10] we have used the multidimensionally-
constrained relativistic Hartree-Bogoliubov (MDC-RHB) to
analyze effects of triaxial and octupole deformations, as well
as approximations to the collective inertia, on the symmetric
and asymmetric spontaneous fission dynamics. Based on the
framework of relativistic energy density functionals, and using
as examples 264Fm and 250Fm, our analysis has shown that
the action integrals and, consequently, the half-lives crucially
depend on the approximation used to calculate the effective
collective inertia along the fission path. While the perturbative
cranking approach underestimates the effects of structural
changes at the level crossings, the nonperturbative collective
mass is characterized by the occurrence of sharp peaks on
the surface of collective coordinates, which can be related to
single-particle level crossings near the Fermi surface, and this
enhances the effective inertia.

In this work we continue to explore the dynamics of SF of
264Fm and 250Fm but, in addition to shape deformation degrees
of freedom, pairing correlations are included in the space
of collective coordinates. The dynamic (least-action) fission
paths are determined in three-dimensional (3D) collective
spaces, and the corresponding SF half-lives are computed.
Since calculations in the 3D collective space with the MDC-
RHB model are computationally very demanding, here we em-
ploy the MDC-RMF model in which the pairing correlations
are treated in the BCS approximation. The collective inertia
tensor is calculated using the self-consistent relativistic mean-
field (RMF) solutions and applying the ATDHFB expressions
in the nonperturbative cranking approximation. The article
is organized as follows: the method for calculating dynamic
fission paths is described in Sec. II; numerical details of the
calculation, results for the deformation energy landscapes,
collective inertias, minimum-action fission paths, and the
corresponding half-lives are discussed in Sec. III; and Sec. IV
contains a short summary of the main results.

II. METHOD FOR CALCULATING DYNAMIC
FISSION PATHS

RMF-based models present a particular implementation
of the relativistic nuclear energy density functional (EDF)
framework, which has become a standard method for studies of
the structure of medium-heavy and heavy nuclei [24–29]. As in

our previous study of spontaneous fission [10], here we employ
the point-coupling relativistic EDF DD-PC1 [30]. Starting
from microscopic nucleon self-energies in nuclear matter, and
empirical global properties of the nuclear matter equation of
state, the coupling parameters of DD-PC1 were fine-tuned
to the experimental masses of a set of 64 deformed nuclei
in the mass regions A ≈ 150–180 and A ≈ 230–250. The
functional has been further tested in a number of mean-field
and beyond-mean-field calculations in different mass regions.

For a quantitative description of open-shell nuclei it is nec-
essary to consider also pairing correlations. In the MDC-RMF
model, pairing is taken into account in the BCS approximation
and here, as in Ref. [10], we use a separable pairing force of
finite range:

V (r1,r2,r′
1,r

′
2) = G0δ(R − R′)P (r)P (r′) 1

2 (1 − P σ ), (1)

where R = (r1 + r2)/2 and r = r1 − r2 denote the center-of-
mass and the relative coordinates, respectively, and P (r) reads

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (2)

The two parameters G0 = −738 MeV fm−3 and a = 0.644
fm [31] have been adjusted to reproduce the density de-
pendence of the pairing gap in nuclear matter at the Fermi
surface calculated with the D1S parametrization of the Gogny
force [32].

The energy landscape is obtained in a self-consistent
mean-field calculation with constraints on mass multipole
moments Qλμ = rλYλμ, and the particle-number dispersion
operator �N̂2 = N̂2 − 〈N̂〉2 [33]. In the present analysis the
Routhian is therefore defined as

E′ = ERMF +
∑
λμ

1

2
CλμQλμ + λ2�N̂2 , (3)

where ERMF denotes the total RMF energy including static
BCS pairing correlations. The amount of dynamic pairing
correlations can be controlled by the Lagrange multipliers
λ2τ (τ = n,p) [21,34,35]. As it has recently been shown in
a similar study of Ref. [21], the isovector pairing degree of
freedom appears to play a far less important role in spontaneous
fission as compared to isoscalar dynamic pairing. Therefore,
the computational task can be greatly reduced by considering
only dynamic pairing with λ2n = λ2p ≡ λ2 as a collective
coordinate.

The nuclear shape is parametrized by the deformation
parameters

βλμ = 4π

3ARλ
〈Qλμ〉. (4)

The shape is assumed to be invariant under the exchange
of the x and y axes and all deformations βλμ with even
μ can be included simultaneously. The deformed RMF
equations are solved by an expansion in the axially deformed
harmonic oscillator (ADHO) basis [36]. In the present study
of transactinide nuclei, calculations have been performed in an
ADHO basis truncated to Nf = 16 oscillator shells. For details
of the MDC-RMF model we refer the reader to Ref. [23].
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The action integral along the one-dimensional fission path
L is calculated using the expression

S(L) =
∫ sout

sin

1

�

√
2Meff(s)[Veff(s) − E0] ds , (5)

where Meff(s) and Veff(s) are the effective collective inertia
and potential along the path L(s), respectively. E0 is the collec-
tive ground state energy, and the integration limits correspond
to the classical inner (sin) and outer (sout) turning points defined
by Veff(s) = E0. The fission path L(s) is determined in the
multidimensional collective space by minimizing the action
integral of Eq. (5) [2,3]. The spontaneous fission half-life
is calculated as T1/2 = ln 2/(nP ), where n is the number
of assaults on the fission barrier per unit time [9,21,37,38],
and P is the barrier penetration probability in the WKB
approximation

P = 1

1 + exp[2S(L)]
. (6)

The action integral Eq. (5) and, therefore, the fission half-life
is essentially determined by the effective collective inertia and
potential. The effective inertia is defined in terms of the mul-
tidimensional collective inertia tensor M [2,9,10,21,37,38]

Meff(s) =
∑
ij

Mij

dqi

ds

dqj

ds
, (7)

where qi(s) denotes the collective variable as function of the
path’s length.

In the present study the inertia tensor is computed using the
ATDHFB method in the nonperturbative cranking approxima-
tion [8]

MC
ij = �

2

2q̇i q̇j

∑
αβ

F i∗
αβF

j
αβ + F i

αβF
j∗
αβ

Eα + Eβ

, (8)

where

F i

q̇i

= U † ∂ρ

∂qi

V ∗ + U † ∂κ

∂qi

U ∗ − V † ∂ρ
∗

∂qi

U ∗ − V † ∂κ∗

∂qi

V ∗ .

(9)

U and V are the self-consistent Bogoliubov matrices, and ρ
and κ are the corresponding particle and pairing density matri-
ces, respectively. The derivatives of the densities are calculated
using the Lagrange three-point formula for unequally spaced
points [39,40].

The collective potential Veff is obtained by subtracting
the vibrational zero-point energy (ZPE) from the total RMF
constrained energy surface [9,10,21,41,42]. The fission path
is determined in a multidimensional collective space using
both the dynamic programming (DPM) [38] and Ritz [37]
(RM) methods. For both methods we have considered several
possible values for the turning points sin and sout to verify that
the minimum action path is chosen. Since both methods give
virtually identical results, only those obtained using the DPM
are included in the presentation.

III. SPONTANEOUS FISSION OF 264Fm AND 250Fm:
PAIRING-INDUCED SPEEDUP

To study the effect of dynamic pairing correlations along
fission paths, as in our previous study of SF of Ref. [10], we will
analyze two illustrative examples: the symmetric spontaneous
fission of 264Fm and the asymmetric SF of 250Fm. In addition to
shape variables, here pairing correlations are also considered
as collective coordinates in the study of fission dynamics.
Because of computational restrictions and to simplify the
interpretation of results, the present analysis is restricted
to a three-dimensional (3D) collective space, defined by
either (β20,β22,λ2) (quadrupole triaxial shapes) or (β20,β30,λ2)
(quadrupole and octupole axial shapes), where the coordinate
λ2 represents dynamic pairing fluctuations. The relativistic
energy density functional DD-PC1 [30] is employed in self-
consistent RMF calculations of constrained energy surfaces,
collective inertia tensors, and fission action integrals. The
height of fission barriers is sensitive to the strength of the
pairing interaction [43] and, therefore, a particular choice
of the pairing strength may have a considerable effect on
fission dynamics. As explained above and in Ref. [10], the
parameters of the finite-range separable pairing force were
originally adjusted to reproduce the pairing gap at the Fermi
surface in symmetric nuclear matter as calculated with the
Gogny force D1S. A number of mean-field studies based on
the relativistic Hartree-Bogoliubov (RHB) model have shown
that the pairing strength needs to be fine-tuned in some cases,
especially for heavy nuclei [44,45]. Since in the present study
pairing correlations are treated in the BCS approximation,
we have adjusted the strength parameters to reproduce the
available empirical pairing gaps in Fm isotopes. The resulting
values with respect to the original pairing strength adjusted in
nuclear matter (G0 = −738 MeV fm−3) are Gn/G0 = 1.21
and Gp/G0 = 1.14. As in Refs. [9,21] and our previous work
Ref. [10], we choose E0 = 1 MeV in Eq. (5) for the value
of the collective ground state energy. This value enables a
direct comparison of our results with those reported in previous
studies, especially in Ref. [21]. For the vibrational frequency
�ω0 = 1 MeV the number of assaults on the fission barrier per
unit is 1020.38 s−1 [46].

A. Symmetric fission of 264Fm

The first example in our analysis of the influence of
dynamical fluctuations in shape and pairing degrees of freedom
on fission paths is the nucleus 264Fm, for which theoretical
studies [47,48] predict a symmetric spontaneous fission decay.
The shape degrees of freedom in this case are elongation and
triaxiality and, therefore, calculations of the energy landscape,
inertia tensor, and fission paths are restricted to the 3D
collective space (β20,β22,λ2).

In Fig. 1 we plot the collective potential energy (the vibra-
tional ZPE is subtracted from the constrained self-consistent
mean-field energy) of 264Fm in the (β20,β22) plane for λ2 = 0
[Fig. 1(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 1(b)].
Therefore, Fig. 1(a) displays the results obtained without
including dynamical pairing correlations, and the potential
can be directly compared to the one shown in Fig. 6(b) of

044315-3
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FIG. 1. Effective collective potential Veff of 264Fm in the (β20,β22)
plane for λ2 = 0 (a), and in the (β20,λ2) plane for β22 = 0 (b). In each
panel energies are normalized with respect to the corresponding value
at the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces are calculated
with the relativistic density functionals DD-PC1 [30] and the pairing
interaction Eq. (1).

Ref. [10], where we used the relativistic Hartree-Bogoliubov
model to compute the energy surface. We notice that the energy
landscapes obtained with RMF and RHB models are almost
identical, and this validates the treatment of pairing in the
BCS approximation in the present analysis. The functional
DD-PC1 predicts an axially symmetric equilibrium state at
moderate deformation (β20 ≈ 0.2), and the axially symmetric
barrier at β20 ≈ 0.6 is bypassed through the triaxial region,
thus lowering the height of the barrier by ≈2.5-3 MeV.

In Fig. 1(b) we project the potential energy calculated in
the 3D collective space that includes dynamic pairing, on the
(β20,λ2) plane. For β22 = 0 (axially symmetric shape), the
potential energy increases monotonically with λ2 (stronger
pairing) at each deformation β20. The topography of the
collective potential in the (β20,λ2) plane is relatively simple.

The effective inertia that determines the fission action
integral is defined in terms of the multidimensional collective
inertia tensor M [Eq. (7)]. The important effects related to the
exact treatment of derivatives of single-particle and pairing
densities in the ATDHFB expressions for the mass param-
eters were recently analyzed in Refs. [9,10]. For the three-
dimensional space of collective coordinates, six independent
components determine the inertia tensor. The inertia tensor can

FIG. 2. Cubic root determinants of the nonperturbative-cranking
inertia tensor |MC |1/3 (in 10 × �

2 MeV−1) of 264Fm in the (β20,β22)
plane for λ2 = 0 (a), and in the (β20,λ2) plane for β22 = 0 (b).

be visualized by plotting the cubic root determinant |M|1/3, in-
variant with respect to rotations in the 3D collective space [21].

In Fig. 2 we plot |MC |1/3 obtained in the nonperturbative
cranking approximation, in the (β20,β22) plane for λ2 = 0
[Fig. 2(a)], and in the (β20,λ2) plane for β22 = 0 [Fig. 2(b)].
These results correspond to the self-consistent solutions for the
potential energy surfaces shown in Fig. 1. The nonperturbative
|MC |1/3, calculated without dynamic pairing correlations,
displays a rather complex structure in the (β20,β22) plane
(λ2 = 0), as shown in [Fig. 2(a)]. In particular, very large
values of |MC |1/3 are calculated in the region of the axial
fission barrier. As discussed in Refs. [8–10], this is related
to single-particle level crossings near the Fermi surface. The
abrupt changes of occupied single-particle configurations lead
to strong variations in the derivatives of densities in Eq. (9) and,
consequently, sharp peaks develop. When dynamic pairing
correlations are included in the collective space [Fig. 2(b)], a
simple dependence of the nonperturbative |MC |1/3 on λ2 is
obtained at each deformation β20, consistent with the expected
relation M ∝ �−2. We note that the results for 264Fm, shown
in Figs. 1 and 2, are very similar to those obtained using the
nonrelativistic HFB framework based on the Skyrme energy
density functional SkM* and a density-dependent pairing
interaction (cf. Fig. 2 of Ref. [21]).

The coupling between shape and pairing degrees of freedom
has a pronounced effect on the predicted fission paths. As the
effective potential increases from the self-consistent values
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FIG. 3. Projections of the 3D dynamic path (solid curves) for the
spontaneous fission of 264Fm on the (β20,β22) plane for λ2 = 0 (a),
and the (β20,λ2) plane for β22 = 0 (b), calculated using the dynamic
programming method. The dash-dot-dot curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations.

because of the enhancement of pairing, the effective collective
inertia is reduced ∝ �−2. These two effects determine the
minimum-action path in Eq. (5). The projections of the 3D
spontaneous fission path of 264Fm on the (β20,β22) plane and on
the (β20,λ2) plane are shown in Figs. 3(a) and 3(b), respectively
(solid curves). The two-dimensional (2D) path calculated
without pairing fluctuations (λ2 = 0) is also included for
comparison (dash-dot curve). It is very interesting to note that
while the 2D dynamic path detours the axial barrier through
the triaxial region, the extension of the collective space by the
pairing degree of freedom fully restores the axial symmetry
of the fissioning system. The evolution of the pairing strength
along the axially symmetric fission path is shown in Fig. 3(b).
One notices how, in order to reduce the collective inertia, the
fissioning nucleus favors an increase in pairing over the static
self-consistent solution, at the expense of a larger potential
energy. Because of pairing fluctuations, the corresponding
fission action integral is reduced by about 5 units with respect
to the 2D path and, consequently, the predicted half-life is
almost five orders of magnitude shorter than the 2D case
without the dynamic pairing degree of freedom (see Table I).
This result can directly be compared to the one obtained
using the the Skyrme energy density functional SkM* and a
density-dependent pairing interaction (see Fig. 3 of Ref. [21]).
In the latter case triaxiality is reduced along the 3D fission

TABLE I. Action integrals and SF half-lives of 264Fm and 250Fm
that correspond to the fission paths displayed in Figs. 3 and 8.

Nucleus Path S(L) log10(T1/2/yr)

264Fm 2D 19.58 − 11.03
3D 14.15 − 15.75

250Fm 2D 32.09 − 0.16
3D 22.33 − 8.64

path because of dynamic pairing fluctuations, but the full axial
symmetry is not restored. This is probably because in the 2D
calculation with the Skyrme functional the triaxial coordinate
reduces the fission barrier height by more than 4 MeV (less
than 3 MeV in the present calculation with DD-PC1). A
combination of a higher axially symmetric fission barrier
and/or possibly weaker pairing, prevents the full restoration of
axial symmetry along the 3D fission path of 264Fm. In the case
of 240Pu, on the other hand, for which the Skyrme functional
SkM* predicts an energy gain on the first barrier resulting from
triaxiality of only 2 MeV, the inclusion of pairing fluctuations
leads to a full restoration of axial symmetry along the 3D
fission path between the equilibrium ground state and the
superdeformed fission isomer (see Fig. 5 of Ref. [21]).

B. Asymmetric fission of 250Fm

In the second example we explore the interplay between
reflection-asymmetric shapes and pairing degrees of freedom,
and analyze the asymmetric spontaneous fission of 250Fm [48].
Since the triaxial degree of freedom is particularly important
around the inner fission barrier, and the complete calculation
in the four-dimensional collective space (β20, β22, β30, λ2) is
computationally too demanding, we first analyze the path that
connects the mean-field equilibrium (ground) state and the
isomeric fission state calculated in the (β20,β22,λ2) collective
space. The collective potential energy surfaces of 250Fm in the
(β20,β22) plane for λ2 = 0 and in the (β20,λ2) plane for β22 = 0
are plotted in Figs. 4(a) and 4(b), respectively. The inclusion of
the triaxial degree of freedom reduces the inner fission barrier
height by ≈2 MeV, and this effect is similar in magnitude to
the case of 264Fm considered in the previous section. The lower
panel displays the projection of the potential energy calculated
in the 3D collective space on the (β20,λ2) plane and we notice
that for β22 = 0, the energy increases monotonically with λ2

at each value of the axial deformation parameter β20, with a
pronounced fission barrier around β20 ≈ 0.55.

The deformation dependence of the nonperturbative collec-
tive inertia tensor is displayed in Fig. 5, where we plot the cubic
root determinants |MC |1/3 in the (β20,β22) and (β20,λ2) planes.
The global deformation dependence of |MC |1/3 is similar to
the one calculated for 264Fm and shown in Fig. 2, that is,
|MC |1/3 displays strong variations in the (β20,β22) plane for
λ2 = 0, and pronounced peaks generated by single-particle
level crossings near the Fermi surface appear in the region of
the fission barrier. By including the dynamic pairing degree of
freedom, one finds that |MC |1/3 decreases as λ2 increases at
each deformation β20.
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ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU PHYSICAL REVIEW C 93, 044315 (2016)

FIG. 4. Same as Fig. 1, but for the nucleus 250Fm.

FIG. 5. Same as Fig. 2, but for the nucleus 250Fm.

FIG. 6. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β22) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β22 = 0 (b), The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations. The
minimum-action paths connect the inner turning point and the fission
isomer.

The projections of the 3D dynamic path determined in the
(β20,β22,λ2) collective space are shown in Fig. 6 (solid curves).
The minimum-action path connects the inner turning point and
the isomer minimum at β20 ≈ 0.95. The 2D path calculated in
(β20,β22) collective space is also included (dash-dot red curve)
for comparison. Even though the 2D dynamic path does not
extend very far in the triaxial region, the triaxial shape degree
of freedom is important in the calculation of the fission action
integral, similar to the result we obtained with the RHB model
in our previous study of fission dynamics (cf. Fig. 12 of [10]).
However, since triaxiality gains only ≈2 MeV in energy on the
first barrier, the inclusion of dynamic pairing fluctuations fully
restores axial symmetry in the fissioning system [Fig. 6(a)].
Pairing is enhanced with respect to the static solution along the
axially symmetric path and, consequently, the action integral
in the interval between the inner turning point and the isomeric
state decreases from 23.06 (2D dynamic path) to 14.90 along
the 3D fission path.

Since the triaxial shape degree of freedom is suppressed,
that is, it does not contribute to the action integral in the
dynamic case when pairing fluctuations are included, we
can analyze the SF decay of 250Fm in the restricted 3D
collective space with coordinates (β20,β30,λ2). In Fig. 7 we
display the collective potential of 250Fm in the (β20,β30)
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FIG. 7. Effective collective potential Veff of 250Fm in the (β20,β30)
plane for λ2 = 0 (a) and the (β20,λ2) plane for β30 = 0 (b). In each
panel energies are normalized with respect to the corresponding value
of the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces are calculated
with the density functionals DD-PC1 [30], and the pairing interaction
Eq. (1).

plane for λ2 = 0 [Fig. 7(a)], and in the (β20,λ2) plane for
β30 = 0 [Fig. 7(b)]. The mean-field equilibrium (ground) state
is predicted at moderate quadrupole deformation β20 ≈ 0.3,
and the isomeric minimum at β20 ≈ 0.95. The nucleus remains
reflection symmetric through the entire region of quadrupole
deformations β20 � 1.4. As in the previous cases, at each
deformation the potential energy rises steeply with increasing
λ2, as shown in Fig. 7(b).

The dynamic path computed in the restricted 2D collective
space (β20,β30) (dash-dot red curve) and the projections of
the path determined in the 3D collective space (β20,β30,λ2)
(solid curves) are shown in Fig. 8. In the (β20,β30) plane
the 2D and 3D paths are almost indistinguishable. From
the mean-field equilibrium state to the fission isomer the
reflection-asymmetric shape degree of freedom does not
contribute, whereas it plays a crucial role along the dynamic
path connecting the isomeric state and the outer turning point.
The effect of pairing fluctuations on the asymmetric fission of
250Fm is illustrated in the lower panel of Fig. 8. The dynamic
pairing correlations are markedly amplified along the fission
path when the nucleus traverses the inner and outer barriers,
and this has a significant effect on the effective inertia. In fact,

FIG. 8. Projections of the 3D dynamic fission path (solid curves)
of 250Fm on the (β20,β30) plane for λ2 = 0 (a), and the (β20,λ2)
plane for β30 = 0 (b). The dash-dot (red) curve denotes the 2D path
computed without the inclusion of dynamic pairing correlations.

even though the 2D and 3D paths are almost identical in the
plane of axially symmetric shape degrees of freedom (β20,β30),
because of pairing fluctuations in the 3D case the fission action
integral is reduced by as much as ∼10 units (see Table I).

The calculated action integrals and resulting fission half-
lives for 264Fm and 250Fm are listed in Table I. The 2D
labels denote the values obtained in two-dimensional col-
lective spaces without taking dynamic pairing fluctuations
into account, whereas the 3D labels indicate the values
calculated in three-dimensional spaces that include the pairing
degree of freedom as collective coordinate. For the symmetric
spontaneous fission of 264Fm the dynamic paths are determined
in the (β20,β22) and (β20,β22,λ2) collective spaces. The path
traverses a single fission barrier and the axial symmetry of the
fissioning system is fully restored by the inclusion of dynamic
pairing correlations. As a result, in the 3D space the action
integral is reduced by ∼5 units, and the predicted half-life is
almost five orders of magnitude shorter than in the 2D case
that neglects dynamic pairing fluctuations. For the asymmetric
fissioning nucleus 250Fm we have also shown that although
triaxial effects are important in the static case or in the dynamic
case without pairing fluctuations, the triaxial shape degree of
freedom does not play a role when pairing is included as a
collective variable, just as in the case of 264Fm. Therefore, the
SF action integral and fission half-life can be determined in
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ZHAO, LU, NIKŠIĆ, VRETENAR, AND ZHOU PHYSICAL REVIEW C 93, 044315 (2016)

the 3D collective space (β20,β30,λ2). Two barriers are traversed
by the fission path and, as the result of significantly enhanced
dynamic pairing correlations, the action integral is reduced
by ∼10 units as compared to the value computed along the
2D path in the (β20,β30) collective space. The corresponding
half-life is almost nine orders of magnitude shorter than the
value predicted in the 2D space (β20,β30).

IV. SUMMARY

The dynamics of spontaneous fission of 264Fm and 250Fm
have been investigated in a theoretical framework based on
relativistic energy density functionals and, in addition to shape
deformation degrees of freedom, pairing correlations have
been included as collective coordinates. Effective potentials
and nonperturbative ATDHFB cranking collective inertia
tensors have been calculated using the multidimensionally-
constrained relativistic mean-field (MDC-RMF) model based
on the energy density functional DD-PC1, and pairing corre-
lations taken into account in the BCS approximation with a
separable pairing force of finite range. The effect of coupling
between shape and pairing degrees of freedom on dynamic
(least-action) fission paths, as well as the corresponding SF
half-lives has been analyzed.

264Fm undergoes symmetric fission into two 132Sn nuclei.
Hence, this process can be described in the 3D collective
space (β20,β22,λ2), where λ2 is the Lagrange multiplier related
to pairing fluctuations via the particle-number dispersion
operator. The dynamic path that connects the mean-field
ground state and the isomeric state of 250Fm is also studied in
this 3D collective space. For both nuclei, triaxial deformations
reduce the height of the static inner barrier by 2–3 MeV.
However, axial symmetry of the fissioning system is fully
restored along the dynamic paths when pairing is included as a
collective coordinate and, simultaneously, pairing correlations

are significantly enhanced. The description of asymmetric
spontaneous fission of 250Fm necessitates the inclusion of the
octupole (reflection-asymmetric) degree of freedom β30 and, in
principle, calculations should be carried out in the full 4D space
spanned by the collective coordinates (β20,β22,β30,λ2). How-
ever, since the triaxial degree of freedom does not play a role in
the dynamic case that includes pairing fluctuations, the fission
action integral could be computed along the dynamic path
in the symmetry-restricted 3D collective space (β20,β30,λ2).
The octupole deformation degree of freedom becomes crucial
beyond the isomeric state, and pairing correlations display a
pronounced increase when the path traverses the inner and
outer barriers. Consistent with the findings of Ref. [21], we
have shown that the inclusion of pairing correlations in the
space of collective coordinates, that is, the dynamical coupling
between shape and pairing degrees of freedom, reduces the
fission action integral by several units (more than five in the
case of 264Fm, and almost ten for 250Fm) and, therefore, has a
dramatic effect on the calculated SF half-lives.
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