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1Dipartimento di Fisica, Università di Napoli Federico II, Napoli, Italy
2INFN Sezione di Napoli, Napoli, Italy

3Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
4Nuclear Physics Institute, Czech Academy of Sciences, 250 68 Řež, Czech Republic

(Received 1 February 2016; revised manuscript received 11 March 2016; published 15 April 2016)

A Bogoliubov quasiparticle formulation of an equation-of-motion phonon method, suited for open-shell
nuclei, is derived. Like its particle-hole version, it consists of deriving a set of equations of motions whose
iterative solution generates an orthonormal basis of n-phonon states (n = 0,1,2, . . .), built of quasiparticle
Tamm-Dancoff phonons, which simplifies the solution of the eigenvalue problem. The method is applied to the
open-shell neutron-rich 20O for illustrative purposes. A Hartree-Fock-Bogoliubov canonical basis, derived from
an intrinsic two-body optimized chiral Hamiltonian, is used to derive and solve the eigenvalue equations in a space
encompassing a truncated two-phonon basis. The spurious admixtures induced by the violation of the particle
number and the center-of-mass motion are eliminated to a large extent by a Gram-Schmidt orthogonalization
procedure. The calculation takes into account the Pauli principle, is self-consistent, and is parameter free except
for the energy cutoff used to truncate the two-phonon basis, which induces an increasing depression of the ground
state through its strong coupling to the quasiparticle vacuum. Such a cutoff is fixed so as to reproduce the first
1− level. The two-phonon states are shown to enhance the level density of the low-energy spectrum, consistently
with the data, and to induce a fragmentation of the E1 strength which, while accounting for the very low E1
transitions, is not sufficient to reproduce the experimental cross section in the intermediate energy region. This
and other discrepancies suggest the need of including the three-phonon states. These are also expected to offset
the action of the two phonons on the quasiparticle vacuum and, therefore, free the calculation from any parameter.
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Fast-growing computer power has enabled the upgrading
of traditional many-body methods and the elaboration of new,
more advanced, approaches capable of exploring deeply and
extensively the properties of stable and exotic nuclei.

Ab initio methods, like no-core shell model (NCSM) [1]
and coupled-cluster (CC) theory [2,3], describe with accuracy
the bulk and low-lying spectroscopic properties of light nuclei.

More phenomenological approaches are generally needed
as one moves to heavy regions. Large-scale shell-model
calculations based on the Lanczos algorithm [4] or Monte
Carlo sampling [5] have provided complete and systematic
descriptions of low-energy spectroscopy in medium and heavy
nuclei, including those away from the stability line [6,7].
An importance sampling shell model [8] has investigated the
spectra of a chain of isotopes and isotones around 132Sn [9–11].

Mean field approaches, like random phase approximation
(RPA), are suited for low- and high-energy spectra. They
are usually based on Skyrme or relativistic energy density
functionals or Gogny forces [12].

Several RPA extensions are now available that allow one to
study the fragmentation of the giant resonances and, in general,
the fine structure of collective soft modes.

Widely adopted are the RPA plus particle-vibration cou-
pling (PVC) [13], where single-nucleon states couple to
collective low-lying nuclear vibrations or phonons, and the
quasiparticle phonon model (QPM) [14], which uses a sep-
arable Hamiltonian in a multiphonon space covering up to a
fraction of three RPA phonons.

Other methods have been proposed in recent years.
The relativistic quasiparticle time blocking approximation

(RTBA), framed within a covariant energy density functional
theory, couples two-quasiparticle states to collective vibrations
[15,16]. Two-particle–two-hole configurations are explicitly
included in self-consistent second RPA (SRPA) calculations,
employing realistic interactions derived by means of the
unitary correlation operator method (UCOM) [17] or Skyrme
forces [18].

Most RPA extensions, like the RPA plus PVC [19] or RTBA
[15,20,21] or QPM [22,23], were adopted to investigate the
nature of the low-lying dipole peaks, just below the giant dipole
resonance (GDR), presumed to be a manifestation of a soft
mode arising from a translational oscillation of the neutron
skin against a N = Z core [24] and known as pygmy dipole
resonance (PDR).

Low-lying dipole excitations were observed in neutron-
rich oxygen isotopes [25–27] and, since then, in several other
regions [28–34]. A fairly complete list of experimental and
theoretical works can be found in the reviews [20,35,36].

We have proposed an equation-of-motion phonon method
(EMPM) [37–39] that derives and solves iteratively a set
of equations of motion to generate an orthonormal basis
of multiphonon states built of phonons obtained in Tamm-
Dancoff approximation (TDA). Such a basis simplifies the
structure of the Hamiltonian matrix and makes feasible its
diagonalization in large configuration and phonon spaces. The
diagonalization produces at once the totality of eigenstates
allowed by the dimensions of the multiphonon space. The
formalism treats one-phonon as well as multiphonon states on
the same footing, takes into account the Pauli principle, and
holds for any Hamiltonian.
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The method was formulated in the particle-hole (p-h)
scheme and first applied to 16O by diagonalizing a realistic
Hamiltonian in a space encompassing a fraction of three-
phonon states [39]. The coupling of these configurations
shifted downward the one-phonon energies toward the restora-
tion of the correct separation of the centroid of the GDR from
the correlated ground state, strongly depressed by the coupling
of the HF vacuum to the two-phonon subspace.

It was, then, adopted to investigate the dipole response in
the heavy, neutron-rich, 208Pb [40,41] and 132Sn [42]. The
most recent calculations [41,42] were fully self-consistent
and included up to two-phonon basis states, which enhanced
greatly the fragmentation of the GDR and the density of
low-lying levels associated to the PDR.

Here we derive a quasiparticle version of the method so
as to allow the study of open-shell nuclei. After presenting
in Sec. I a quasiparticle Hamiltonian in the Hartree-Fock-
Bogoliubov (HFB) canonical basis and constructing the TDA
phonons in Sec. II, we outline in Sec. III the method by
showing how the multiphonon basis is generated and then
used to solve the eigenvalue problem. It will emerge clearly
that the quasiparticle formulation keeps the simplicity and
transparency of the p-h scheme.

The numerical implementation of the method is outlined in
Sec. IV. 20O, as representative of neutron-rich oxygen isotopes,
is chosen as a testing ground for the method. This is one of
the best-studied oxygen isotopes away from the stability line
[20,35]. It displays a fairly rich low-lying spectrum [43–46]
and exhibits a dipole strength distribution over a rather large
energy range [25–27,47].

The low-lying spectra of 20O and other oxygen and carbon
neutron-rich isotopes were calculated using the CC theory
[48]. Oxygen isotopes were further studied within the same CC
approach [49,50] and in an extended (sdf7/2p3/2) shell-model
valence space using an effective potential which includes chiral
two- and three-body interactions up to third order [48–51]. The
low-lying 2+ was also the object of a QRPA study based on
Skyrme forces [52].

The dipole strength distribution was investigated within a
phenomenological shell-model context [53], relativistic RPA
[54], time-dependent HF (TDHF) [55,56], and RPA plus PVC
[19]. The objective of these studies was to establish if the
low-lying peaks are a manifestation of the PDR or are simply
single-particle excitations.

We adopt our method to calculate the full spectrum as well
as the dipole strength distribution. We use the chiral potential
Vχ = NNLOopt, optimized so as to minimize the three-body
contribution [57], and construct and solve the eigenvalue
equations in a space covering up to two-phonon states.

I. THE QUASIPARTICLE HAMILTONIAN IN THE HFB
CANONICAL BASIS

A. The starting intrinsic Hamiltonian

The Hamiltonian is composed of an intrinsic kinetic term
Tint and a nucleon-nucleon (NN ) potential VNN . It can be
written in the more standard form,

H = T + V = T + VNN + T2, (1)

where

T =
(

1 − 1

A

)
1

2m

∑
i

p2
i (2)

is a modified one-body kinetic term and

T2 = − 1

2mA

∑
i �=j

�pi · �pj (3)

is a two-body kinetic piece. The second quantized form of T
is

T =
∑

r

[r]1/2trs(a
†
r × bs)

0, (4)

where a
†
r = a

†
xr jrmr

and br = (−)jr+mr axr jr−mr
are particle

creation and annihilation operators, respectively. We have
put [r] = 2jr + 1 and use this notation throughout the paper.
We also use the symbol × to denote coupling of two tensor
operators to angular momentum �.

For V we have

V = −1

4

∑
rstq�

[�]1/2V �
rstq [(a†

r × a†
s )� × (bt × bq)�]0, (5)

where

V �
rstq = 〈(t × q)�|V |(r × s)�〉

− (−)r+s−�〈(t × q)�|V |(s × r)�〉 (6)

is un-normalized and antisymmetrized.

B. The quasiparticle Hamiltonian

In the HFB canonical basis, the quasiparticle operators have
the BCS form,

α†
r = ura

†
r + vrbr ,

(7)
βr = urbr − vra

†
r ,

where

βr = (−)jr+mr αjr−mr
. (8)

In its normal form with respect to the HFB vacuum, the
Hamiltonian becomes

H = E0 + H11 + V, (9)

where E0 is the HFB ground-state energy, H11 is a one-body
quasiparticle Hamiltonian, and V is a two-body potential
describing the interaction among quasiparticles. The one-body
piece in the angular momentum coupled scheme has the
expression

H11 =
∑
rs

[r]1/2Ers[α
†
r × βs]

0, (10)

where

Ers = (εrs − λδrs)(urus − vrvs) + 	rs(urvs + vrus). (11)

Here

εrs = trs + 
rs (12)
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and


rs = 1

[r]1/2

∑
t

[t]1/2F 0
rstt v

2
t , (13)

	rs = 1

2

1

[r]1/2

∑
t

[t]1/2V 0
rstt utvt , (14)

are the Hartree-Fock and pairing potentials, respectively. We
have introduced the quantity

Fσ
rtsq =

∑
�

(−)r+q−σ−�[�]W (rstq; �σ )V �
rstq , (15)

where W is a Racah coefficient. It is to be pointed out that the
one-body quasiparticle Hamiltonian does not have the standard
diagonal structure, as would have been the case had we used
the full HFB basis.

The transformed two-body piece has the composite form,

V2 = V22 + V31 + V40 + V13 + V04, (16)

where Vij are expressed in terms of products of i creation and j
annihilation quasiparticle operators and Vji are the Hermitian
conjugate of Vij . The explicit expressions of Vij are

V22 = −
σ∑

r�s t�q

[σ ]1/2ζ 2
rsζ

2
tqV

σ
rstq (22)

× [(α†
r × α†

s )σ × (βt × βq)σ ]0, (17)

V31 = 1

2

σ∑
(r�s)tq

[σ ]1/2ζ 2
rsV

σ
rstq (31)

× [(α†
r × α†

s )σ × (α†
t × βq)σ ]0, (18)

V40 =
σ∑

r�s t�q

[σ ]1/2ζ 2
rsζ

2
tqV

σ
rstq (40)

× [(α†
r × α†

s )� × (α†
t × α†

q)σ ]0, (19)

where ζrs = (1 + δrs)−1/2 and

V σ
rstq (22) = [

V σ
rstq (urusutuq + vrvsvtvq)

+Fσ
rstq (urvsvtuq + usvrvqut )

+ (−)r−s−σ F σ
srtq(usvrvtuq + urvsutvq)

]
, (20)

V σ
rstq (31) = [

Fσ
rstq(urvsutuq − usvrvtvq)

− (−)r+s−σ F σ
rsqt (usvrutuq − urvsvtvq)

]
, (21)

V σ
rstq (40) = [

Fσ
rstq(urvsutvq + usvrvtuq)

− (−)r+s−σ F σ
rsqt (urvsvtuq + usvrutvq)

]
. (22)

II. SELF-CONSISTENT QUASIPARTICLE
TAMM-DANCOFF

The TDA consists of solving the eigenvalue equation

〈0|[ Z
λ

rs,H
]λ|λ〉 = ωλc

λ
rs = (Eλ − E0)cλ

rs, (23)

where

cλ
rs = 〈(r × s)λ|λ〉 = 〈0|Zλ

rs |λ〉 (24)

and Z
λ

rs (r � s) is the adjoint of the normalized two-
quasiparticle operator,

Zλ
rs = −ζrs(α

†
r × α†

s )λ. (25)

Upon expansion of the commutator, we obtain∑
t�q

Aλ
rstqc

λ
tq = (Eλ − E0)cλ

rs, (26)

where

Aλ
rstq = ζrsζtq

[
Hrstq (11) + Vλ

rstq (22)
]
. (27)

The first piece is

Hrstq(11) = δsqErt + δrtEsq − (−)r+s−λ[δstErq + δrqEst ].

(28)

It is to be noted that the above matrix element is nondiagonal
as would be the case if computed in the full HFB basis. The
second term is the two-body matrix element (20).

The solution of the eigenvalue equation yields the TDA
eigenvalues and eigenvectors of the form

|λ〉 = O
†
λ|0〉, (29)

where

O
†
λ =

∑
r�s

cλ
rsZ

λ
rs (30)

is the TDA phonon operator.
The TDA wave functions can be used to compute the density

matrix

ρλλ′([r × s]σ ) = 〈λ′||(α†
r × βs)

σ ||λ〉
= [λλ′σ ]1/2

∑
t

ζtsζtr

[
cλ
t�s + (−)t−s−λcλ

s�t

]

× [
cλ′
t�r + (−)r−t−λ′

cλ′
r�t

]
W (λ′tσ s; rλ). (31)

This quantity plays a crucial role in the method. Of equal
importance are the amplitudes of the transitions from the
ground state induced by a multipole operator,

M(λ) = 1

[λ]1/2

∑
rs

〈r||M(λ)||s〉[a†
r × bs]

λ. (32)

After expressing the above operator in terms of quasiparticles,
we get the TDA transition matrix elements

〈xλ||Mλ||0〉
=

∑
r�s

〈r||Mλ||s〉ζrs[urvs + (−)λusvr ]cλ
rs(x). (33)

Here we need to introduce explicitly the additional quantum
number x to label the different TDA states of spin Jλ. We use,
otherwise, λ to denote all TDA quantum numbers.

1. Removal of spurious admixtures

For the Jπ = 1− and Jπ = 0+, we need to remove the
spurious contamination induced by the center-of-mass (c.m.)
motion and by the violation of the number of particles.
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Determining the exact form of spurious states is not obvi-
ous. The c.m. spurious state, for instance, is easily derived for
a harmonic oscillator (HO) external potential. This is not the
case for an intrinsic Hamiltonian using a HF (HFB) potential.
Thus, as proposed in Ref. [58], we eliminate the spurious
admixtures by constructing a basis in the two-quasiparticle
space which does not couple to the HF vacuum through the
c.m. coordinate and the number operator.

To this purpose we construct for the c.m. the state

|λ1〉 = 1

N1
Rμ|0〉 = 1

N1

∑
r�s

cλ1
rs |(r × s)1−〉, (34)

where Rμ is the c.m. coordinate, cλ1
rs are the un-normalized

coefficients,

cλ1
rs =

√
4π

9

1

A
〈r||rY1||s〉(urvs − usvr ), (35)

and N1 is the normalization constant,

N2
1 =

∑
r�s

∣∣cλ1
rs

∣∣2
. (36)

Similarly, we determine for the particle number operator the
state

|λ0〉 = 1

N0

∑
r

cλ0
rr |(r × s)0+〉, (37)

where cλ0
rr are the un-normalized coefficients,

cλ0
rr =

√
2[r](urvr ), (38)

and N0 is the normalization factor,

N2
0 =

∑
r

∣∣cλ0
rr

∣∣2
. (39)

We then apply the Gramm-Schmidt orthogonalization pro-
cedure to the Jπ = 1− and Jπ = 0+ two-quasiparticle states
and determine the basis states |�i〉 orthogonal to |λ1〉 and |λ0〉,
respectively. The states |�i〉, which are linear combinations of
the two-quasiparticle states |(r × s)λ〉 (λ = 0+ or λ = 1−),
must be used to construct and diagonalize the Hamiltonian
matrix, yielding eigenstates rigorously free of spurious admix-
tures. These eigenstates recover the standard TDA structure
given by Eq. (30) once the states |�i〉 are expressed in terms
of the original two-quasiparticle configurations |(r × s)λ〉.

III. EQUATION-OF-MOTION PHONON METHOD

A. Derivation of the n-phonon basis

The primary objective of the method is to generate an
orthonormal basis of n-phonon states (n = 1,2, . . .) of the
form

|n; β〉 =
∑
λα

C
β
λα|(λ × α)β〉

=
∑
λα

C
β
λα{O†

λ × |n − 1,α〉}β, (40)

where the TDA phonon operator O
†
λ (30), of energy Eλ, acts

on a (n − 1)-phonon state |n − 1,α〉, of energy Eα , assumed
to be known.

The key for generating such a basis is provided by the
equations of motion,

〈n,β|{[H,O
†
λ] × |n − 1,α〉}β

= (Eβ − Eα)〈n,β|{O†
λ × |n − 1,α〉}β. (41)

Upon applying the Wigner-Eckart theorem, we obtain the
equivalent equations

〈n,β||[H,O
†
λ]||n − 1,α〉

= (Eβ − Eα)〈n,β||O†
λ||n − 1,α〉. (42)

We then expand the commutator and invert Eq. (30) to express
the two-quasiparticle operators, appearing in the expanded
commutator, in terms of the phonon operators O

†
λ. The

outcome of this action is [39]∑
λ′α′

Aβ
λαλ′α′X

β
λ′α′ = EβX

β
λα, (43)

where X defines the amplitude

X
β
λα = 〈n,β||O†

λ||n − 1,α〉 (44)

and A is a matrix of the simple structure

Aβ
λαλ′α′ = (Eλ + Eα)δλλ′δαα′ +

∑
σ

W (βλ′ασ ; α′λ)Vσ
λαλ′α′ .

(45)

The potential in A is

Vσ
λαλ′α′ = 1

2

∑
rtsq

ρλλ′([r × t]σ )Vσ
rtsq (22)ρ(n−1)

αα′ ([s × q]σ ),

(46)

where ρ
(n)
αα′ ([r × s]σ ) is the n-phonon density matrix,

ρ
(n)
αα′ ([r × s]σ ) = 〈n; α′||[α†

r × βs]
σ ||n; α〉

= [α]1/2

⎧⎨
⎩

∑
λλ′γ

ρλλ′([r × s]σ )W (α′σγ λ; αλ′)

×C
(α)
λγ (n) X

(α′)
λ′γ (n) +

∑
γ γ ′λ

ρ
(n−1)
γ γ ′ ([r × s]σ )

× W (ασλγ ′; α′γ )C(α)
λγ (n) X

(α′)
λγ ′ (n)

⎫⎬
⎭. (47)

The potential accounts for the interaction between one and
(n − 1) phonons. For n = 2 it is simply a phonon-phonon
potential.

The formal analogy between the structure of the phonon
matrix Aβ

λαλ′α′ [Eq. (45)] and the form of the TDA matrix
Aλ

rstq [Eq. (27)] has been analyzed in detail [39]. The first
is deduced from the second by replacing the quasiparticle
one-body term with the phonon energies and the interaction
among quasiparticles with the interaction among phonons.
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Equation (43) is not an eigenvalue equation yet. We have
first to expand the amplitudes X [Eq. (44)] in terms of the
expansion coefficients C

β
λα of the states |n; β〉 [Eq. (40)]

obtaining

X
β
λα =

∑
λ′α′

Dβ
λαλ′α′C

β
λ′α′ , (48)

where D is the metric or overlap matrix given by

Dβ
λαλ′α′ = 〈(λ × α)β |(λ′ × α′)β〉

= δλλ′δαα′ − (−)α+β+λ
∑

σ

W (λ′λα′α; σβ)

×
∑
rs

ρλλ′([r × s]σ )ρ(n−1)
α′α ([r × s]σ )

+
∑

γ

W (α′λλ′α; γβ)Xα
λ′γ (n − 1)Xα′

λγ (n − 1),

(49)

and Xα
λγ (n − 1) = 〈n − 1,α||O†

λ||n − 2,γ 〉. The above for-
mula shows that the overlap matrix D reestablishes the Pauli
principle by reintroducing the exchange terms among different
phonons, in addition to the Kronecker product.

Upon insertion of the expansion (48) into Eq. (43), we get
∑
λ′α′

Hβ
λαλ′α′C

β
λ′α′ =

∑
λ′α′

(ADβ
λαλ′α′)C

β
λ′α′

= Eβ

∑
λ′α′

Dβ
λαλ′α′C

β
λ′α′ . (50)

These represent the generalized eigenvalue equation

HC = (AD)C = EC (51)

in the states |(λ × α)β〉 = {O†
λ × |n − 1,α〉}β , which form an

overcomplete basis.
We eliminate such a redundancy by following the procedure

outlined in Refs. [37,38], based on the Cholesky decomposi-
tion method. This method selects a basis of linear independent
states |(λ × α)β〉 spanning the physical subspace of the correct
dimensions Nn < Nr and, thus, enables us to construct a
Nn × Nn nonsingular matrix Dn. By left multiplication in the
Nn-dimensional subspace we get from Eq. (51)

[D−1
n H]

C = [D−1
n (AD)

]
C = EC. (52)

This equation determines only the coefficients C
β
λα of the

Nn-dimensional physical subspace. The remaining redundant
Nr − Nn coefficients are undetermined and, therefore, can be
safely put equal to zero.

The eigenvalue problem within the n-phonon subspace
is thereby solved exactly and yields a basis of orthonormal
correlated n-phonon states of the form (40).

Because recursive formulas hold for all quantities entering
A and D, it is possible to solve the eigenvalue equations
iteratively starting from the TDA phonons and, thereby,
generate a set of orthonormal multiphonon states for any n.

B. Eigenvalue problem in the multiphonon basis

We are now ready to formulate the eigenvalue prob-
lem in the full space spanned by {|0〉,|n = 1; α1〉,|n =
2; α2〉, . . . ,|n,αn〉, . . . }. In such a basis, the eigenvalue equa-
tions become∑

n′βn′

[(
Eαn

− Eν

)
δnn′δαnβn′ + Vαnβn′

]C(ν)
βn′ = 0, (53)

where we used the simpler notation αn = (nα). The potential
has the structure

Vαnβn′ = δn′(n−1)V (31)
αβ + δn′(n−2)V (40)

αβ . (54)

The matrix elements of V (31) are

V (31)
αnβn′ = [α]−1

∑
σγ

(−)α+γ+σVσ
βγ X(α)

σγ , (55)

where

Vσ
βγ =

∑
tq

Vσ
tqρ

(n′)
βγ ([t × q]σ ) (56)

and

Vσ
tq = 1

2

∑
r�s

cσ
rsζrs

[
Fσ

rstq(urvsutuq − vrusvtvq)

+ (−)t−q−σ F σ
rsqt (usvrutuq − vsurvtvq)

]
. (57)

For V (40)
αβ we have

V (40)
αnβn′ = [α]−1

∑
xyσγ

(−)α+γ+σ Xα
(xσ )γ X

γ
(yσ )βV (σ )

xy , (58)

where

V (σ )
xy = 1

4

∑
(r�s)(t�q)

ζrsζtqc
σ
rs(x)cσ

tq(y)

× [
Fσ

rstq(urvsutvq + usvruqvt )

+ (−)r−s−σ F σ
srtq (usvrutvq + urvsuqvt )

]
. (59)

The solution of the full eigenvalue equations (53) yields the
final eigenvalues Eν and the corresponding eigenfunctions

|�ν〉 =
∑
αn

C(ν)
αn

|αn〉, (60)

where |αn〉 form a basis of orthonormal n-phonon states of the
structure given by Eq. (40), namely,

|αn〉 =
∑

λα(n−1)

C
(αn)
λα(n−1)

|(λ × α(n−1))
αn〉. (61)

The above eigenfunctions, including the ground state, are
highly correlated and are the outcome of a procedure which
does not rely on any approximation, except for the ones
inherent in the HFB transformation and the truncation of the
configuration and phonon spaces.

C. Transition amplitudes

For a one-body λ-multipole operator of the form (32) the
amplitudes of the transition from initial |i〉 to final |f 〉 states
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of the EMPM form (60) are

〈f ||M(λ)||i〉 =
∑

nαn−1βn

⎡
⎣C(f )

βn
C(i)

αn−1
〈βn||M(λ)||αn−1〉

+ (−)f −i
∑

nαnβn−1

C(i)
αn
C(f )

βn−1
〈αn||M(λ)||βn−1〉

+
∑
nαnβn

C(i)
αn
C(f )

βn
〈βn||M(λ)||αn〉

⎤
⎦, (62)

where

〈βn||M(λ)||α(n−1)〉

= 1

[λ]1/2

∑
x

〈xλ||M(λ)||0+〉X(βn)
(xλ)αn−1

, (63)

〈αn||M(λ)||βn−1〉
= 1

[λ]1/2

∑
x

〈xλ||M(λ)||0+〉Xαn

(xλ)βn−1
, (64)

〈βn||M(λ)||αn〉
= 1

[λ]1/2

∑
rs

M(−)
rs (λ)ραnβn

([r × s]λ). (65)

The matrix elements (63) and (64) couple states differing
by one phonon and are determined by the TDA transition
amplitude 〈xλ||M(λ)||0+〉 [Eq. (33)] and the amplitudes

X
βn

(xλ)αn−1
= 〈nβ,Jf ||O†

xλ||(n − 1),α,Ji〉, (66)

X
αn

(xλ)βn−1
= 〈n,α,Ji ||O†

xλ||(n − 1),βJf 〉. (67)

The other term (65) describes a scattering transition between
states with the same number of phonons and is determined by
the quasiparticle matrix elements

M(−)
rs (λ) = 〈r||Mλ||s〉[urvs − (−)λusvr ] (68)

multiplied by the density matrix

ραβ([r × s]λ) = 〈n,β||(α†
r × βs)

λ||n,α〉 (69)

given by Eq. (47).

IV. APPLICATION TO 20O

For illustrative purposes, we compute the low-lying spec-
trum and the dipole strength distribution of the neutron-rich
20O.

As anticipated in the Introduction, we make use of the
nucleon-nucleon optimized chiral potential Vχ = NNLOopt

determined by fixing the coupling constants at next-to-next-
to-leading order through a new optimization method in the
analysis of the phase shifts, which minimizes the effects of
the three-nucleon force [57]. Though reproducing several bulk
and spectroscopic properties of light and medium-light nuclei,
this potential overestimates the binding energy in medium
and heavy nuclei. In our previous works on heavy nuclei,
we added a phenomenological, density-dependent potential
derived from a contact three-body interaction [59,60] which

counteracts the too-attractive character of Vχ = NNLOopt and
yields more compressed and realistic HF spectra [58,61] and
charge densities [41]. Dealing here with light nuclei, we use
only Vχ .

The canonical HFB basis is generated in a configuration
space which includes 11 harmonic oscillator major shells
up to the principal quantum number Nmax = 10. This space
is sufficient for reaching a good convergence of the single-
particle spectra below and around the Fermi surface. In going,
for instance, from Nmax = 8 to Nmax = 10, step by step, the
energies change at most by ∼0.1 MeV at each step. More
appreciable variations with Nmax and the harmonic oscillator
frequency occur in the spectrum far above the Fermi surface, a
general feature of HF and HFB. We have put �ωHO = 16 MeV,
which is close to the empirical value.

The energy of the HFB vacuum is EHFB = −51.67 MeV,
corresponding to a binding energy per nucleon BHF/A �
2.58 MeV three times smaller than the experimental value
Bexp/A = 7.57 MeV. This is consistent with a HF calculation
performed for closed-shell nuclei using a UCOM interaction
derived from an Argonne potential [62], which underestimates
the binding energies by a factor two.

The TDA phonons are determined in a space which includes
up to the (pf h) major shell. Their energy and structure remain
practically unchanged if the two-quasiparticle space is further
enlarged. They are free of spurious admixtures by virtue of the
Gramm-Schmidt orthogonalization of the two-quasiparticle
states to the c.m. and the particle-number states.

The correlated two-phonon states |α2〉 (40) are generated
in a space truncated according to the energy Eλ1 + Eλ2 of the

basis states |(λ1 × λ2)β〉 ≡ {O†
λ1

× |λ2〉}
β
. They are added to

the HFB vacuum plus the TDA one-phonon basis to solve
the full eigenvalue equations (53) determining the ground and
excited EMPM states of the form (60).

The ground-state correlation energy depends critically
on the truncation of the two-phonon space. It goes from
Ecorr � −4.1 MeV in correspondence of a 30-MeV cutoff
to Ecorr = −18.05 MeV if we use the full two-phonon basis
allowed by the number of shells up to the (pf h) shell. When
added to the HFB energy, it yields a binding energy per nucleon
Bth/A � 3.49 MeV. The correlation energy is expected to
increase substantially in absolute value if we include all
two-phonon states composed of all TDA phonons allowed by
the dimensions of the HO space.

This can be inferred from an ongoing systematic study of
the two-phonon correlation energy in closed-shell nuclei to
be submitted for publication in the near future. An EMPM
calculation, using the same NNLOopt potential adopted here
and performed in HO spaces of variable dimensions, yields for
the HF and the two-phonon correlation energies of 16O EHF ∼
−51 MeV and Ecorr ∼ −58 MeV, respectively. These values
do not change in going from Nmax = 8 to Nmax = 14, as long
as all two-phonon states allowed by Nmax are included.

Even when all two-phonon states are included, the cor-
responding binding energy per nucleon, Bth/A ∼ 6.8 MeV,
approaches but does not reach the experimental value
Bexp/A = 7.98 MeV. More complex configurations, chiefly
four-phonon states, are needed. This is suggested also by
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CC-theory calculations which take effectively into account
(4p-4h) configurations and reproduce the ground-state energies
[3].

Unlike the ground state, the one-phonon excited states are
insensitive to the dimensions of the two-phonon space. As the
two-phonon energy cutoff raises from 30 to 60 MeV, the first
excited 0+ level gets shifted from � − 1.6 to � − 1.7 MeV
with respect to the HFB vacuum. The ground-state energy,
instead, is pushed from � − 4.1 MeV down to � − 12.0 MeV,
thereby creating an unrealistic large gap between excited- and
ground-state levels.

It would be necessary to include the three-phonon states in
a space large enough to restore the correct separation between
excited- and ground-state energies. These configurations are
known to couple strongly to the one-phonon states and to push
them down in energy [39].

Though feasible, in principle, the inclusion of a large num-
ber of three-phonon states would require unbearably lengthy
calculations unless we resort to some efficient approximations.
We plan to do this in the near future. We confine our illustrative
calculation to the two-phonon space and consider the space
truncation energy cutoff as a parameter to be fixed so as to
reproduce roughly the first excited 1− level. This is achieved
by including two-phonon states composed of all TDA phonons,
of both parities, fulfilling the condition Eλ1 + Eλ2 � 30 MeV.

One of our main goals is to compute the reduced transition
strength,

Bν(Eλ) = |〈ν||M(Eλ)||0+〉|2, (70)

for the electric multipole operator

M(Eλμ) =
Z∑

i=1

eir
λ
i Yλμ(r̂i). (71)

The transition amplitudes are obtained by inserting the wave
functions (60) up to two phonons into the formula (62) and
making use of Eqs. (63)–(65). We get

〈ν||M(Eλ)||0+
1 〉 = C(0+

1 )
0

∑
β1

C(ν)
β1

〈β1||M(λ)||0〉

+ (−)λ
∑
β1α2

C(0+
1 )

α2 C(ν)
β1
Mβ1α2 (λ)

+
∑
α2β2

C(0+)
α2

C(ν)
β2

〈β2||M(λ)||α2〉, (72)

where

Mβ1α2 (λ) = [λ]−1/2
∑

x

〈xλ||M(λ)||0〉Xα2
(xλ)(β1λ) (73)

and X
(α2)
(xλ)(β1λ) = 〈α2,0+||O†

xλ||β1λ〉.
The first term couples the HFB vacuum to the TDA

one-phonon states and is dominant, in general. The sec-
ond contributes if the ground state has sizable two-phonon
components, while the third may be non-negligible only if
both ground and excited states have appreciable two-phonon
components. Because it is not the case here, this latter term has
been neglected because its computation is too time consuming.

For λ = 1 it is necessary to check if and to what extent
we dispose of the spurious c.m. admixtures within the
EMPM. We see from Eq. (72) that the first term is entirely
determined by the TDA transition amplitude, which is free
of spurious components. We have checked, in fact, that the
contribution of the isoscalar dipole operator to this term is zero.
Equation (73) shows that the TDA transition amplitude deter-
mines also the smaller second term. Because the constituent
TDA phonons are free of spurious admixtures, this piece may
get spurious contributions only from the exchange terms of the
overlap matrixD (49) entering the amplitude X [Eq. (48)]. The
exchange terms ofD, present in the density matrix ρ [Eq. (47)],
may contaminate also the third term, which we have neglected.
In our case, because of the spurious admixtures present in the
second term, the isoscalar transition strengths are of the order
∼10−4 e2 fm2, at most. These small, unwanted, contributions
are removed by using, as common practice, the intrinsic E1
operator

M(E1μ) = N

A

Z∑
i=1

eiriY1μ(r̂i) − Z

A

N∑
i=1

eiriY1μ(r̂i). (74)

Once the E1 reduced strength is evaluated, we compute the
cross section

σ =
∫ ∞

0
σ (ω)dω = 16π3

9�c

∫ ∞

0
ωS(E1,ω)dω, (75)

where S(E1,ω) is the strength function

S(E1,ω) =
∑

ν

Bν(E1) δ(ω − ων)

≈
∑

ν

Bν(E1) ρ	(ω − ων). (76)

Here ω is the energy variable, ων the energy of the transition
from the ground to the νth excited state of spin Jπ = 1−, and

ρ	(ω − ων) = 	

2π

1

(ω − ων)2 + (
	
2

)2 (77)

is a Lorentzian of width 	, which replaces the δ function as a
weight of the reduced strength.

After integration, the cross section becomes

σ = 16π3

9�c
m1, (78)

where

m1(E1) =
∑

ν

ωνBν(E1) (79)

is the first moment.
If the Hamiltonian does not contain momentum-dependent

and exchange terms, m1 fulfills the classical energy weighted
Thomas-Reiche-Kuhn (TRK) sum rule

m1(E1) = �
2

2m

9

4π

NZ

A
e2 (80)

and the total cross section assumes the value

σ (E1) = (2π )2 �
2

2m

e2

�c

NZ

A
= 60

NZ

A
(MeVmb). (81)
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FIG. 1. Theoretical versus experimental level scheme of 20O.

A. Energy levels

The TDA and EMPM level schemes are compared to the
experimental spectrum [43–46] in Fig. 1.

It is worth stressing that the EMPM levels are referred to the
energy of the correlated ground state. Because this is shifted
downward with respect to the HFB vacuum by the coupling
to the two-phonon states, the dominantly one-phonon energy
levels, less affected by the phonon coupling, appear at higher
energies than the corresponding TDA levels, which are referred
to the HFB vacuum.

The opposite occurs in extended (Q)RPA, where the
levels are shifted downward with respect to (Q)RPA. This
contradiction is easily explained. The (Q)RPA extensions take
into account only the coupling between (Q)RPA phonons
and two-phonon configurations, responsible for the downward
shift of the levels, and ignore the zero-phonon to two-phonon
coupling.

The crucial role played by the two-phonon states emerges
clearly from the plot. The TDA spectrum is far from resembling
the experimental one. Once the two phonons are included, the
calculation yields a sequence of levels of the same density

TABLE I. Weight of the n-phonon components in the ground and
some low-lying states.

State W0 W1 W2

0+
1 0.86 0.01 0.13

0+
2 0.01 0.02 0.97

0+
3 0.00 0.37 0.63

0+
4 0.00 0.54 0.46

2+
1 0.00 0.88 0.12

2+
2 0.00 0.08 0.92

2+
3 0.00 0.31 0.69

2+
4 0.00 0.54 0.46

4+
1 0.00 0.89 0.11

4+
2 0.00 0.04 0.96

1−
1 0.00 0.09 0.91

1−
2 0.00 0.22 0.78

1−
3 0.00 0.14 0.86

1−
4 0.00 0.22 0.78

3−
1 0.00 0.16 0.84

3−
2 0.00 0.18 0.82

of the experimental scheme. There is an almost one-to-one
correspondence between theoretical and experimental levels.

However, serious discrepancies, especially concerning the
0+

2 and 2+
1 first excited levels, occur. The 0+

2 is ∼2 MeV
below the measured level, while the 2+

1 is ∼2.4 MeV above.
This energy inversion is in contrast also with TDA whose
first 2+

1 is below the 0+
2 . The TDA 2+

1 level is actually almost
degenerate with the HFB ground state. In general, all first
excited TDA levels are too low in energy, suggesting that
the pairing component of the chiral potential might be too
weak. Indeed, if the strength of the neutron pairing field (14)
is multiplied by a factor 1.7, the TDA 0+

2 and 2+
1 energies raise,

respectively, to E0+ = 3.88 MeV and E2+ = 1.46 MeV, close
to the corresponding experimental levels.

Only the decay rate of the first 2+
1 was measured [43].

The calculation yields B(E2; 0+
1 → 2+

1 ) � 0.2 e2 fm4, two
orders of magnitude smaller than the experimental value,
B(E2; 0+

1 → 2+
1 ) � 29 e2 fm4.

The key for understanding the reason of such a failure is
in the phonon composition of the low-lying states. Unlike the
other first excited states, mainly of two-phonon nature, 2+

1
and 4+

1 are predominantly one-phonon states (Table I). The
TDA phonon with largest weight in the 2+

1 is the lowest in
energy and is composed mainly of neutron two-quasiparticle
configurations belonging to the (s,d) shell (Table II), which
obviously do not contribute to the transition. This neutron
dominance persists even if we enlarge the two-phonon space
so as to include all two-phonon states of energies Eλ1 + Eλ2 �
50 MeV.

It is clearly necessary to enhance the amplitudes of the
proton p-h core components of the TDA phonons over the
neutron two-quasiparticles. This can be done by including
the three-phonon states, which are known to couple strongly
to TDA phonons in 16O [39]. A complementary recipe may
consist of improving the HFB quasiparticle spectrum, which
amounts to improving the nuclear potential.
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TABLE II. Two-quasiparticle composition of the first 2+ TDA
phonon.

rπ sπ cπ
rs rνsν cν

rs

0d5/20s1/2 −0.019 0d5/20d5/2 0.874
0d3/20s1/2 −0.021 0d5/20s1/2 −0.459
0f7/20p3/2 −0.023 0d3/20s1/2 −0.013
0f5/20p3/2 −0.010 0d5/20d3/2 −0.098
0f5/20p1/2 0.030 1s1/20d3/2 0.074
1d3/20s1/2 0.015 0d5/20d3/2 0.035
1f7/20p3/2 −0.017 1p3/20p3/2 −0.010
1f5/20p3/2 0.014 0f7/20p3/2 0.017

0d5/21d5/2 0.015
0d5/22s1/2 −0.023
0d3/22s1/2 −0.014
0f5/20p1/2 0.014
1d3/20s1/2 0.011
0d5/21d3/2 0.026
1s1/21d3/2 −0.012
0d3/21d3/2 0.015
0d5/20g9/2 0.022
0d3/20g7/2 0.013
1f7/20p3/2 0.013
1f5/20p3/2 −0.011
1f5/20p1/2 −0.017

B. Dipole response

From comparing the EMPM versus the TDA spectra in
Fig. 2 one infers that the phonon coupling induces a severe
fragmentation of the strength and a consequent quenching of
the single peaks.

Of special interest is the splitting of the low-lying TDA peak
into several smaller peaks with the appearance of two levels
below the neutron decay threshold, in agreement with the data
obtained in a virtual-photon scattering experiment [26,27] at
around 100 MeV/nucleon. As shown in Fig. 3, the strengths of
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FIG. 2. TDA (a) and EMPM (b) E1 strength distribution in 20O.
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FIG. 3. Theoretical versus experimental [27] E1 reduced
strengths of the two lowest levels in 20O.

these two levels are within the experimental uncertainties of
the measured values. It may be worth reminding ourselves that
these strengths are underestimated by an order of magnitude
in phenomenological shell-model calculations [27].

Two levels are produced just around the (γ,n) threshold.
They get manifest (Fig. 4) as a very small hump in the cross
section, which, in turn, corresponds to the hump in the 7–8-
MeV energy interval of the measured cross section [25].

All these four low-lying 1− states have a dominant two-
phonon character (Table I). Their one-phonon components
are predominantly linear combinations of two-quasiparticle
configurations describing excitations of the valence neutrons
from the (sd) to the (pf ) shells. By virtue of this overwhelming
neutron dominance, illustrated for the lowest 1− of energy
ω = 8.397 MeV on Table III, these TDA states can be

5 10 15 20 25
0

5

10
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20

ω(MeV)

σ(
m

b)

20O
TDA
EMPM
EXP.

FIG. 4. Theoretical versus experimental E1 cross section in 20O.
The contribution of the lowest two levels in the interval 5–7 MeV,
measured in Ref. [27], is not included to make a consistent comparison
with the data of Ref. [25]. We have used a Lorentz width 	 = 1 MeV.
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TABLE III. Proton (π ) and neutron (ν) two-quasiparticle com-
position of two 1− TDA phonons.

rπ sπ cπ
rs rνsν cν

rs

ω = 8.397 MeV
0d5/20p3/2 −0.188 0d5/20p3/2 −0.174
0d3/20p3/2 −0.053 1s1/20p3/2 0.102
0d3/20p1/2 0.117 0d3/20p1/2 0.117
1d3/20p1/2 −0.063 0d5/21p3/2 0.718

1s1/21p3/2 −0.505
0d3/21p3/2 0.064
1s1/21p1/2 0.192
0d3/21p1/2 0.119
0d5/20f7/2 0.160
0d5/20f5/2 −0.051
0d3/20f5/2 −0.051
1d3/21p1/2 0.064
0d5/21f7/2 0.075

ω = 28.143 MeV

0d5/20p3/2 0.417 0d5/20p3/2 −0.318
1s1/20p3/2 −0.022 1s1/20p3/2 −0.112
1s1/20p1/2 0.055 1s1/20p1/2 −0.043
0d3/20p3/2 0.120 0d3/20p3/2 −0.065
0d3/20p1/2 −0.169 0d3/20p1/2 −0.071
1d5/20p3/2 0.072 0d5/21p3/2 −0.015
2s1/20p1/2 0.108 0d5/20f7/2 0.060
1d3/20p3/2 −0.024 1d5/20p3/2 0.110
1d3/20p1/2 −0.086 1d5/21p3/2 0.027

1d5/20f7/2 −0.090
2s1/21p3/2 −0.024
2s1/20p1/2 0.159
2s1/21p1/2 −0.031
0d3/20f5/2 −0.049
1d3/20p1/2 −0.049
1d3/21p3/2 −0.020
1d3/20f5/2 −0.051
0d5/21f7/2 0.595
0d5/22p3/2 −0.217
1s1/22p3/2 −0.392

associated with the PDR. However, they represent a small
fraction of the total wave functions, as Table I clearly shows.

Quite different is the structure of the high-energy TDA
phonons, falling in the region of the GDR. An example is
given in Table III. The phonon of energy ω = 28.143 MeV
contains proton and neutron p-h components in opposition
of phase, in addition to neutron particle-particle excitations,
consistently with the picture underlying the GDR.

The calculation reproduces only qualitatively the trend of
the experimental cross section. This is underestimated in the
regions 8–12 and 14–18 MeV. The strength collected by all
the states up to ∼15 MeV accounts only for ∼6% of the TRK
sum rule, just half the ∼12% fraction estimated experimentally
[25,47]. The cross section integrated up to ∼27 MeV accounts
for ∼38% of the TRK sum rule to be compared with the ∼45%
determined experimentally.

Most 1− states have sizable, or even dominant, two-
phonon components. There is a reason for that. Many of

them are obtained by coupling ∼1�ω phonons with 0�ω
two-quasiparticle states and, therefore, are almost degenerate
with the ∼1�ω 1− single phonons.

The three-phonon configurations are expected to reduce the
weight of the two phonons in favor of the one-phonon states.
In particular, they should increase the amplitudes of p-h core
components, with consequent enhancement of the transition
strengths from the ground state.

V. CONCLUSIONS

The formalism of the EMPM has been shown to remain
unchanged in going from the p-h to the quasiparticle scheme.
Also in this new context, the method does not rely on
approximations except for the one inherent in the HFB
transformation. Even this limitation is minimized. In fact,
by virtue of the phonon structure of the states, the spurious
admixtures, induced by the particle number violation and the
c.m. motion, are eliminated to a large extent by a Gram-
Schmidt orthogonalization procedure.

The correlated basis incorporates high-energy configura-
tions even if the calculation is performed in a truncated space.
However, including basis states with an increasing number
of phonons implies lengthier and lengthier calculations which
eventually render the task practically impossible. We have,
therefore, to rely on a fast convergence with the phonon
number.

In the application to the neutron-rich 20O, the calculation
was performed in a truncated two-phonon space. The space
truncation was dictated by the necessity of getting a realistic
separation between the excited- and ground-state energies. A
calculation using the full two-phonon basis, while affecting
little the excited states, would have depressed strongly the
ground state. Only the three phonons, which couple strongly
to the one-phonon states and push them down in energy, can
reduce drastically such a gap.

The coupling to three phonons is also expected to enhance
the weight of the one-phonon over the two-phonon states
and, in particular, should increment the amplitude of the core
components, thereby promoting an enhancement of transition
strengths, including the E2 decay strength of the first 2+ state.
Were not this the case, it would be necessary to improve the
HFB basis by upgrading the optimized chiral potential.

Including a substantial number of three-phonon states
requires unbearably lengthy calculations, unless we resort to
approximations. One may consist of neglecting the interaction
among phonons within the n = 3 subspace described by the
matrix elements Vσ

λαλ′α′ in Eq. (45) and, then, extracting a
basis of linear independent states from the unperturbed set
|(λ × α)β〉 by the Choleski decomposition method. We are
testing this approximation on the doubly magic 16O for the p-h
scheme.

Although confined within a truncated space, the two-
phonon states came out to play a crucial role. They are
responsible for the strong fragmentation of the dipole strength,
in qualitative agreement with the data, and for generat-
ing a scheme of levels which are almost in one-to-one
correspondence with the experimental energies. These
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important effects remain even in a larger two-phonon space
and can be only amplified by the inclusion of three phonons.
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and A. Porrino, Dipole response in 208Pb within a self-consistent
multiphonon approach, Phys. Rev. C 92, 054315 (2015).

[42] F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi, G. De Gregorio,
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