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Tidal wave in 102Pd: An extended five-dimensional collective Hamiltonian description
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The five-dimensional collective Hamiltonian based on the covariant density functional theory is applied to
investigate the observed tidal wave mode in the yrast band of 102Pd. The energy spectra, the relations between
the spin and the rotational frequency, and the ratios of B(E2)/J (I ) in the yrast band are well reproduced by
introducing the empirical ab formula for the moments of inertia. This ab formula is related to the fourth order
effect of collective momentum in the collective Hamiltonian. It is also shown that the shape evolution in the tidal
wave is determined microscopically by the competition between the rotational kinetic energy and the collective
potential in the framework of the collective Hamiltonian.

DOI: 10.1103/PhysRevC.93.044309

I. INTRODUCTION

Over the past two decades, novel nuclear excitation modes,
such as the magnetic [1–5] and antimagnetic [3,6] rotations in
near spherical nuclei, and the wobbling [7,8] and chiral [3,9–
11] motions in the triaxially deformed nuclei, have attracted
significant attention and extensively been explored from both
the experimental and theoretical sides. Recently, another
novel nuclear excitation mode, named as the “tidal wave,”
has gradually come into people’s vision and attracts new
attention [12–16].

As illustrated in Ref. [14], for a quadrupole vibrating
droplet of an ideal liquid, there are a family of flow patterns
with the same energy, differing by their angular momenta. In
the family, there are two limits. One limit is the oscillating
motion with no angular momentum carrying and the other is
the traveling wave with maximal angular momentum (2n�,
where n denotes the phonon number) carrying. For the latter
case, the surface rotates with a constant angular velocity as in
the case of the rotation of a rigid body. This is the so-called
tidal wave mode [14]. For a finite nuclear system, this mode is
expected to appear in a vibrational or transitional nucleus and
corresponds to its yrast mode.

The concept of the tidal wave is of particular concern
since it provides a new mechanism for the generation of the
angular momentum. Compared with a rigid rotor, where the
energy and the angular momentum increase with the rotational
angular frequency, the energy and the angular momentum in
a tidal wave mode increase with the amplitude of the surface
vibration but its frequency remains nearly constant. Quantally
the increase of the amplitude of the tidal wave corresponds to
the condensation of the phonons [14]. For a quadrupole tidal
wave, it is due to the condensation of quadrupole phonons
(d bosons) [14], and for an octupole tidal wave, it is due to
octupole phonons (f bosons) [17].
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Experimentally, the tidal wave was first reported in
182Os [12] and then in 181,183Os [13], where the spin difference
�I = 1 multiphonon vibration sequences based on high spin
intrinsic states were interpreted as tidal waves running over a
triaxial surface. Subsequently, the alternating parity sequences
in 220Th [18] and 219Th [19] were regarded as the reflection-
asymmetric tidal wave traveling over a spherical core. Very
recently, based on the lifetime measurements, the yrast states
of 102Pd were identified to be the tidal wave running over a
quadrupole surface [15]. In this nucleus, the energies of the
yrast band are nearly equidistant up to spin I = 14, and the
extracted experimental reduced transition probabilities B(E2)
display a monotonic increase with spin, which provides the
first clear evidence of the seven boson condensation.

Theoretically, the tidal wave mode was first investigated in
the framework of the shell correction version of the tilted axis
cranking model (SCTAC) [14]. Using this model, the observed
tidal waves in 181,182,183Os [12,13] and 102Pd [15] were well
reproduced. Later on, a phenomenological phonon model that
includes anharmonic terms was introduced to analyze the
rotational and electromagnetic properties of the tidal wave
in 102Pd [20]. It is worth noting that the angular momentum
in the cranking model is not a good quantum number, and the
electromagnetic transition probabilities could only be treated
in a semiclassical manner. Therefore, it is necessary to search
for a theoretical model, in which the angular momentum and
the electromagnetic transition probabilities are treated in a
quantal manner to investigate the tidal waves.

Since its introduction, the covariant density functional
theory (CDFT) has achieved great success in exploring the
ground state properties of both spherical and deformed nuclei
over almost the whole nuclide chart [21–26] on the basis of
relativistic energy density functionals without any additional
parameters. Normally in these studies of ground states the
static nuclear mean-field approximation is adopted. To cal-
culate the excitation energies and electromagnetic transition
probabilities of nuclear low-lying spectra, one needs to include
the correlations beyond the static mean field through the
restoration of broken symmetries and configuration mixing
of symmetry-breaking product states. An effective approach
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is to construct a collective Hamiltonian with collective param-
eters determined from microscopic self-consistent mean-field
calculations. Particularly to include the rotational symmetry
restoration and take into account triaxial shape fluctuations,
the five-dimensional collective Hamiltonian based on the
covariant density functional theory (5DCH-CDFT) has been
developed [27,28]. In this model, five quadrupole dynamical
degrees of freedom including the deformation parameters
β and γ and the orientation angles � = {φ,θ,ψ} of the
nucleus are considered. The broken rotational symmetry in
the static mean field is restored by taking all of the possible
orientations into account. Meanwhile, the shape fluctuations
around the mean-field minima are allowed by constructing
the total Hamiltonian on the quadrupole deformation space.
The 5DCH-CDFT has been extensively applied to describe the
nuclear collective properties, such as the phase transitions [29–
33], the shape evolutions [34–38] as well as the low-lying
spectra along with the isotopic and isotonic chains in different
mass regions [27,39–43]. For a review, see, e.g., Ref. [28].

Therefore it is interesting to investigate the tidal waves in the
vibrational or transitional nuclei by applying the 5DCH-CDFT.
On the one hand, it can answer the question whether the 5DCH
could well describe this novel excitation mode or not; on the
other hand, it might shed light on the tidal wave study from
the point of view of the collective Hamiltonian. In this paper,
taking 102Pd as an example, the 5DCH-CDFT is applied to
investigate the energy spectra and electromagnetic properties
of the tidal wave mode.

The present paper is organized as follows. In Sec. II, a
brief introduction to the frameworks of the CDFT and the
5DCH is given, together with a comment on the microscopic
basis of 5DCH. In Sec. III, the potential energy surface of
102Pd obtained by the CDFT, the yrast energy spectra, and
the reduced transition probabilities obtained from the 5DCH
in comparison with the experimental data are presented. It is
found that in order to better describe the tidal wave in 102Pd, it
is necessary to introduce a spin dependent moment of inertia
into the 5DCH calculations. By giving the average quadrupole
deformation parameters and the probability distributions of
collective wave functions, the shape evolution for the tidal
wave in 102Pd is also analyzed. Finally, a summary is given in
Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, first, a brief introduction to the theoretical
framework of the covariant density functional theory is
presented. Then the formalism of the five-dimensional col-
lective Hamiltonian is given together with its derivation from

the adiabatic self-consistent collective coordinate (ASCC)
method. For a simple case with one collective parameter, the
derivation is further extended to include the fourth order of
the collective momenta p4 in the collective Hamiltonian in the
last subsection.

A. Covariant density functional theory

Detailed formalism of the CDFT could be found in many
literatures, such as Refs. [5,21–26,28]. The starting point of
the CDFT is a general effective Lagrangian density where the
nucleons are coupled with either a meson exchange interac-
tion [21–23] or zero-range point-coupling interaction [44–46]
as follows:

L = Lfree + L4f + Lhot + Lder + Lem

= ψ̄(iγμ∂μ − m)ψ − 1

2
αS(ψ̄ψ)(ψ̄ψ)

− 1

2
αV (ψ̄γμψ)(ψ̄γ μψ) − 1

2
αT S(ψ̄ �τψ)(ψ̄ �τψ)

− 1

2
αT V (ψ̄ �τγμψ)(ψ̄ �τγ μψ) − 1

3
βS(ψ̄ψ)3 − 1

4
γS(ψ̄ψ)4

− 1

4
γV [(ψ̄γμψ)(ψ̄γ μψ)]2 − 1

2
δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)

− 1

2
δV ∂ν(ψ̄γμψ)∂ν(ψ̄γ μψ) − 1

2
δT S∂ν(ψ̄ �τψ)∂ν(ψ̄ �τψ)

− 1

2
δT V ∂ν(ψ̄ �τγμψ)∂ν(ψ̄ �τγμψ) − 1

4
FμνFμν

− e
1 − τ3

2
ψ̄γ μψAμ. (1)

In Eq. (1), m is the nucleon mass, e the charge unit for protons,
and Aμ and Fμν , respectively, the four-vector potential and
field strength tensor of the electromagnetic field. For the 11
coupling constants αS , αV , αT S , αT V , βS , γS , γV , δS , δV ,
δT S , and δT V , α refers to the four-fermion terms, β and
γ , respectively, the third- and fourth-order terms, and δ the
derivative couplings. The subscripts S, V , and T indicate the
symmetries of the couplings, i.e., S stands for scalar, V for
vector, and T for isovector.

In this work, the relativistic density functional PC-PK1 [46]
and the density-independent δ force are, respectively, adopted
in the particle-hole and particle-particle channels, with pairing
correlations treated in the Bardeen-Cooper-Schrieffer (BCS)
approximation. The energy density functional for a nuclear
system can be self-consistently obtained in terms of local
single-nucleon densities and currents [46]:

EDF =
∫

d3rE(r)

=
∫

d3r
∑

k

ν2
kψ

†
k (r)(−iα · p + m)ψk(r) +

∫
d3r

(
αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS + αV

2
jμjμ

+ γV

4
(jμjμ)2 + δV

2
jμ�jμ + αT V

2
�jμ
T V ( �jT V )μ + δT V

2
�jμ
T V �( �jT V )μ + 1

4
FμνF

μν − F 0μ∂0Aμ + eAμjμ
p

)
, (2)
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in which ψ denotes the Dirac spinor field of a nucleon. The
local densities and currents

ρS(r) =
∑

k

ν2
k ψ̄k(r)ψk(r), (3)

jμ(r) =
∑

k

ν2
k ψ̄k(r)γ μψk(r), (4)

�jμ
T V (r) =

∑
k

ν2
k ψ̄k(r)�τγ μψk(r), (5)

are calculated in the no-sea approximation, i.e., the summation
in Eqs. (2) to (5) only runs over all occupied states with positive
energies, where ν2

k represents the occupation factors of single-
nucleon states.

By minimizing the energy density functional Eq. (2) with
respect to ψ̄k , one obtains the Dirac equation for the single
nucleon:

[γμ(i∂μ − V μ) − (m + S)]ψk = 0. (6)

To describe nuclei with general quadrupole shapes, the
Dirac equation (6) is solved by expanding the nucleon spinors
in the basis of a three dimensional harmonic oscillator in
Cartesian coordinates. The map of the energy surface as a func-
tion of the quadrupole deformation is obtained by imposing
constraints on the axial and triaxial quadrupole moments. The
method of quadratic constraint uses an unrestricted variation
of the function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2, (7)

where 〈Ĥ 〉 is the total energy, and 〈Q̂2μ〉 denote the expectation
values of the mass quadrupole operators:

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2. (8)

Here q2μ are the constrained values of the quadrupole
moments, and C2μ the corresponding stiffness constants [47].

With the single-nucleon wave functions, energies, and
occupation factors, generated from constrained self-consistent
CDFT solutions, one can calculate the collective inertia
parameters. By using the Inglis-Belyaev (IB) formula [48,49],
the moments of inertia (MOIs) are

I IB
k =

∑
ij

(uivj − viuj )2

Ei + Ej

|〈i|Ĵk|j 〉|2, k = 1,2,3, (9)

in which k denotes the principal axis of nucleus, and Ei and
Ej denote the quasiparticle energy of the quasiparticle states
|i〉 and |j 〉. The summations i and j run over the proton
and neutron quasiparticle states. Similar to the MOIs, the
mass parameters associated with the two quadrupole collective
coordinates q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 can be also calculated
in the cranking approximation [50]

Bμν(q0,q2) = �
2

2

[M−1
(1)M(3)M−1

(1)

]
μν

, (10)

with

M(n),μν(q0,q2) =
∑
ij

〈i|Q̂2μ|j 〉〈j |Q̂2ν |i〉
(Ei + Ej )n

(uivj + viuj )2.

(11)

B. Five-dimensional collective Hamiltonian

The collective Hamiltonian, in terms of a few numbers of
collective coordinates and momenta, is an efficient method for
describing various kinds of large amplitude collective motions,
e.g., the shape coexistence [28,51], the fission [47], and the
chiral and the wobbling motions [52–54]. As a phenomeno-
logical model, it can be derived from some microscopic
methods [51], e.g., the adiabatic time dependent Hartree-Fock
(ATDHF) method [47,55–57], the generate coordinate method
(GCM) [47,58–60], and the ASCC method [61–65].

In the following, the procedure for the derivation of the
collective Hamiltonian with the ASCC method is briefly
presented. The main concept of the ASCC method is to solve
the equations of the self-consistent collective coordinate (SCC)
method [66,67] using an expansion with respect to the collec-
tive momentum. The starting point of the SCC method is the
time dependent Hartree-Fock (TDHF) equation. By assuming
that the TDHF determinantal states could be represented in
multidimensional classical phase space characterized by a set
of collective coordinates p = {p1,p2, . . .} and collective mo-
menta q = {q1,q2, . . .}, the collective Hamiltonian is defined
as the expectation value of the nuclear many-body Hamiltonian
Ĥ ,

Hcoll = 〈φ(q, p)|Ĥ |φ(q, p)〉. (12)

With the adiabatic approximation which assumes the collective
motion to be slow compared to single-particle motion in the
nucleus, the collective Hamiltonian is expanded in powers of
the collective momentum p, stopping at the second order,

Hcoll = 1

2

∑
ij

Bij (q)pipj + V (q), (13)

where Bij (q) and V (q) are the so-called mass parameter and
collective potential, respectively. In the framework of the
ASCC method, these two quantities are self-consistently ob-
tained by solving the ASCC equations including the moving-
frame Hartree-Fock-Bogoliubov (HFB) equation and moving-
frame random phase approximation (RPA) equations [61–65].
Here, we would not repeat the corresponding formulas again.

When the ASCC method is applied to describe the collective
rotation, vibration, and the couplings between them, the well-
known Bohr Hamiltonian [7], or referred to as the 5DCH, can
be constructed in terms of the five collective intrinsic variables
β, γ , and Euler angles � = {φ,θ,ψ}. The 5DCH is written as

Hcoll = Tvib(β,γ ) + Trot(β,γ,�) + V (β,γ ), (14)

with the vibrational kinetic energy

Tvib = 1
2Bβββ̇2 + βBβγ β̇γ̇ + 1

2β2Bγγ γ̇ 2, (15)
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the rotational kinetic energy

Trot = 1

2

3∑
k=1

Ikω
2
k, (16)

and the collective potential energy V . The mass parameters
Bββ , Bβγ , Bγγ , and the MOIs Ik depend on the collective
variables β and γ .

The Hamiltonian (14) is quantized according to the Pauli
prescription [68] as

Ĥcoll = T̂vib + T̂rot + V, (17)

with

T̂vib =− �
2

2
√

wr

{
1

β4

[
∂

∂β

√
r

w
β4Bγγ

∂

∂β
− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

]

+ 1

β sin 3γ

[
− ∂

∂γ

√
r

w
sin 3γBβγ

∂

∂β

+ 1

β

∂

∂γ

√
r

w
sin 3γBββ

∂

∂γ

]}
, (18)

and

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

, (19)

where Ĵk denotes the components of the angular momentum
in the body-fixed frame of a nucleus. The two quantities
that appear in the expression (18) for the vibrational energy
are r = D1D2D3 and w = BββBγγ − B2

βγ , where the inertial
parameters Dk are related to the MOIs Ik as

Ik = 4Dkβ
2 sin2

(
γ − 2kπ

3

)
, k = 1,2,3. (20)

The corresponding eigenvalue problem is solved using an
expansion of eigenfunctions in terms of a complete set of basis
functions that depend on the deformation variables β and γ
and the Euler angles φ, θ , and ψ [69]. The diagonalization of
the Hamiltonian yields the excitation energies and collective
wave functions:

�IM
α (β,γ,�) =

∑
K∈�I

ψI
αK (β,γ )�I

MK (�), (21)

where the summation is over the allowed set of K values:

�I =
{

0,2, . . . ,I for I mod 2 = 0

2,4, . . . ,I − 1 for I mod 2 = 1.

Using the collective wave functions (21), various observ-
ables can be calculated and compared with experimental data.
For the quadrupole E2 reduced transition probability, it is
calculated as

B(E2 : αI → α′I ′) = 1

2I + 1
|〈α′I ′||M̂(E2)||αI 〉|2, (22)

where M̂(E2) denotes the electric quadrupole operator; see
Ref. [70] for details.

In the framework of 5DCH-CDFT, all the collective
parameters are determined by the CDFT calculations. That is,

the collective potential energy V is given by the constrained
CDFT calculations in the β-γ plane; meanwhile the moments
of inertia Ik and the mass parameters Bββ , Bβγ , Bγγ may be
approximately given by the cranking formulas (9) and (10),
respectively.

C. A comment on expansions in the collective momentum

As stated in the last subsection, the collective Hamiltonian
can be derived from the ASCC method by expanding the
collective momenta up to the second order. It should be
noticed that, as commented on in Ref. [57], the adiabatic
assumption is actually vital to the phenomenological forms
of the collective model, since the kinetic energy would not be
quadratic otherwise, except in the trivial case of translations.
However, there is no reason why the energy in the collective
model should turn out to be a quadratic function of the
collective momenta or the velocities in general. The only way
to get it to be quadratic is by assuming that the velocities are
small and by expanding the energy in powers of them, stopping
at the second order [57].

Although the collective Hamiltonian with this assumption
has achieved lots of successes, it was found that the collective
Hamiltonian could not well describe the energy spectra for
the weakly deformed transitional nuclei when the spin is
large [27]. This fact might suggest that the expansion of
the collective Hamiltonian in collective momentum up to the
second order is not necessarily enough. It would be therefore
interesting to study the contributions of the higher-order terms
of the collective momenta.

As an initial try, we take the fourth order of the collective
momentum p4 into account in the collective Hamiltonian. For
simplicity, we consider the one dimensional case; then the
Eq. (13) becomes

Hcoll = 1

2!
B2(q)p2 + 1

4!
B4(q)p4 + V (q). (23)

Following the procedure of deriving the ASCC equations in
Ref. [61], the mass parameters B2(q), B4(q), and the collective
potential V (q) in Eq. (23) are now calculated by

V (q) = 〈φ(q)|Ĥ |φ(q)〉, (24)

B2(q) = ∂2Hcoll

∂q2

∣∣∣∣
p=0

= −〈φ(q)|[Q̂,[Q̂,Ĥ ]]|φ(q)〉, (25)

B4(q) = ∂4Hcoll

∂q4

∣∣∣∣
p=0

= 〈φ(q)|[Q̂,[Q̂,[Q̂,[Q̂,Ĥ ]]]]|φ(q)〉,

(26)

where Q̂ is the infinitesimal generator defined at the collective
state |φ(q)〉

Q̂|φ(q)〉 = 1

i

∂|φ(q,p)〉
∂p

∣∣∣∣
p=0

. (27)

If we neglect the residual two-body interaction in the Hamil-
tonian Ĥ , the mass parameters are reduced to the cranking
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formulas,

B−1
2 (q) = 2

∑
mi

∣∣〈m| ∂ĤM

∂q
|i〉∣∣2

(εm − εi)3
, (28)

B−1
4 (q) = 8

∑
mi

∣∣〈m| ∂ĤM

∂q
|i〉∣∣4

(εi − εm)5
, (29)

where ĤM is the so-called moving frame Hamiltonian [61]

ĤM (q) = Ĥ − ∂V (q)

∂q
Q̂, (30)

and the |m〉, |i〉 and εm, εi are the eigenstates and the
corresponding eigenvalues of ĤM . The indices m and i denote
the particle and hole states, respectively. Noting that εm > εi ;
thus the B−1

2 (q) is positive, while B−1
4 (q) is negative.

If one rewrites the collective Hamiltonian (23) as

Hcoll = V (q) + 1

2!
B2(q)p2 + 1

4!
B4(q)p4

= V (q) + 1

2
B2(q)

[
1 + 1

12

B4(q)

B2(q)
p2

]
p2

= V (q) + 1

2
B(q,p)p2, (31)

it can be seen that the contributions of the fourth order of
p could be absorbed into a momentum dependent effective
parameter

B(q,p) = B2(q)

[
1 + 1

12

B4(q)

B2(q)
p2

]
. (32)

According to the above analysis, B2(q) is positive and B4(q)
is negative; therefore B(q,p) should decrease with respect to
the increase of p.

For considering the fourth order contribution into a rota-
tional kinetic energy with the expression,

T̂rot = Ĵ 2

2I , (33)

one just needs to replace the p with Ĵ , and 1/I with

1

I = B(I ) = B2

[
1 + 1

12

B4

B2
I (I + 1)

]
. (34)

In the above expression, the Ĵ 2 has been replaced by I (I + 1)
in the mean-field approximation. Considering that B4 should
be generally far smaller than B2, B4/B2 is a small quantity, so
that it has

1

I = B2

[
1 + 1

12

B4

B2
I (I + 1)

]
≈ 1

a
√

1 + bI (I + 1)
, (35)

with

a = 1

B2
, b = − B4

6B2
. (36)

This immediately shows that the moment of inertia has the
form of

I = a
√

1 + bI (I + 1). (37)

FIG. 1. The potential energy surface in the β-γ plane (0 � γ �
60◦) for 102Pd calculated by the constrained triaxial CDFT with PC-
PK1 [46]. All energies are normalized with respect to the binding
energy of the absolute minimum (in MeV). The energy between each
contour line is 0.5 MeV.

It is just the well-known ab formula proposed by Wu and
Zeng [71,72]. From this point of view, the ab formula of MOI
can be microscopically accessed by considering the fourth
order term of the collective momentum.

III. RESULTS AND DISCUSSION

In the CDFT calculations, the point-coupling energy density
functional PC-PK1 in the particle-hole channel and the
density-independent δ force in the particle-particle channel
are adopted [46]. The solution of the equation of motion for
the nucleons is accomplished by an expansion of the Dirac
spinors in a set of three-dimensional harmonic oscillator basis
functions in Cartesian coordinates with 12 major shells. To
provide the collective parameters on the (β,γ ) plane for the
5DCH, a constrained triaxial CDFT calculation is carried out
in the region β ∈ [0.0,0.8] and γ ∈ [0◦,60◦] with step sizes
�β = 0.05 and �γ = 6◦.

In Fig. 1, the potential energy surface in the β-γ plane for
102Pd calculated by the constrained triaxial CDFT is shown.
It shows that the minimum of the potential energy surface
(PES) (labeled as a red dot) locates at (β = 0.19,γ = 0◦),
which corresponds to a moderate prolate shape. Around the
minimum, the PES exhibits a relatively soft character. The
energy difference between the ground state (β = 0.19,γ = 0◦)
and the lowest oblate energy position (β = 0.15,γ = 60◦) is
less than 2.2 MeV.

With the collective potential, moments of inertia, and mass
parameters determined from the CDFT, the collective energies
and collective wave functions can be obtained by diagonalizing
the 5DCH at each given spin. It is noted that the MOIs
adopted here are obtained by the IB formula (9). It usually
underestimates the experimental MOIs due to the absence of
the contributions of time-odd fields [the so-called Thouless-
Valatin (TV) dynamical rearrangement contributions] [27], the
inclusion of which requires much demanding computations.
To consider the effect of TV terms, one may multiply a factor
1 + α to the IB MOIs, i.e., the input MOIs for the 5DCH are
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FIG. 2. The comparison of the yrast band energy between the
experimental data and 5DCH calculations for 102Pd. The blue circle
with the dashed line (5DCH) and the red lozenge with the solid
line (5DCH*) represent the calculations with the MOI corrected by
renormalizing the IB effective MOI to the empirical values with a
common factor and by the empirical ab formula, respectively. The
harmonic vibrational and rotational limits are shown in dashed and
dashed-dotted lines.

Ik = I IB
k (1 + α),k = 1,2,3 [27,73]. The value of α is obtained

so that the energy of the 2+
1 state from the 5DCH coincides

with the experimental data. The justification of this treatment
has been demonstrated for some nuclei in the A ∼ 190 mass
region [73], while the situation may become considerably
complicated especially for nuclei with soft potential energy
surfaces [51,64,74,75].

The obtained energy spectra of the yrast band of 102Pd
from the 5DCH (labeled as 5DCH) in comparison with the
data [15] are illustrated in Fig. 2. For reference, the harmonic
vibrational and rotational limits are also shown in the figure. It
is shown that the experimental data are closer to the harmonic
than the rotational limit, and the deviation from the harmonic
limit indicates the anharmonicity as discussed in Refs. [15,20].
In the 5DCH calculation, the value of α is taken as 0.40. As
shown in Fig. 2, the 5DCH calculation can reproduce the data
for the low spin region (I � 6�). However, with the increase
of spin, it gradually deviates from the data in value and also
from the linear increase of the data. The deviation reaches to
2.5 MeV at I = 14�, nearly 40% larger than the data. This
indicates that the spin-independent MOIs could not describe
the energy spectra well for the whole spin region in 102Pd,
whose PES shows a relatively soft character as seen in Fig. 1.

As discussed in Sec. II C, the 5DCH is expanded up to the
second order with respect to the collective momentum by using
an adiabatic approximation. It is not necessarily enough for
the study of the transitional nuclei. It is therefore interesting
to investigate the high order effects of collective momenta.
As shown in Sec. II C, effectively one can take the fourth
order of the collective momentum p4 into account through
a p dependent inertial parameter (∼p2). Correspondingly in

FIG. 3. The experimental and theoretical I -�ω relation of the
yrast band for 102Pd. The light cyan band represents a region of
�ω = 0.2 to 0.6 MeV.

the present investigation, we introduce spin-dependent MOIs,
Ik = a

√
1 + bI (I + 1) = a0I IB

k

√
1 + bI (I + 1), into 5DCH

calculations. The parameters a0 and b are obtained by fitting
the available experimental energy spectra using the least
squares method (LSM) with a0 = 1.713 and b = 0.003. We
will denote this calculation as the 5DCH∗.

The energy spectra of the 5DCH∗ are also included in Fig. 2
in comparison with the 5DCH results and the data. It is seen
that 5DCH∗ results well reproduce the data, and the maximal
difference is only about 0.1 MeV. In addition, it is demonstrated
that the energy spectra show a nearly linear increase with
respect to spin. This corresponds to the characteristic energy
spectra of a tidal wave [14].

From the energy spectra, the rotational frequency can be
extracted according to the classical relations ω = dE/dI
as [76]

ω(I ) = �E

�I
= 1

2
[E(I ) − E(I − 2)]. (38)

The obtained experimental and theoretical I -�ω relations of
the yrast band for 102Pd are shown in Fig. 3. It is seen that the
spin increases rapidly with respect to the rotational frequency
experimentally. In a very small rotational frequency interval
(∼0.4 MeV), the spin increases 12�. This implies that the
generation of spin is mainly caused by the increase of MOIs
rather than the increase of rotational frequency, a significant
feature of a tidal wave. The 5DCH∗ calculation describes this
feature very well. The 5DCH results however show a slow
I -�ω increase, where �ω increases from ∼0.25 to 0.85 MeV
with spin from 2� to 14�.

Figure 4 displays the comparison between the experimental
and theoretical moments of inertia J , obtained by J = J/ω
with

J (I ) = J (I )

ω(I )
= 2J (I )

E(I ) − E(I − 2)
, J (I ) = I − 1

2
, (39)
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FIG. 4. The experimental and theoretical moments of inertia J
as functions of the spin I for 102Pd. The harmonic vibrational and
rotational limits are shown in dashed and dashed-dotted lines.

in which the classical angular momentum J is associated with
the quantal value (I − 1) + 1/2 = I − 1/2 [76]. As seen in
Fig. 4, the experimental MOI increases nearly linearly with
respect to spin. The 5DCH results give an increasing trend
of the MOI but underestimate the increase of experimental
values. With the spin dependent MOIs, the 5DCH∗ reproduces
the data rather well. With the collective wave functions
obtained by diagonalizing the 5DCH, the reduced transition
probabilities B(E2) can be calculated according to Eq. (22).
The corresponding B(E2) values from the 5DCH and 5DCH∗

are drawn in Fig. 5(a) in comparison with the available
data [15]. It is shown that both the 5DCH and 5DCH∗ results
correctly give the increase trend of the experimental data, but
to some extent overestimate the experimental values. Again
the 5DCH∗ results are closer to the data than those from
the 5DCH. It is noted that the monotonic increase of B(E2)
values with spin is another characteristic feature of a tidal wave
as demonstrated in Ref. [14], which mainly comes from the
increase of the nuclear quadrupole deformation. Considering
that in the 5DCH and 5DCH∗ calculations the physical
observables, such as transition probabilities and spectroscopic
quadrupole moments, are calculated in the full configuration
space and there are no effective charges, such predictions
are appreciable. In Fig. 5(b), the experimental and calculated
ratios B(E2)/J as functions of spin I are shown, which are
expected to be nearly constant for a tidal wave. This behavior
is well shown by the experimental data and also the 5DCH∗

results. The 5DCH results, however, give an increase trend of
B(E2)/J due to the faster increase of the B(E2) with spin than
that of MOI. In fact, the behaviors of B(E2) and B(E2)/J
given by the 5DCH and 5DCH∗ can be understood by the
evolution of obtained deformation parameters with respect to
spin, which will be discussed below.

In the 5DCH, the expectation values of the quadrupole
deformation 〈β〉 and 〈γ 〉 for each given state |�I

α〉 are

FIG. 5. (a) The experimental and theoretical reduced electromag-
netic transition probabilities B(E2) of the yrast band as a function
of the spin I for 102Pd. (b) The experimental and calculated ratios
B(E2)/J as a function of the spin I .

calculated by [27]

〈β〉Iα =
√

〈β2〉Iα, (40)

〈γ 〉Iα = 1

3
arccos

〈β3 cos 3γ 〉Iα√
〈β2〉Iα〈β4〉Iα

, (41)

where

〈β2〉Iα = 〈
�I

α

∣∣β2
∣∣�I

α

〉
=

∑
K∈�I

∫
β2

∣∣ψI
α,K (β,γ )

∣∣2
dτ0, (42)

〈β4〉Iα = 〈
�I

α

∣∣β4
∣∣�I

α

〉
=

∑
K∈�I

∫
β4

∣∣ψI
α,K (β,γ )

∣∣2
dτ0, (43)

〈β3 cos 3γ 〉Iα = 〈
�I

α

∣∣β3 cos 3γ
∣∣�I

α

〉
=

∑
K∈�I

∫
β3 cos 3γ

∣∣ψI
α,K (β,γ )

∣∣2
dτ0. (44)
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FIG. 6. The average values of the quadrupole deformation pa-
rameters (a) β and (b) γ calculated by the 5DCH as functions of spin
I for 102Pd.

The calculated 〈β〉 and 〈γ 〉 as functions of spin I by the 5DCH
and 5DCH∗ are shown in Figs. 6(a) and 6(b), respectively. For
the β degree of freedom, the average values 〈β〉 calculated by
the 5DCH and 5DCH∗ both increase linearly with spin, i.e.,
from 0.22 at I = 0� to 0.31 and 0.29 at I = 14�, respectively,
consistent with the increase behavior of B(E2) shown in
Fig. 5(a). For the γ degree of freedom, the average values
〈γ 〉 exhibit slight increases for both the 5DCH and 5DCH∗

calculations, i.e., from ∼22◦ at I = 0� to ∼27◦ and ∼26◦ at
I = 14�, respectively.

It is interesting to note that the shape evolution obtained by
the 5DCH is more obvious than that by the 5DCH∗. This can
be understood by the formalism of the quantized 5DCH (17),
the diagonalization of which naturally leads to the collective
states at a given angular momentum and the corresponding
distributions in the β-γ plane. Since the vibration term T̂vib is
mainly responsible for the β and γ vibrational excitations, for
the yrast band focused here, it can be neglected compared with
the other two terms T̂rot and V . Therefore, the shape evolution
of the yrast band is mainly determined by the competition
between the rotational kinetic energy T̂rot and the collective
potential V . In the present 5DCH and 5DCH∗ calculations,
the collective potential V does not change with respect to

spin, while the rotational kinetic energy T̂rot depends on the
quadratic of spin I (I + 1) and also the variation of MOIs.

At the beginning of the yrast band, since the angular
momentum is small, its equilibrium deformation is mainly
determined by the minimum of the collective potential.
This explains that the deformation parameters at the region
of I � 4� (β ∼ 0.22) are rather close to the deformation
parameter of the minimum of the potential energy surface
in Fig. 1 (β ∼ 0.20). As the spin increases, the contribution
of the kinetic energy becomes gradually important. As it is
known, the MOIs increase with respect to β2 [47], i.e., a
larger deformation β would make the kinetic energy more
energetic favorable. As a result, the increase of spin induces
the deformation of the yrast state to be larger. This explains
the increase trend of the deformation in the 5DCH as shown
in Fig. 6. After introducing the ab formula in the 5DCH∗,
the input MOIs are enlarged. Accordingly, the driven effect
by the kinetic energy to the deformation is reduced. Thus the
deformation parameters obtained by the 5DCH∗ is smaller than
the 5DCH ones.

Based on the above analysis, the description of the 5DCH
and 5DCH∗ for the yrast band of 102Pd raises a schematic
picture of a tidal wave. Here, the performance of the tidal wave
mainly depends on the competition between the rotational
kinetic energy T̂rot and the collective potential V . For a nucleus
with a stiff potential energy surface, its deformation is not easy
to change and the MOIs are nearly spin independent. Thus
the increase of the angular frequency will take charge of the
generation of nuclear angular momentum. This corresponds to
the rotation of a rigid rotor. For a nucleus with a soft potential
energy surface, its deformation is easy to change and the
competition between T̂rot and V prefers a larger deformation.
Thus the increase of the MOIs contributes to the generation of
nuclear angular momentum while the angular frequency may
not have an obvious increase. This corresponds to the mode of
a tidal wave.

Finally, in Fig. 7, the probability distributions [31] in the
β-γ plane calculated by the 5DCH and 5DCH* are displayed
for the yrast states 0+

1 ,4+
1 ,8+

1 , and 12+
1 of 102Pd. It can be

clearly seen that the peaks of probability distributions locate
around the deformed points which are consistent with the
values of the average deformation parameters shown in Fig. 6.
To further compare the difference between the probability
distributions from the 5DCH and 5DCH∗ calculations is
interesting. For low spin states such as 0+

1 and 4+
1 , the

5DCH and 5DCH∗ calculations present similar probability
distributions. For higher states such as 8+

1 and 12+
1 , due to the

reduction of the kinetic energy driven effect mentioned above,
the 5DCH∗ calculations present a smaller average deformation
〈β〉 and more concentrated probability distributions than those
of 5DCH.

IV. SUMMARY

In summary, the five-dimensional collective Hamiltonian
based on the covariant density functional theory has been
first applied to investigate the phenomenon of the tidal wave
in the yrast band of 102Pd. Although the 5DCH calculation
with spin-independent MOIs could qualitatively describe the
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FIG. 7. The probability distributions in the β-γ plane for the 0+
1 , 4+

1 , 8+
1 , and 12+

1 states of 102Pd calculated by the 5DCH and 5DCH∗.

tendency of the yrast band, it overestimates the increase of
excitation energies (in turn underestimates the increase of
MOIs) and the ratios of B(E2)/J (I ). Considering that the
adiabatic approximation adopted for the collective momenta
up to the second order in the 5DCH may be not enough for
the soft nucleus when the spin is large, the fourth order of the
collective momenta in the collective Hamiltonian is taken into
account. As a first attempt, a spin-dependent moment of inertia
with the form of the ab formula has been introduced into the
collective Hamiltonian, and such a calculation is referred as the
5DCH∗. The experimental energy spectra, the spin-rotational
frequency relation, the moments of inertia, as well as the ratios
of B(E2)/J (I ) of the yrast band in 102Pd are well reproduced
by the 5DCH∗ calculations. That is, the 5DCH∗ could well
describe the general characteristics of the tidal wave.

The shape evolution for the tidal wave in 102Pd is analyzed
in the framework of the 5DCH-CDFT by giving the aver-
age quadrupole deformation parameters and the probability
distributions of collective wave functions. It is found that
the average deformation 〈β〉 calculated by the 5DCH and
5DCH∗ both increase linearly with spin, while the increase
obtained by the 5DCH is more obvious than that by 5DCH∗.
As analyzed, this comes from the competition between the
rotational kinetic energy T̂rot and the collective potential V
and provides a schematic picture of the tidal wave.

In the present paper, by replacing the spin-independent
MOIs with spin-dependent MOIs, we effectively take the
fourth order of the collective momentum into account and
well describe the tidal wave in 102Pd with the collective

Hamiltonian. One may argue that the MOIs calculated with
the Thouless-Valatin terms [73] should be adopted rather than
the Inglis-Belyaev formula, as the dependence of MOIs on
deformation may become considerably complicated especially
for nuclei with soft potential energy surfaces [51,64,74,75].
Such studies are undoubtedly meaningful, which can answer
whether the spin dependent MOIs in the collective Hamilto-
nian are still necessary or not in this case. It is also noted
that the mass parameters are just given from the cranking
formula without any adjusted parameters. Although further
consideration of Thouless-Valatin corrections might somewhat
change the excited energies [73,77], its influence on the
behavior of the yrast band would be rather small. Anyway,
this paper has presented a possibility that the higher order
effect of collective momenta should be taken into account in
the collective Hamiltonian.
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[28] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,
519 (2011).
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