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We extend the microscopic particle-rotor model for hypernuclear low-lying states by including the derivative
and tensor coupling terms in the point-coupling nucleon �-particle (N�) interaction. Taking 13

� C as an example,
we show that a good overall description for excitation spectra is achieved with four sets of effective N�

interactions. We find that the � hyperon binding energy decreases monotonically with increasing strengths of
the high-order interaction terms. In particular, the tensor coupling term decreases the energy splitting between
the first 1/2− and 3/2− states and increases the energy splitting between the first 3/2+ and 5/2+ states in 13

� C.
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I. INTRODUCTION

Spectroscopic data on low-lying states of light � hy-
pernuclei have been accumulated [1] and more data on
those of medium and heavy hypernuclei are expected to be
obtained with next-generation facilities such as J-PARC [2].
Rich information on the hyperon-nucleon interaction in the
nuclear medium and on the impurity effect of a � particle
on nuclear structure is contained in these data. Because
hyperon-nucleon and hyperon-hyperon scattering experiments
are difficult to perform, the structure of hypernuclei plays a
vital role in shedding light on baryon-baryon interactions. Such
information is crucial in order to understand also neutron stars,
in which hyperons may emerge in the inner part [3]. However,
extracting information on baryon-baryon interactions from
spectroscopic data relies heavily on nuclear models.

In recent decades, several different types of theoretical mod-
els have been developed to study the structure of hypernuclei,
including an ab initio method [4], a cluster model [5–11],
a shell model [12–14], antisymmetrized molecular dynamics
(AMD) [15–18], the self-consistent mean-field approach [19–
27], and the generator coordinator method (GCM) based on
energy density functionals [28]. In recent years, we have
also developed a microscopic particle rotor model (MPRM)
for hypernuclear low-lying states based on a beyond-mean-
field approach [29,30]. In contrast to the GCM for whole
hypernuclei [28], where the wave function of the hypernuclear
states is given as a superposition of hypernuclear mean-field
states, the hypernuclear states in the MPRM are constructed by
coupling a hyperon to low-lying states of the core nucleus. The
MPRM provides a convenient way to analyze the components
of the hypernuclear wave function and has been applied
to study the low-lying states of 9

�Be [29], 13
� C, 21

� Ne, and
155
� Sm hypernuclei [30]. For the sake of simplicity, only the
leading-order four-fermion coupling terms of scalar and vector
types were adopted for the N� effective interaction in these
studies.

The aim of this paper is to extend the previous calculations
by implementing the higher-order derivative and tensor N�
interaction terms in the point-coupling interaction [31]. The
derivative terms simulate to some extent the finite-range
character of N� interaction, and these terms are expected
to be more pronounced in light hypernuclei [32]. On the other
hand, the tensor N� interaction is important to reproduce a
small hyperon spin-orbit splitting in � hypernuclei [33]. It
is therefore important to assess the effect of these terms on
hypernuclear low-lying states.

The paper is organized as follows. In Sec. II, we present the
main formulas of the microscopic PRM for � hypernuclei with
the full point-coupling effective N� interaction. In Sec. III, we
show the results for hypernuclear low-lying states in 13

� C and
discuss the influence of the higher-order terms on the energy
spectra. We then summarize the paper in Sec. IV.

II. MICROSCOPIC PARTICLE-ROTOR MODEL
FOR � HYPERNUCLEI

In this paper, we consider a single-� hypernucleus and de-
scribe the hypernuclear low-lying states using the microscopic
particle-rotor model (MPRM). Since the detailed formulas for
the MPRM have been given in Refs. [29,30], we give here
only the main formulas of this approach. To this end, we put a
particular emphasis on the implementation of the higher-order
N� interaction terms.

The basic idea of the MPRM is to construct a hypernuclear
wave function by coupling the valence � hyperon to the low-
lying states of the nuclear core in the laboratory frame, that
is,

�JM (r,{r i}) =
∑

n,j,�,I

Rj�nI (r)F JM
j�nI (r̂,{r i}), (1)

with

F JM
j�nI (r̂,{r i}) = [Yj�(r̂) ⊗ �nI ({r i})](JM), (2)
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where r and r i are the coordinates of the � hyperon and the
nucleons, respectively. Here, J is the angular momentum for
the whole system, while M is its projection onto the z axis in the
laboratory frame. Yj�(r̂) is the spin-angular wave function for
the � hyperon. |�nI 〉 are the wave functions for the low-lying
states of the core nucleus, where I represents the angular
momentum of the core state and n = 1,2, . . . distinguishes
different core states with the same angular momentum I .
In the MPRM, the core states |�nI 〉 are constructed with
the quantum-number projected GCM approach [29,30]. For
convenience, hereafter we introduce the shorthand notation
k = {j�nI } to represent different channels.

In Eq. (1), Rk(r) is the radial wave function for the �
particle. In the relativistic approach, it is given as a four-
component Dirac spinor

Rk(r) =
(

fk(r)
igk(r)σ · r̂

)
. (3)

We assume that the Hamiltonian Ĥ for the whole �
hypernucleus is given as

Ĥ = T̂� + Ĥc +
Ac∑
i=1

V̂ N�(r,r i). (4)

Here T̂� = −iα · ∇� + γ 0m� is the relativistic kinetic energy
of the � hyperon, where m� is the mass of the � particle
and α and γ 0 are the Dirac matrices. Ĥc is the many-body
Hamiltonian for the core nucleus [34], with which the core state
|�nI 〉 satisfies Ĥc|�nI 〉 = EnI |�nI 〉. The last term in Eq. (4)
represents the N� interaction term between the valence �
particle and the nucleons in the core nucleus, where Ac is the
mass number of the core nucleus.

We construct the N� interaction V̂ N� based on the
relativistic point-coupling model [31], in which the energy
functional for the N� interaction reads

E
(N�)
int =

∫
d r

[
αN�

S ρS(r)ρ�
S (r) + αN�

V ρV (r)ρ�
V (r)

+ δN�
S ρS(r)
ρ�

S (r) + δN�
V ρV (r)
ρ�

V (r)

+ αN�
T ρ�

T (r)ρV (r)
]
. (5)

Here ρS , ρV , and ρT are the scalar, the vector, and the tensor
densities defined in Ref. [31], respectively. Taking the second
functional derivative of Eq. (5) with respect to the densi-
ties [35],

V̂ N�(r,r i) = δ2E[ρ]

δρ�
S (r)δρS(r i)

+ δ2E[ρ]

δρ�
V (r)δρV (r i)

+ δ2E[ρ]

δρ�
T (r)δρV (r i)

, (6)

we obtain the following form for the N� effective interaction:

V̂ N� = V̂ N�
S + V̂ N�

V + V̂ N�
Ten , (7)

where the scalar, vector, and tensor types of coupling terms
read

V̂ N�
S (r,r i) = αN�

S γ 0
�δ(r − r i)γ

0
N + δN�

S γ 0
�[

←−∇ 2δ(r − r i)

+ δ(r − r i)
−→∇ 2 + 2

←−∇ · δ(r − r i)
−→∇ ]γ 0

N, (8)

V̂ N�
V (r,r i) = αN�

V δ(r − r i) + δN�
V [

←−∇ 2δ(r − r i)

+ δ(r − r i)
−→∇ 2 + 2

←−∇ · δ(r − r i)
−→∇ ], (9)

V̂ N�
Ten (r,r i) = iαN�

T γ 0
�[

←−∇ δ(r − r i) + δ(r − r i)
−→∇ ] · α. (10)

Here,
−→∇ and

←−∇ are understood to act on the right- and
left-hand sides of the � hyperon coordinates, respectively.
Vice versa, Eq. (5) can be obtained from the above effective
N� interaction (see Appendix A). We note that similar terms
appear in the chiral hyperon-nucleon interaction [36], in which
the nonderivative four-fermion coupling corresponds to the
contact leading-order (LO) term.

With Eqs. (1) and (4), the radial wave function Rk(r) in
Eq. (3) and the energy EJ for each hypernuclear state are
obtained by solving the following coupled-channels equations:(

d

dr
− κ − 1

r

)
gk(r) + (EnI − EJ )fk(r)

+
∑
k′

Ukk′
T (r)gk′(r)+

∑
k′

[
Ukk′

V (r) + Ukk′
S (r)

]
fk′(r) = 0,

(11a)(
d

dr
+ κ + 1

r

)
fk(r) − (EnI − 2m� − EJ )gk(r)

−
∑
k′

Ukk′
T (r)fk′(r)−

∑
k′

[
Ukk′

V (r) − Ukk′
S (r)

]
gk′(r) = 0,

(11b)

where κ is defined as κ = (−1)j+�+1/2(j + 1/2). The coupling
potentials between different channels are given by

Ukk′
S (r) ≡ 〈

F JM
jlnI

∣∣ Ac∑
i=1

V̂ N�
S (r,r i)

∣∣F JM
j ′l′n′I ′

〉
, (12a)

Ukk′
V (r) ≡ 〈

F JM
jlnI

∣∣ Ac∑
i=1

V̂ N�
V (r,r i)

∣∣F JM
j ′l′n′I ′

〉
, (12b)

Ukk′
T (r) ≡ 〈

F JM
jlnI

∣∣ Ac∑
i=1

V̂ N�
T (r,r i) · σ

∣∣F JM
j ′ l̃′n′I ′

〉
, (12c)

with

V̂ N�
T ≡ αN�

T [
←−∇ δ(r − r i) + δ(r − r i)

−→∇ ]. (13)

By expanding each of the large fk(r) and small gk(r)
components of the Dirac spinors, Eq. (3), in terms of the radial
function Rαl(r) of a spherical harmonic oscillator, that is,

fk(r) =
f

(k)
max∑

α=1

FkαRk
αl(r), (14a)

gk(r) =
g

(k)
max∑

α=1

GkαRk
αl̃

(r), (14b)

with l = j ± 1/2 and l̃ = j ∓ 1/2, the coupled-channels
equations (11a) and (11b) are transformed into a real
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symmetric matrix equation,

∑
α′,k′

(
Akk′

αα′ + V kk′
αα′ + Skk′

αα′ Bkk′
αα′ + T kk′

αα′

Bkk′
αα′ + T kk′

αα′ Ckk′
αα′ + V kk′

αα′ − Skk′
αα′

)(
Fk′

α′

Gk′
α′

)
= EJ

(
Fk

α

Gk
α

)
. (15)

The dimension of the matrix is
∑

k f (k)
max + g(k)

max, where k represents different channels. In Eq. (15), the matrix elements are given
by

Akk′
αα′ = 〈

Rk
αl(r)

∣∣EnI

∣∣Rk′
α′l′(r)

〉
δk,k′, (16a)

Bkk′
αα′ = 〈

Rk
αl(r)

∣∣ d

dr
− κ − 1

r

∣∣Rk′
α′ l̃′ (r)

〉
δk,k′ , (16b)

Ckk′
αα′ = 〈

Rk
αl̃

(r)
∣∣(EnI − 2m�)

∣∣Rk′
α′ l̃′(r)

〉
δk,k′, (16c)

V kk′
αα′ = 〈Rk

αl(r)|Ukk′
V (r)|Rk′

α′l′(r)〉

= (−1)j
′+I+J

∑
λ

{
J I j
λ j ′ I ′

}
〈j�||Yλ||j ′�′〉

×
∫

r2drρnIn′I ′
λ,V (r)

{
αN�

V Rk
αl(r)Rk′

α′l′(r) + δN�
V

[
1

r2

d

dr

(
r2 d

dr

)
− λ(λ + 1)

r2

][
Rk

αl(r)Rk′
α′l′(r)

]}
, (16d)

Skk′
αα′ = 〈

Rk
αl(r)

∣∣Ukk′
S (r)|Rk′

α′l′(r)
〉

= (−1)j
′+I+J

∑
λ

{
J I j
λ j ′ I ′

}
〈j�||Yλ||j ′�′〉

×
∫

r2dr ρnIn′I ′
λ,S (r)

{
αN�

S Rk
αl(r)Rk′

α′l′(r) + δN�
S

[
1

r2

d

dr

(
r2 d

dr

)
− λ(λ + 1)

r2

][
Rk

αl(r)Rk′
α′l′(r)

]}
, (16e)

T kk′
αα′ = 〈

Rk
αl(r)

∣∣Ukk′
T (r)

∣∣Rk′
α′ l̃′(r)

〉
= −αN�

T (−1)j+I ′+J
∑

λ

{
J I j
λ j ′ I ′

}∫
r2dr ρnIn′I ′

λ,V (r)

×
{[

dRk
αl(r)

dr
+ κ + 1

r
Rk

αl(r)

]
Rk′

α′ l̃′(r)〈j �̃||Yλ||j ′�̃′〉 +
[
dRk′

α′ l̃′ (r)

dr
− κ ′ − 1

r
Rk′

α′ l̃′(r)

]
Rk

αl(r)〈j�||Yλ||j ′�′〉
}
. (16f)

See Appendices B and C for the derivation of Eqs. (16d)
and (16f), respectively. In Eq. (16), ρnIn′I ′

λ,V (r) and ρnIn′I ′
λ,S (r) are

the reduced vector and scalar transition densities, respectively,
between the nuclear initial state |�n′I ′ 〉 and the final state |�nI 〉
defined as

ρnIn′I ′
λ,V (r) = 〈�nI ||

Ac∑
i=1

δ(r − ri)

rir
Yλ(r̂ i)||�n′I ′ 〉, (17a)

ρnIn′I ′
λ,S (r) = 〈�nI ||

Ac∑
i=1

γ 0
i

δ(r − ri)

rir
Yλ(r̂ i)||�n′I ′ 〉. (17b)

The detailed expressions for the transition densities can be
found in Ref. [37].

III. APPLICATION TO 13
� C

Let us now apply the MPRM with the higher-order N�
interaction to 13

� C, for which several low-lying states have
been observed experimentally [38,39]. To this end, we first
generate several low-lying states of the core nucleus 12C

with a quantum-number projected GCM calculation, where
the mean-field configurations are obtained from a deformation
constrained relativistic mean-field plus BCS calculation using
the point coupling PC-F1 for the effective nucleon-nucleon in-
teraction [34]. A zero-range pairing force supplemented with a
smooth cutoff is adopted to treat the pairing correlation among
the nucleons. Axial symmetry and time-reversal invariance are
imposed in the mean-field calculations. The Dirac spinor for
each nucleon state is expanded on a harmonic oscillator basis
with 10 shells. More numerical details have been presented
in Refs. [29,30]. The wave functions and the energies of the
low-lying states of 12C are then used to calculate the scalar
and vector transition densities given by Eq. (17) as well as
the matrix elements in Eq. (15). The radial wave function for
the spherical harmonic oscillator basis with 18 shells is used
to expand the radial part of the hypernuclear wave function,
Rk(r). We use the effective N� interaction with the PCY-S1,
PCY-S2, PCY-S3, and PCY-S4 parameter sets, which were
determined by fitting to the experimental data of � binding
energies from light to heavy mass hypernuclei [31]. We list
these parameters in Table I. Notice that PCY-S2 and PCY-S4
do not include the tensor and the derivative terms, respectively.
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TABLE I. The four parameter sets of the relativistic point-coupling N� interaction proposed in Ref. [31].

PCY-S1 PCY-S2 PCY-S3 PCY-S4

αN�
S (MeV−2) −2.0305 × 10−4 −4.2377 × 10−5 −2.0197 × 10−4 −1.8594 × 10−4

αN�
V (MeV−2) 1.6548 × 10−4 1.4268 × 10−5 1.6449 × 10−4 1.4981 × 10−4

δN�
S (MeV−4) 2.2929 × 10−9 1.2986 × 10−9 2.3514 × 10−9 −1.9958 × 10−10

δN�
V (MeV−4) −2.3872 × 10−9 −1.3850 × 10−9 −2.4993 × 10−9 0

αN�
T (MeV−3) −1.0603 × 10−7 0 −4.082 × 10−9 −5.5322 × 10−8

Notice also that PCY-S3 was obtained by excluding the
spin-orbit splitting of the 1p state of � in 16

� O from the fitting,
and the strength of the tensor coupling is considerably smaller
than that in PCY-S1.

A. Low-energy spectra

Figures 1(b)–1(e) show the calculated low-energy spectra of
13
� C with the higher order N� interaction, in comparison with
the experimental data as well as with the results of Ref. [30]
obtained only with the leading-order N� interaction. The first
and the second states for each spin-parity (Jπ ) are displayed by
the solid and the dashed lines, respectively. One can see that the
calculated energy splitting between the 1/2− and 3/2− states,
as well as that between the 5/2+ and 3/2+ states, are clearly
different among the four different parameter sets, although the
main structures of the low-lying states are the same. That is, the
splitting between the 1/2−

1 and 3/2−
1 with PCY-S1 and PCY-S4

forces is smaller than that with PCY-S2 and PCY-S3 forces and
much close to the experiment data. The splitting between the
5/2+ and 3/2+ states with PCY-S1 is much larger than that
by the other parameter sets. In other words, the fine structure
of the hypernuclear low-lying states reflects the impact of the

N� interaction beyond the leading order. We have performed
similar calculations for 9

�Be, and have found that the effects
of the derivative and the tensor terms are similar to those in
13
� C. Notice that even though the tensor term is absent in the
PCY-S2 force, a good description is still achieved by largely
deviating from the expected relations of a naive quark model,
that is, αN� = 2

3αNN , etc. [40]. We will further discuss the
role of the higher order terms in N� interaction in the next
subsections. In particular, we will demonstrate that the tensor
term plays an important role if the expected relations of the
naive quark model are maintained.

In Fig. 1, the E2 transition strengths between the low-lying
states of 13

� C are also presented. One can see that the E2
transition strengths do not much vary with the four N�
effective interactions and are close to those with the LO
interaction.

Given the fact that all the four parameter sets of the
effective N� interaction were adjusted to � binding energy of
hypernuclei at the mean-field level [31], the use of these forces
in the present MPRM calculation overestimates the � binding
energy of 13

� C. That is, the � binding energy of 13
� C defined

as the energy difference between the 0+
1 state of 12C and the

1/2+
1 state of 13

� C is calculated to be 15.72, 13.63, 15.42 and

FIG. 1. The low-energy excitation spectra of 13
� C obtained with the microscopic particle-rotor model with (b) PCY-S1, (c) PCY-S2,

(d) PCY-S3, and (e) PCY-S4. Part (f) shows the spectrum taken from Ref. [30], which was obtained by including only the leading-order
(LO) N� interaction. The solid and the dashed lines represent the first and the second states for each spin-parity (J π ), respectively. The
experimental data shown in (a) are taken from Refs. [1,38,39]. The numbers with the arrows indicate the B(E2) values for the 3/2+

1 → 1/2+
1

and the 9/2+
1 → 5/2+

1 transitions, given in units of e2fm4. The dominant component of several hypernuclear states, together with its weight (in
percent), is also given.
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FIG. 2. The same as in Fig. 1, but with the scaled N� interaction, in which the scaling factor is determined for each parameter set to
reproduce the empirical � binding energy of 13

� C.

13.22 MeV using the PCY-S1, PCY-S2, PCY-S3, and PCY-S4
sets of N� interaction, respectively, while the empirical value
is B

exp.
� = 11.38 ± 0.05 MeV [1]. If we want to reproduce the

� binding energy within this approach, we need to scale all
the coupling strengths in the parameters of the N� interaction
by 18%, 9%, 16%, and 8% for PCY-S1, PCY-S2, PCY-S3, and
PCY-S4, respectively.

Figure 2 shows the calculated low-lying spectra of 13
� C

with those scaled effective N� interactions. It is shown that
the predicted low-lying excitation spectrum of 13

� C is slightly
compressed and the E2 transition strengths are somewhat
increased. On the other hand, the energy splitting between
the 1/2−

1 and 3/2−
1 states remains large by the PCY-S2 and

PCY-S3 forces, while it is reduced from 303.7 keV (253.7
keV) to 161.5 keV (206.3 keV) after scaling the coupling
strengths for the PCY-S1 (PCY-S4) interaction. Due to the
slightly weaker N� interaction, the configuration mixing for
the 1/2+

1 , 3/2+
1 , 5/2+

1 , 1/2−
1 , and 3/2−

1 states becomes slightly
reduced for all four parameter sets.

B. Effects of the derivative coupling terms

We now examine the effect of the derivative coupling terms
on the � binding energy. To this end, we fix the coupling
strengths for the leading order terms (αN�

V ,αN�
S ) to be the same

values as those in the PCY-S2 force and study the � binding
energy as a function of the coupling strengths (δN�

V ,δN�
S ) of the

derivative terms. Notice that the tensor coupling is absent in
PCY-S2, so that we can isolate the effect of the derivative terms.
The results are shown in Fig. 3(a). A clear linear correlation
is observed between δN�

V and δN�
S . By selecting three sets

of (δN�
V ,δN�

S ) along the valley in Fig. 3(a), we calculate the
low-lying states of 13

� C and show them in Fig. 3(b). One can see
that the low-lying states are similar to each other. This implies
that the coupling strengths (δN�

V ,δN�
S ) may not be uniquely

determined by the energies of hypernuclear low-lying states.

Since the vector coupling strengths αN�
V and δN�

V are
linearly correlated with the corresponding scalar coupling
strengths αN�

S and δN�
S , respectively, we next keep the ratios

of αN�
V /αN�

S and δN�
V /δN�

S the same as those in PCY-S2 force
and calculate the � binding energy as well as the low-lying
spectrum as a function of αN�

S and δN�
S , as shown in Figs. 3(c)

and 3(d), respectively. It is shown that the parameters δN�
S and

αN�
S are also linearly correlated when these are fitted to the �

binding energy in 13
� C [see Fig. 3(c)].

Notice that the difference between the vector transition
density ρnIn′I ′

λ,V (r) and the scalar transition density ρnIn′I ′
λ,S (r)

in the low-lying states of 12C is small (see Fig. 4 in Ref. [30]).
In the nonrelativistic approximation, with the same scalar and
vector densities, the sum of LO coupling strengths αN�

S + αN�
V

and the sum of the derivative coupling strengths δN�
S + δN�

V

can be regarded as the depth of the central potential and the
surface coupling strength, respectively. Therefore, these are
also linearly correlated, as has been found in Ref. [32]. Taking
three sets of the parameters along the valley with B th

� = B
exp
�

in Fig. 3(c), we find that those three sets yield almost the
same excitation energies (within around 0.13 MeV) for the
3/2+

1 , 5/2+
1 , 1/2+

2 , and 1/2−
1 states, while the difference is

much larger (around 0.45 MeV) for the 3/2−
1 and 5/2−

1 states.
A comparison between Figs. 3(b) and 3(d) suggests that the
excitation energies of the low-lying states are more sensitive
to αN�

S and αN�
V as compared to δN�

S and δN�
V .

We next examine the influence of the derivative interaction
terms for the other parameter sets as well. To this end, we
vary δN�

S and δN�
V by keeping the values of αN�

S , αN�
V , αN�

T

and the ratio δN�
S /δN�

V the same as the original values for
each parameter set. Fig. 4(a) shows the � binding energy
so obtained as a function of |δN�

S + δN�
V | = −(δN�

S + δN�
V ).

The calculated B� with the original value of δN�
S and δN�

V

is denoted by the open circle for each parameter set. B�

decreases with increasing |δN�
S + δN�

V | and approaches to
the experimental value denoted by the thin solid line. The

044307-5



H. MEI, K. HAGINO, J. M. YAO, AND T. MOTOBA PHYSICAL REVIEW C 93, 044307 (2016)

FIG. 3. (a) and (c) Contour plots for the absolute value of the
difference between the theoretical and the experimental hyperon
binding energies of the 13

� C hypernucleus as a function of the coupling
strength parameters (δN�

S ,δN�
V ) and (δN�

S ,αN�
S ), respectively. In the

former, αN�
V and αN�

S are fixed to the same values as in PCY-S2,
while, in the latter, the value of αN�

V and δN�
V is determined for each

(αN�
S ,δN�

S ) so as to keep the ratios αN�
V /αN�

S and δN�
V /δN�

S the same
as those for PCY-S2. (b) and (d) Low-lying states in 13

� C calculated
with the strength parameters denoted by the dots in panels (a) and
(c), respectively.

� binding energy decreases from 21.28 to 15.72 MeV by
adding the derivative coupling terms to the PCY-S1 interaction
(that is, by changing |δN�

S + δN�
V | from 0 to the original value

denoted by the open circle). For PCY-S2, PCY-S3, and PCY-S4
interactions, the shift is from 18.01, 23.29, and 21.27 MeV to
13.63, 15.42, and 13.22 MeV, respectively.

The excitation energies of the low-lying states as a function
of the derivative coupling strength |δN�

S + δN�
V | are shown

in Fig. 4(b), where αN�
S , αN�

V , αN�
T and δN�

S /δN�
V are kept

the same as those for PCY-S1. As one can see, the excitation
energies decreases with the increase of |δN�

S + δN�
V |. Notice

that the changes of the 3/2+ and 5/2+ states are much
smaller compared to the change in the other states. Similar
behaviors are found also for the PCY-S2, PCY-S3, and PCY-S4
forces (not shown). The energy splittings of (3/2+

1 ,5/2+
1 )

and (1/2−
1 ,3/2−

1 ) states as a function of the strength of the

FIG. 4. (a) The � binding energy in 13
� C as a function of |δN�

S +
δN�
V |, while keeping the same values of αN�

S , αN�
V , αN�

T , and δN�
V /δN�

S

as the original values for the PCY-S1, PCY-S2, PCY-S3, and PCY-S4
parameter sets. B� with the original value of δN�

S and δN�
V is denoted

by the open circles for each parameter set. The experimental value is
denoted by the thin solid line. (b) The energy levels of the low-lying
states as a function of |δN�

S + δN�
V | for the PCY-S1 parameter set. (c)

and (d) The energy splitting between the 5/2+
1 and 3/2+

1 states and
that between the 1/2−

1 and 3/2−
1 states, respectively, as a function of

|δN�
S + δN�

V |.

derivative coupling terms are shown in Figs. 4(c) and 4(d),
respectively. It is found that the 5/2+

1 state is always slightly
higher than the 3/2+

1 state—by less than 0.15 MeV except for
PCY-S1 in the range of |δN�

S + δN�
V | shown in the figure—

although this may not be conclusive as the spin-spin N�
interaction [41] is not included in these calculations.

For the doublet (1/2−,3/2−), the 1/2− state is predicted
to be higher than the 3/2− state for all the forces except for
PCY-S1, with which the 1/2− state is lower than the 3/2−
state for |δN�

S + δN�
V | < 17.56 MeV. As will be discussed in

the next subsection, this splitting, which reflects the spin-orbit
splitting of the p� hyperon [30], is mainly governed by the
tensor coupling term.

C. Effects of the tensor coupling term

Let us next examine the effects of the tensor coupling
term on hypernuclear low-lying states. For this purpose, we
adopt the PCY-S1 and PCY-S4 sets of the N� interaction
and vary the strength αN�

T for the tensor coupling term.
Figure 5(a) shows the � binding energy of 13

� C as a function
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FIG. 5. Same as Fig. 4, but as a function of the tensor coupling
strength |αN�

T | (=−αN�
T ) for the PCY-S1 and PCY-S4 forces.

of |αN�
T | = −αN�

T . The � binding energy gradually decreases
from 17.71 MeV (14.12 MeV) for αN�

T = 0 to 15.72 MeV
(13.22 MeV) for the original value of αN�

T for the PCY-S1
(PCY-S4) force, which is indicated by the open circle in
Fig. 5(a).

Figure 5(b) shows the excitation energies for the low-lying
states of 13

� C as a function of the tensor coupling strength
|αN�

T | for PCY-S1. As already shown in the previous mean-
field studies [24,40,42], the tensor coupling term makes the s�

hyperon less bound by increasing the energy of the s1/2 level.
Moreover, it decreases (increases) the energy of the hyperon
p3/2 (p1/2) state. This is consistent with Fig. 5(a) for the ground
state (1/2+) of the 13

� C, the energy of which decreases by the
tensor coupling. As a result, the � binding energy is reduced by
0.9 MeV for PCY-S1 and 1.99 MeV for PCY-S4 after turning
on the tensor coupling term. At the same time, the tensor
coupling term decreases (increases) the energy of the 3/2−
(1/2−) state, which mainly consists of the p3/2 (p1/2) hyperon
coupled to the ground state (0+) of 12C. Since the 1/2− changes
more significantly than the 3/2− state, the higher lying 1/2−
state approaches the 3/2− state and even becomes lower than
the 3/2− state for large values of the tensor coupling strength,
indicating that the energy splitting of the 1/2− and 3/2− states
is sensitive to the tensor coupling strength. For the PCY-S1
and PCY-S4 forces, the energy difference between 1/2−

1 and
3/2−

1 states decreases from 2.28 to 0.31 MeV, and from 1.25 to
0.25 MeV, respectively, while turning on the tensor coupling
term. For the energy gap between the 3/2+

1 and 5/2+
1 states,

it increases with increasing the |αN�
T |, as shown in Fig. 5(c).

Again, the tensor coupling term does not invert the energy
ordering of the 3/2+

1 and 5/2+
1 states.

IV. SUMMARY

We have implemented the higher-order derivative and the
tensor terms in the point coupling N� interaction in the
microscopic particle-rotor model for hypernuclear low-lying
states. By taking 13

� C as an example, we have adopted the four
sets of effective N� interaction, which were adjusted at the
mean-field level to the � binding energy. We have shown that
the four parameter sets yield qualitatively similar low-lying
spectra, even though these parameter sets were obtained using
only the ground state energy.

We have discussed in detail the impact of each N�
interaction term on hypernuclear low-lying states for 13

� C.
We have shown that both the second-order derivative and
the tensor coupling terms raise the energy of hypernuclear
states and thus reduce the � binding energy. With the increase
of the tensor coupling strength, the excitation energy of the
1/2− state has been found to decrease faster than the 3/2−
states. As a result, the energy difference E(1/2−) − E(3/2−)
decreases to a small value and even changes its sign for
large values of the tensor coupling term. We have also found
that the 5/2+

1 state is higher than the 3/2+
1 states with the

present effective N� interaction. We note that the four-fermion
coupling terms (ψ̄N�iψN )(ψ̄��iψ�) with �i = σμν and γμγ 5,
which provides the spin-spin N� interaction [36], are not
taken into account in the present study. This interaction term
may have an important influence on the energy ordering of the
3/2+

1 and 5/2+
1 states. It will be interesting to study in near

future the role of these terms in hypernuclear spectroscopy
with the present microscopic particle-rotor model.

Another interesting work is to compare directly between the
microscopic particle-rotor model and the generator coordinate
method for the whole � hypernuclei [28] using the same point-
coupling N� interaction. A work is now in progress, and we
will report on it in a separate paper.
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APPENDIX A: THE N� EFFECTIVE INTERACTION AND
THE CORRESPONDING ENERGY FUNCTIONAL

In this appendix, we show that the N� interaction given by
Eqs. (8), (9), and (10) lead to the energy functional given by
Eq. (5). The energy functional for N� interaction is given by
the expectation value of the effective interaction V̂ N� at the
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Hartree level,

EN�
int =

Ac∑
i=1

∫
d r d r ′ψ†

�(r)ψ†
i (r ′)V̂ N�(r,r ′)ψ�(r)ψi(r ′). (A1)

Substituting the LO scalar effective interaction term,

V̂ N�
S (r,r ′) = αN�

S γ 0
�δ(r − r ′)γ 0

N (A2)

to Eq. (A1), one finds

EN�
S =

Ac∑
i=1

∫
d r d r ′ψ†

�(r)ψ†
i (r ′)αN�

S γ 0
�δ(r − r ′)γ 0

Nψ�(r)ψi(r ′)

= αN�
S

Ac∑
i=1

∫
d r ψ

†
�(r)γ 0

�ψ�(r)ψ†
i (r)γ 0

Nψi(r) =
∫

d r αN�
S ρ�

S (r)ρS(r), (A3)

where ρS and ρ�
S are the scalar densities defined as

ρS(r) =
Ac∑
i=1

ψ̄i(r)ψi(r), ρ�
S (r) = ψ̄�(r)ψ�(r). (A4)

The effective interaction with the scalar derivative term,

V̂ N�
Der (r,r ′) = δN�

S γ 0
�[

←−∇ 2δ(r − r ′) + δ(r − r ′)
−→∇ 2 + 2

←−∇ · δ(r − r ′)
−→∇ ]γ 0

N, (A5)

leads to

EN�
S =

Ac∑
i=1

∫
d r d r ′ψ†

�(r)ψ†
i (r ′)δN�

S γ 0
�[

←−∇ 2δ(r − r ′) + δ(r − r ′)
−→∇ 2 + 2

←−∇ · δ(r − r ′)
−→∇ ]γ 0

Nψ�(r)ψi(r ′)

= δN�
S

Ac∑
i=1

∫
d r

{[∇2ψ
†
�(r)γ 0

�

]
ψ�(r) + [

ψ
†
�(r)γ 0

�

][∇2ψ�(r)
] + 2

[∇ψ
†
�(r)γ 0

�

] · [∇ψ�(r)]
}
[ψ†

i (r)γ 0
Nψi(r)]

=
∫

d r δN�
S ρS(r)∇2ρ�

S (r). (A6)

A similar derivation holds also for the vector part of the N� interaction.
On the other hand, the tensor effective interaction,

V̂ N�
T (r,r ′) = iαN�

T [
←−∇ · γ δ(r − r ′) + δ(r − r ′)

−→∇ · γ ] (A7)

leads to

EN�
T =

Ac∑
i=1

∫
d r d r ′ψ†

�(r)ψ†
i (r ′)iαN�

T [
←−∇ · γ δ(r − r ′) + δ(r − r ′)

−→∇ · γ ]ψ�(r)ψi(r ′)

= αN�
T

Ac∑
i=1

∫
d r

{[∇ψ
†
�(r)γ 0

�

] · iαψ�(r) + [
ψ

†
�(r)γ 0

�

]
[∇ · iαψ�(r)]

}
[ψ†

i (r)ψi(r)]

=
∫

d r αN�
T ρV (r)[∇ · (ψ̄�(r)iαψ�(r))]

=
∫

d r αN�
T ρV (r)ρ�

T (r), (A8)

where ρV and ρ�
T are the vector and the tensor densities defined as

ρV (r) =
Ac∑
i=1

ψ
†
i (r)ψi(r), (A9a)

ρ�
T (r) = ∇ · (ψ̄�(r)iαψ�(r)). (A9b)

Putting all these together, we finally obtain Eq.(5).
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APPENDIX B: A DERIVATION OF Eq. (16d) FOR THE MATRIX ELEMENTS OF THE VECTOR
DERIVATIVE COUPLING TERM

With the N� vector derivative effective interaction V̂D = δN�
V [

←−∇ 2δ(r − r i) + δ(r − r i)
−→∇ 2 + 2

←−∇ · δ(r − r i)
−→∇ ], and the

definition of

F JM
jlI (r̂,{r i}) =

∑
mI m

CJM
ImI jmYj lm(r̂)�ImI

({r i}), (B1)

where Yj lm(r̂) is the spinor spherical harmonics,

Yj�m(r̂) =
∑
mlms

C
jm

lml
1
2 ms

Ylml
(ϑ,ϕ)χms

, (B2)

and C
jm
l1m1l2m2

= 〈l1m1l2m2|jm〉 is the Clebsch-Gordan coefficient, the coupling matrix element of the vector derivative term reads〈
Rk

αl(r)F JM
jlI (r̂,{r i})

∣∣V̂D

∣∣F JM
j ′l′I ′(r̂,{r i})Rk′

α′l′(r)
〉

= δN�
V

∑
mI m

∑
m′

I m
′
CJM

ImI jmCJM
I ′m′

I j
′m′

∑
λμ

∫
r2dr

∫
d r̂

〈
�ImI

∣∣ Ac∑
i=1

δ(r − ri)

rri

Yλμ(r̂ i)
∣∣�I ′m′

I

〉
Y ∗

λμ(r̂)

[
Y ∗

j�m(r̂)Yj ′�′m′(r̂)Rk
αl(r)Rk′

α′l′(r)
]
.

(B3)

Here, we notice

〈
�ImI

∣∣ Ac∑
i=1

δ(r − ri)

rri

Yλμ(r̂ i)
∣∣�I ′m′

I

〉 = (−1)I−mI

(
I λ I ′

−mI μ m′
I

)〈
�I

∥∥∥∥∥
Ac∑
i=1

δ(r − ri)

rri

Yλ(r̂ i)

∥∥∥∥∥�I ′

〉

= (−1)I−mI

(
I λ I ′

−mI μ m′
I

)
ρII ′

λ,V (r). (B4)

With the relation of

Y ∗
j�m(r̂)Yj ′�′m′(r̂) =

∑
mlms

∑
m′

lm
′
s

C
jm

lml
1
2 ms

C
j ′m′

l′m′
l

1
2 m′

s

δmsm′
s
(−1)ml

∑
LM

l̂l̂′√
4πL̂

CL0
l0l′0C

LM
l−mll′m′

l
YLmL

(r̂), (B5)

we have


[Y ∗
j�m(r̂)Yj ′�′m′(r̂)] =

∑
mlms

∑
m′

lm
′
s

∑
LM

l̂l̂′√
4πL̂

C
jm

lml
1
2 ms

C
j ′m′

l′m′
l

1
2 m′

s

δmsm′
s
(−1)ml CL0

l0l′0C
LM
l−mll′m′

l

[
1

r2

d

dr

(
r2 d

dr

)
− L(L + 1)

r2

]
YLmL

(r̂).

(B6)

According to the orthogonalization of the spherical harmonics,∫
Y ∗

λμ(r̂)YLmL
(r̂)d r̂ = δλ,Lδμ,mL

, (B7)

the matrix element is then given by〈
Rk

αl(r)F JM
jlI (r̂,{r i})

∣∣V̂D

∣∣F JM
j ′l′I ′(r̂,{r i})Rk′

α′l′(r)
〉 = δN�

V (−1)j
′+I+J

∑
λ

{
J I l
λ j ′ I ′

}
〈j�||Yλ||j ′�′〉

×
∫

r2dr ρII ′
λ,V (r)

[
1

r2

d

dr

(
r2 d

dr

)
− λ(λ + 1)

r2

][
Rk

αl(r)Rk′
α′l′(r)

]
. (B8)

APPENDIX C: A DERIVATION OF Eq. (16f) FOR THE MATRIX ELEMENTS OF THE TENSOR COUPLING TERM

The matrix elements of the tensor coupling term are given by

T kk′
αα′ ≡ 〈

Rk
αl(r)F JM

jlI (r̂,{r i})
∣∣αN�

T

Ac∑
i=1

[
←−∇ δ(r − r i) + δ(r − r i)

−→∇ ] · σ
∣∣F JM

j ′ l̃′I ′(r̂,{r i})Rk′
α′ l̃′(r)

〉

= αN�
T

∑
m′

I m
′

∑
mI m

CJM
I ′m′

I j
′m′C

JM
ImI jm

∑
λμ

∫
r2dr d r̂

〈
�ImI

∣∣ Ac∑
i

δ(r − ri)

rri

Yλμ(r̂ i)
∣∣�I ′m′

I

〉

× Y ∗
λμ(r̂)∇ · [

Rk∗
αl (r)Y ∗

j lm(r̂)σRk′
α′ l̃′(r)Yj ′ l̃′m′ (r̂)

]
. (C1)
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Notice

∇ · [
Rk∗

αl (r)Y ∗
j lm(r̂)σRk′

α′ l̃′(r)Yj ′ l̃′m′ (r̂)
] =

[
−dRk

αl(r)

dr
− κ + 1

r
Rk

αl(r)

][
Rk′

α′ l̃′(r)Y ∗
j l̃m

(r̂)Yj ′ l̃′m′(r̂)
]

−
[
dRk′

α′ l̃′ (r)

dr
− κ ′ − 1

r
Rk′

α′ l̃′(r)

][
Rk∗

αl (r)Y ∗
j lm(r̂)Yj ′l′m′ (r̂)

]
. (C2)

With the Wigner-Eckart theorem, one obtains∫
d r̂ Y ∗

j lm(r̂)Y ∗
λμ(r̂)Yj ′l′m′(r̂) = (−1)μ+j−m

(
j λ j ′

−m −μ m′

)
〈j l||Yλ||j ′l′〉. (C3)

From the relation∑
m′

I m
′

∑
mI m

∑
μ

CJM
I ′m′

I j
′m′C

JM
ImI jm(−1)I−mI

(
I λ I ′

−mI μ m′
I

)
(−1)μ+j−m

(
j λ j ′

−m −μ m′

)
= (−1)I

′+J+j

{
J I j
λ j ′ I ′

}
, (C4)

one finally obtains

T kk′
αα′ = − αN�

T (−1)j+I ′+J
∑

λ

{
J I j
λ j ′ I ′

} ∫
r2dr ρI ′I

λ,V (r)

{[
dRk

αl(r)

dr
+ κ + 1

r
Rk

αl(r)

]
Rk′

α′ l̃′(r)〈j l̃||Yλ||j ′ l̃′〉

+
[
dRk′

α′ l̃′(r)

dr
− κ ′ − 1

r
Rk′

α′ l̃′ (r)

]
Rk

αl(r)〈j l||Yλ||j ′l′〉
}
. (C5)
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