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Viola-Seaborg relation for α-decay half-lives: Update and microscopic determination of parameters
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Considering the emission process of α particles in the transition from an isolated quasibound state to a
scattering state, a clear expression for the decay width derived in terms of regular Coulomb function, the
quasibound state wave function, and the difference of potentials is analyzed. The Schrödinger equation with
the effective potential representing the α + nucleus interaction consistent with the potential obtained in the
relativistic mean-field approximation is solved exactly for the wave function. Using this exact wave function at
resonance and the difference of the above potential from the point charge Coulomb interaction in the expression
of decay width stated above, an analytic expression for the decay half-life is derived from the width. By invoking
some approximations for different functions in this expression, a closed formula for the logarithm of half-life in
terms of characteristic Q value equal to the resonance energy and the mass and charge numbers of the α emitter
is obtained. The calculated results of half-life obtained by using the analytic expression of half-life or the closed
formula for the logarithm of the half-life are shown to explain the corresponding measured data with values
ranging from 10−6 s to 1022 y in the case of large numbers of α emitters that include heavy and superheavy
nuclei. The results of the closed formula aligned in a straight line closely explain the rectilinear arrangement of
the logarithm values of experimental results for decay half-lives as a function of a quantity that depends on Q

values and charge numbers of the emitters. The analytic closed formula with all its terms defined is preferable to
the empirical Viola-Seaborg rule of α-decay rate.
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I. INTRODUCTION

With the discovery of a number of α-particle emitters
including heavy and superheavy nuclei with proton numbers
as large as 118 and observations of decay rates as large as
1022 y, corresponding to very narrow width of the order of
10−50 MeV, the interpretation of α radioactivity has become of
theoretical interest. In 1928, Gamow [1] tried to apply quantum
mechanics to the process of α decay and explained it as a
quantum tunneling effect. The empirical law of Geiger and
Nuttall (GN) [2] could be explained by this calculation.

Many other semiempirical relationships for α decay rate
of heavy and superheavy elements have also been developed
where one finds mostly the use of the semiclassical approx-
imations like the Wentzel-Kramers-Brillouin (WKB) method
for the tunneling of a potential barrier [3–8].

A large body of experimental and theoretical findings about
the α-decay mode has been covered extensively in Refs. [9–
17].

The logarithm of the experimental results of decay half-
lives, T1/2, of large body of α emitters with Z = 54–118
is plotted as a function of the Coulomb parameter χ =
ZαZD

√
AαAD

(Aα+AD )Qα
, as done in the GN law, with Qα represent-

ing the α-decay energy, Aα and AD denoting mass numbers,
and Zα and ZD denoting charge numbers of the α particle
and the daughter nucleus, respectively. It is found [18] that the
experimental data do not fall in a single linear path but are
diffused or aligned in several linear segments with different
slopes and intercepts. The GN law, usually designed for a
single straight line for all α emitters, fails to address this
manifestation of the data. However, if the same experimental
results in logarithm form are plotted as a function of the

Viola-Seaborg parameter [18], Ṽ = a′ZD+b′√
Qα

+ c′ZD , where
a′, b′, and c′ are constants, the data align themselves in a
narrow linear path. The empirical Viola-Seaborg (VS) rule
[18,19], log10T1/2 = a′ZD+b′√

Qα
+ c′ZD + d ′ with a′ = 1.478,

b′ = 8.714, c′ = −0.183, and d ′ = −34.699, is successful
in accounting for the above variation of the measured data.
Looking to the success of this formulation, we become curious
whether a formula of logarithm of half-lives in terms of
well-defined parameters or coefficients can be derived on the
basis of the fundamental principle of decay when the empirical
nature of the VS rule is removed.

Because in a heavy nucleus the shell-model states are
highly mixed and α clustering is in evidence for heavy and
superheavy nuclei [20], the calculation of the decay width
is significantly simplified by the premise of the existence
of a preformed α particle. Hence, the many-body problem
of α decay from a nucleus can be considered a two-body
problem composed of the daughter nucleus plus an α particle.
The fundamental R-matrix theory, being the mechanics of a
two-body problem, can be applicable to describe the initial
system of α + daughter nucleus connected with the instability
of the quasibound or resonance state of the decaying nucleus.
Most recently Qi et al. [21–23] have tried to include the
tunneling process in the R-matrix theory and proposed an
extended version of the GN rule. The R-matrix theory, which
is a three-dimensional potential scattering problem, cannot be
simply represented or converted to a one-dimensional process
for tunneling of the potential barrier without using changes
in the potential. The potential suitable for the description of
the scattering phenomenon may not be sufficient to give the
expected result of width of decay within the tunneling model
using a semiclassical WKB approximation for calculating the
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transmission coefficient. This is exactly what happens in the
case of cosh-shaped potential [12] where the height of the
barrier is increased artificially to suit the calculation of width
in the semiclassical WKB method. As rightly pointed out by
Mohr [24], in principle, the application of a semiclassical
model is not necessary for the calculation of α-decay half-life
or width.

The fundamental R-matrix theory for the decay of a cluster
or particle can be fully visualized in terms of the S-matrix
theory of resonance scattering or the transition scattering from
an isolated quasibound state to a scattering state. The S-matrix
method treats resonance as a pole in the complex energy plane
with its real part representing resonance energy or the Q-
value of decay and the imaginary part of the decay half-life.
In the latter picture, the decay width is a resonance width in
the system consisting of an α cluster and the residual nucleus.

One can estimate the values of resonance energy and the
width of decay from the rapidly rising scattering phase shift
δ� with momentum or energy over a range of angle π [24].
It requires a Breit-Wigner one-level approximation for the
resonances corresponding to an increase of phase shift across
π
2 . However, as rightly pointed out by Mohr [24], this method
is difficult to apply for the low-lying resonance state with
an extremely narrow width. Further, difficulties can arise in
obtaining the values of δ� from the computed S matrix, S� =
e2iδ� or tan δ�. On the other hand, one can directly find the value
of resonance energy and the width from the pole of S� in the
complex energy plane. In our recent publication [25], having
located these resonant poles, we have calculated results of
decay time of α emission from several nuclei and successfully
explained the respective experimental data. However, we find
that it is difficult to derive an analytic expression for the
decay width or the half-life from the complex expression of
the S matrix by any judicious approximation of the functions
defining the matrix.

In the picture of transition from quasibound state to
scattering state, one can express the width in terms of wave
function at resonance and Coulomb functions in two ways:

(i) The normalized regular solution u(r) of the modified
Schrödinger equation is matched at a large distance r = R to
the distorted outgoing Coulomb function directly as

u(R) = N0|G0(η,kR) + iF0(η,kR)|,
where F0 and G0 are the regular and irregular Coulomb
functions, and the decay width is expressed [26] as

� = �
2k

μ
|N0|. (1)

(ii) The general formula of the α-decay width can be expressed
[27] as

� = 2π |〈ψ |H − H0|φ〉|2, (2)

where ψ is a bound initial state for the decaying nucleus,
and φ is a final scattering state for the α + daughter system.
The Hamiltonians H0 and H are associated with φ and ψ ,
respectively.

Both the methods or expressions (1) and (2) of decay width
are equivalent [26]. However, in the first expression (1), �
depends on a radial distance R which is not specified exactly

except that it is a large distance. Therefore, the calculated
results, being sensitive to the value of R, become uncertain for
explaining certain measured data. However, on the basis of the
nature of spatial variation of the resonant wave function u(r),
we selected a distance for R, obtained analytic expression for
the decay rate including a compact formula like the GN law,
and explained the experimental data successfully in our recent
works [28,29].

The second formula (2) of width � has been used by Ni
and Ren [30] successfully for the estimate of α-decay rate by
taking care of the dependence of the result on the value of the
matching radius R. We, in this work, wish to use this expression
(2) for the decay width and derive an analytic expression for
half-life in terms of the resonant wave function of an exactly
solvable potential and the regular Coulomb function. Further,
by using some judicious approximations for the functions in
the above expression of half-life, we derive a compact formula
for the logarithm of half-life in terms of only the decay energy
and mass and charge numbers of the α emitter. This well-
defined formula resembles the form of the empirical VS rule
[18,19] of α-decay rate. The application of the expression of
half-life or the compact formula of logarithm of half-life to the
analysis of measured data of half-life of variety of nuclei with
extremely large as well as very small decay half-lives gives us
remarkable success in explaining the respective experimental
data. In particular, the plot of our results of logarithm of half-
lives as a function of the quantity similar to the VS parameter
gives us a perfect straight line and explains the corresponding
linear alignment of the experimental results very well.

Further, having known the Qα value from the atomic mass
tables at a given state of emission and the mass, AD , and
charge, ZD , numbers of the daughter nucleus, our closed
formula can predict the results of α-decay half-life for all
types of α-emitting nuclei: even-odd, odd-even, or odd-odd
nuclei with the specified � values. The available results of
experimental values of α-decay half-lives with � = 0 as well
as � > 0 for several nuclei could be explained closely by the
predicted results. We also record the predicted values of decay
rates for large number of nuclei for which measured results of
α-decay rate are not known. These results would be useful for
future experiments and identification.

In Sec. II, the details of the formulation and derivation of
the expressions for decay half-lives and the closed formula
for logarithm of half-lives are given. Section III discusses
the applications of the formulation to the explanation of the
experimental data. In Sec. IV, we record the conclusion of the
work.

II. THE THEORETICAL FRAMEWORK

A. Decay width or half-life of α decay

Within the concept of decay as the transition of an α cluster
from an isolated quasibound state to a scattering state, the
decay width is a resonance width in the potential scattering
process with α cluster as the projectile and the residual
daughter nucleus as the target. The decay width is expressed
generally by (2), which can be presented in the form (6) below,
as done in Ref. [30]. The final-state wave function describing
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the motion of the α particle relative to the daughter nucleus can
be written as a scattering state wave function corresponding to
the α particle in the point-charge Coulomb potential. Its radial
part is [31]

φ�(r) =
√

2μ

π�2k

F�

r
, (3)

where k = √
2μEc.m./�, Ec.m. stands for the center-of-mass

energy, μ = mn
AαAD

Aα+AD
represents the reduced mass of the

system with mn giving the mass of a nucleon, and F� is the
regular Coulomb wave function for a given partial wave �.

The factor
√

2μ
π�2k

is a normalization factor of the scattering
wave function. The initial-state wave function describes the
quasibound state of α cluster in the decaying nucleus. Its radial
wave function,

ψn�(r) = un�

r
, (4)

is achieved through exact solution of the Schrödinger equation
with an effective potential, which is a combination of nuclear
potential and the electrostatic potential. The details of this
course will be presented in the next section.

The α cluster in the decaying nucleus is governed by an
attractive nuclear potential, VN (r), and a repulsive Coulomb
potential of a homogeneously charged sphere in the region
close to the origin, while the α particle away from the
origin experiences the sole point-charge Coulomb potential
V

p
c (r) = ZαZDe2/r, where e2 = 1.4398 MeV fm. H − H0 is

considered as the difference between the potentials in the two
situations, that is,

H − H0 = {VN (r) + Vc(r)} − V p
c (r) = Veff(r) − V p

c (r).
(5)

Through the application of mean-field approximation [32] for
the nucleon-nucleon interaction and the process of double
folding the α + nucleus potential VN (r) with the electrostatic
term in parabolic form is obtained at close radial distances r .
This combined potential Veff(r) is very closely simulated by
an expression as a function of distance and is solved exactly
in the Schrödinger equation [28]. Considering this solution as
the wave function un�(r) for � = 0 in the interior region, the
expression (2) of the decay width reduces to

� = 4μ

�2k

|∫ R

0 F�[Veff(r) − V
p
c (r)]un�(r)dr|2∫ R

0 |un�(r)|2dr
. (6)

This formulation [33,34] for � is based on a Gell-Mann-
Goldberger transformation [26] and is used in Ref. [26] for
the study of proton-decay life times. The factor

∫ R

0 |un�(r)|2dr
is used for the normalization of the interior wave function
un�(r). Since the resonant wave function un�(r) decreases
rapidly with distance outside the Coulomb barrier radius (rB)
it can be normalized (box normalization) by requiring that∫ R

0 |un�(r)|2dr = 1, where R ≈ rB . Then the α-decay half-life
is related to the decay width by the well-known relationship
T1/2 = �ln2/�. Using � given by (6), T1/2 is expressed as

T1/2 = 0.693�
3k

4μ

1

J
, (7)

J =
∣∣∣∣
∫ R

0
F�[Veff(r) − V p

c (r)]un�(r)dr

∣∣∣∣
2

. (8)

Using the Sommerfeld parameter η = μ
�2

ZαZDe2

k
, we can

express the regular Coulomb wave function F�(r) as follows
[35]:

F�(r) = A�ρ
�+1f�(ρ), (9)

where ρ = kr ,

f�(ρ) =
∫ ∞

0
(1 − tanh2ε)�+1cos(ρtanhε − 2ηε)dε, (10)

A� =
√

1 − exp(−2πη)

2�{2πη(1 + η2)(22 + η2) . . . (�2 + η2)} 1
2

. (11)

In particular, for � = 0, A� is given by

A0 =
{

1 − exp(−2πη)

2πη

} 1
2

. (12)

For a typical case of α + daughter (α + 174Hg) system with
energy E = 7.79 MeV, usually called the Q value of decay,
Figs. 1(a)–1(d) illustrate the radial dependence of the three
terms in the integrand J1 = | ∫ R

0 F�[Veff(r) − V
p
c (r)]un�(r)dr|

of Eq. (8): the modulus of the resonance state wave func-
tion, |u(r)|, at resonance energy E = 7.79 MeV, the regular
Coulomb wave function, F0(r), for � = 0, and the combined
nuclear and Coulomb potential, Veff(r) (upper panel) that
generates the resonance energy 7.79 MeV and the difference in
potentials, Veff(r) − V

p
c (r) (lower panel). The total integrand

J1 multiplied by a scaling factor 1011 is shown in Fig. 1(d). As
clearly seen, the integrand shows a peak in the region close to
the Coulomb barrier radius, rB = 9.2 fm. This is because the
Coulomb function is vanishingly small at small r values, while
the wave function of the resonant state decreases exponentially
in the barrier region along with the value of the potential
difference (Veff − V

p
c ) becoming zero in the region r � rB .

The α-decay rate is thus expected to depend rather weakly on
the detailed structure of the wave function in the interior part of
the nucleus, while the contribution to it from the region r � rB

is negligibly small. As a result of this, though the integrand in
expression (8) for the quantity J shows explicit dependence
on distance r = R as the upper limits of integration, the value
of J does not change much due to some change in the value of
R in the region beyond rB . Hence, the value of decay time T1/2

[Eq. (7)], depending on the result of J, remains practically
independent of the choice of the distance R in region r � rB .

B. The effective α + nucleus potential and exact solution

The potential which simulates the total effective potential of
a typical α + nucleus system is expressed analytically as a
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FIG. 1. Different terms contributing to the α-decay rate in s-wave state in the 178Pb parent nucleus: (a) the modulus of the radial wave
function at resonance, (b) the regular Coulomb wave function, and (c) the α + daughter potential, Veff , in upper panel and the potential
difference, Veff − V p

c , in lower panel. In panel (d) the integral J1 = | ∫ R

0 F�(Veff (r) − V p
c (r))un�(r)dr| multiplied by 1011 is shown in the case

of the s wave. The barrier radius at rB = 9.2 fm is indicated by arrows.

function of radial distance r as follows [28]:

Veff(r) =
{

V01
{
λ2

1

[
B0 + (B1 − B0)

(
1 − y2

1

)] + ξ1
}

if 0 < r < R1

V02
{
λ2

2B2
(
1 − y2

2

) + ξ2
}

if r � R1,
(13)

where

ξ1 =
(

1 − λ2
1

4

)[
5
(
1 − λ2

1

)
y4

1 − (
7 − λ2

1

)
y2

1 + 2
](

1 − y2
1

)
,

ξ2 =
(

1 − λ2
2

4

)[
5
(
1 − λ2

2

)
y4

2 − (
7 − λ2

2

)
y2

2 + 2
](

1 − y2
2

)
.

Here, V01 and V02 are the strengths of the potential in MeV.
Denoting the mass of the particle moving under the potential by
μ, we use dimensionless variable ρn = (r − R1)bn with bn =
( 2m

�2 V0n)1/2, n = 1, 2, such that ρn is related to the new variable
yn as ρn = 1

λ2
n
[tanh−1yn − (1 − λ2

n)1/2tanh−1(1 − λ2
n)1/2yn].

The parameters λ1, B0, and B1 specify the potential in the
interior region r < R1 and the parameters λ2 and B2 specify
the potential in the outer region r > R1. The expression (13)
generates a potential barrier at r = R1 or y1 = y2 = 0 with the

height VB of the barrier expressed as VB = V01[λ2
1B1 + 1−λ2

1
2 ],

so that V01 = VB/[λ2
1B1 + 1−λ2

1
2 ].

One can use the global expressions for the radial posi-
tion R1 = rB = r0(A1/3

α + A
1/3
D ) + 2.72, and the height VB =

ZαZDe2

R1
(1 − a0

R1
) for the barrier potential, where r0 and a0

are two distance parameters expressed in femtometers. The

values of rB and VB obtained through these expressions for an
α + nucleus system are consistent with properties of combined
Coulomb-nuclear potential found suitable for the description
of scattering event of the system.

Using the potential given above, the Schrödinger equation is
solved for the wave function, which is expressed as a function
of r . The solution u1(ρ1) in the region r � R1 can be obtained
from Ref. [28].

The potential, having a pocket followed by a repulsive
barrier, can generate eigenstates with discrete positive en-
ergies, which are known as resonance states. Exactly at the
resonance energy, the wave function looks like a bound-state
wave function depicting the confinement property that the
probability amplitude I = ∫ |u1(r)|2dr in the interior region
0 < r < R1 is very large as compared to that in the outer region
(r > R1). Selecting two distances R1 and R2 with R2 > R1,
the ratio of the probability amplitudes

P =
∫ R1

0 |u1(r)|2dr∫ R2

0 |u1(r)|2dr
(14)

is calculated at a given incident energy Ec.m.. In the variation
of the quantity P with energy, the value of the energy for
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which P ≈ 1 gives the resonance energy or Qα energy of the
decaying α particle.

The α + nucleus potential, which can be obtained by
calculations based on mean-field theoretic approaches [32],
is closely reproduced by our analytically solvable potential
[Eq. (13)] by fixing the values of the parameters, namely r0, a0,
B0, b1 = √

B1A
−1/3
D , and λ1. It is obvious that different parent

nuclei decaying through α-decay mode with the characteristic
Qα value would experience different interaction potentials for
their corresponding α + daughter systems depending on the
values of mass number A and atomic number Z of the nucleus.
Keeping the values of four parameters fixed at r0 = 0.97 fm,
a0 = 1.6 fm, λ1 = 1.6, and

√
B1 = 6.2, the variation in the

potential is achieved by changing the value of the remaining
one parameter, namely B0, that specifies the depth of the
effective potential. In other words, at the incident energy
Ec.m. = Qα of α+daughter system, the quantity P (14) is
varied as a function of B0. The value of B0 for which P ≈ 1
becomes the optimum value for the depth of the potential
which would generate resonance (quasi-bound) state at the
energy that is equal to Qα .

C. Closed form expression for logarithm of decay half-life

For a typical α + nucleus system with its characteristic Qα

energy value and radius R = rB , the values of Sommerfeld
parameter η and parameter ρ = kR are such that the product
ηρ � 50 and ρ ≈ 10. In this situation, one can express the
regular Coulomb wave function F�(r) by using power series
expansion [35] and write

F
ps
� (r) = C�ρ

�+1G�, (15)

(n + 1)(n + 2� + 2)Gn+1 = 2ηρGn − ρ2Gn−1, (16)

G0 = 1, G1 = ηρ

(� + 1)
,

G� =
∑

j

Gj ,

C2
� = P�(η)

2η

C2
0 (η)

(2� + 1)
, (17)

P�(η) = 2η(1 + η2)(4 + η2) . . . (�2 + η2)22�

(2� + 1)[(2l)!]2
. (18)

In particular, for � = 0, P0(η) = 2η, and

C2
0 (η) = 2πη{exp(2πη) − 1}−1, (19)

F
ps
0 (r) = C0ρG0, (20)

where G0 is equal to G� derived through expression (16) taking
G1 = ηρ for � = 0.

In Fig. 2, we compare the results of F
ps
� (r) as a function of

r with the accurate values of F�(r) given by expression (9) for
� = 0 and find that

F�(r) = xmF
ps
� (r), (21)

with xm ≈ 70. Thus, the computation of the function F�(r)
through expression (9) could be avoided by using a simple
expression (15) multiplied by a factor xm = 70. The variation
of F�(r) = xmF

ps
� (r) with radial distance r as shown in Fig. 2

FIG. 2. Comparison of spatial variation of exact regular Coulomb
wave function F0(r) (exact) given by Eq. (9) with the results
F0(r)(ps) = xmF

ps
0 (r), xm = 70, given in terms of power series

expansion function F
ps
� (r) of (15) for � = 0 in a typical case of

α + 174Hg system.

indicates that the magnitude of this function is zero near the
origin r = 0 and it increases sharply at a distance around the
the Coulomb barrier position r = rB . Further, the resonant
wave function un�(r) attains negligibly small values in the
region beyond r = rB . In view of this, the integral J given by
expression (8) can be equated to the value of F�(r) = xmF

ps
� (r)

at a point r = R = rB with some multiplying factor to account
for the contributions to the integral from other regions within
0 < r < R such that

J = |cf F�(R)|2 = ∣∣cf xmF
ps
� (R)

∣∣2
. (22)

The value of cf (= √
J/|xmF

ps
� (R)|) for a typical α + nucleus

system is found to be of the order of 0.22 in the case of � = 0.
Using the simplified result for J given by (22) in terms

of F
ps
� (R) expressed by (15) with C2

0 (η) ≈ 2πη
exp(2πη) due to

large value of 2πη, the expression (7) for decay half-life T1/2

reduces to

T1/2 = 0.693�q�

exp(2πη)

f 2
m�

, (23)

where

q� = 2η(2� + 1)

P�(η)ρ2�
, (24)

fm� =
√

4μ/�2k
√

2πηcf xmρG�. (25)

Taking the logarithm of both sides, we get

logT1/2 = aχ + c + d + b�, (26)

a = 1.4398π
√

2(931.5)/197.329, (27)

χ = ZαZD

√
AαAD

(Aα + AD)Qα

, (28)

c = −2logS, (29)
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d = −2logD, (30)

b� = log(q�), (31)

S = cf xmRG�

(
AαAD

√
ZαZD

Aα + AD

)
, (32)

D = 2 × 931.5 × √
1.4398 × 2π

(197.329)2
√

0.693 × 197.329 × 0.333 × 10−23
.

(33)

The formula (26) is found to be similar to the VS relation
[18,19], log10T1/2 = a′ZD+b′√

Qα
+ c′ZD+d ′, where a′ = 1.478,

b′ = 8.714, c′ = −0.183, and d ′ = −34.699. But, unlike the
VS formula all the parameters and coefficients, a, c, d, and b�

in our expression (26) are well defined. Here, the coefficient
a = 2.693 and the constant d = −45.262. The parameter c
given by (29) is not a constant but depends critically on AD ,
ZD , and Qα values, and angular momentum partial wave (�)
through the factor S (32). Further, the formula (26) contains an
extra parameter b� = log(q�) which depends on � along with
the Q value through the expression (24) for q� to account for the
decay time of α particle emitting with some angular momenta
�. The plot of the results of logT1/2 as a function of the quantity
V = aχ + c in (26) with � = 0, similar to the VS parameter
Ṽ = a′ZD+b′√

Qα
+c′ZD , shows a perfect linear path to explain the

rectilinear variation of the experimental data as a function
of the same quantity V = aχ + c. This will be demonstrated
in the next section while explaining the measured results of
α-decay half-lives.

III. NUMERICAL RESULTS AND DISCUSSION

We use the solvable potential given by expression (13) for
the effective Coulomb-nuclear potential for the α + nucleus
system and vary the depth of the potential to reproduce the
result of α-decay energy Qα of any nucleus as a resonance
energy. Then, using the same resonance energy Qα and the
spatial variation of exact wave function un�(r) at resonance,
the result of half-life T1/2 of α decay is calculated by computing
the expression (7). This calculated value of T1/2 denoted by

T
(calt)

1/2 is then compared with the experimental result of T1/2

denoted by T
(expt)

1/2 for its explanation. Thus, in this analysis,
we do not fit the experimental value of half-life; rather, we
explain it by the result of T

(calt)
1/2 calculated independently from

the quantal theory of decay in the resonance state at energy
Qα of the system.

In Table I, we present the measured results of Qα values
denoted by Q

(expt)
α , the corresponding results of half-lives from

experiment T
(expt)

1/2 [36], and the results of present calculation

T
(calt)

1/2 using the expression (7) for several isotopes of Pb
element with A = 178–208. Starting from the small value
T

(expt)
1/2 = 1.2 × 10−4 s for low-mass isotope 178Pb to large

time T
(expt)

1/2 = 8.8 × 109 s for the case of 194Pb, almost all the
experimental values are explained quite well by our calculated
results, presented in the fourth column as T

(calt)
1/2 .

In the process of the computation of the integral J given
by expression (8), we estimate the value of the parameter cf

TABLE I. Comparison of experimental results of α-decay half-
life T

(expt)
1/2 with the calculated results T

(calt)
1/2 obtained by using formula

(7) and predicted values T
(pred)

1/2 derived from log10T
(pred)

1/2 given by
formula (26). Experimental data of α-decay half-life and Q(expt)

α are
obtained from Ref. [36].

Decay Q(expt)
α T(expt)

1/2 T(calt)
1/2 T(pred)

1/2

(MeV) (s) (s) (s)

178Pb → 174Hg 7.790 1.2 × 10−4 2.46 × 10−4 3.29 × 10−4

180Pb → 176Hg 7.419 4.2 × 10−3 3.32 × 10−3 3.96 × 10−3

182Pb → 178Hg 7.066 5.61 × 10−2 4.79 × 10−2 5.08 × 10−2

184Pb → 180Hg 6.774 6.13 × 10−1 5.06 × 10−1 4.92 × 10−1

186Pb → 182Hg 6.470 1.21 × 101 7.33 × 100 6.28 × 100

188Pb → 184Hg 6.109 2.70 × 102 2.17 × 102 1.70 × 102

190Pb → 186Hg 5.697 1.72 × 104 1.67 × 104 1.12 × 104

192Pb → 188Hg 5.221 3.56 × 106 4.85 × 106 2.76 × 106

194Pb → 190Hg 4.738 8.8 × 109 3.62 × 109 1.78 × 109

196Pb → 192Hg 4.226 1.36 × 1013 0.58 × 1013

198Pb → 194Hg 3.709 3.20 × 1017 1.18 × 1017

200Pb → 196Hg 3.151 3.25 × 1023 0.80 × 1023

202Pb → 198Hg 2.590 4.28 × 1030

204Pb → 200Hg 1.969 7.48 × 1042

206Pb → 202Hg 1.135 2.55 × 1073

208Pb → 204Hg 0.5172 5.73 × 10134

used in Eq. (22) to represent the total contributions of the
integral J in terms of the Coulomb function at a fixed distance
r = R = rB for different nuclei in the series of isotopes
and find that the values of cf are within the narrow range
0.2–0.26 in the case of � = 0. We use cf = 0.22 for all Pb
isotopes and estimate the values of T1/2 by using the closed
form expression (26) for the decimal logarithm of half-life
log10T

(pred)
1/2 = logT

(pred)
1/2 /2.30258. We extract the values of

T
(pred)

1/2 from the above results of log10T
(pred)

1/2 and present them
in the fifth column of Table I. As we have approximated the
integral J by the function F

ps
� (R) at a single point r = R = rB ,

we call this results of T1/2 predicted or approximate results

denoted as T
(pred)

1/2 . As we see clearly in this table, the predicted

results, T
(pred)

1/2 , are very close to the respective values of T
(calt)

1/2
calculated using the formula (7) with direct computation of
the integral J given by (8).

We compare our precisely calculated results, T
(calt)

1/2 , in the

form of decimal logarithm log10T
(calt)

1/2 as a function of Qα

with those from experiments (log10T
(expt)

1/2 ) in Fig. 3. As seen
clearly, the available measured results denoted by solid dots
are explained nicely by our results, log10T

(calt)
1/2 , represented by

a solid curve. The results of log10T
(pred)

1/2 calculated by using
the closed form expression (26) for all isotopes possessing
large as well as very small Qα values are presented as a
dashed curve in the same Fig. 3. We see that these predicted
results explain the available experimental data (solid dots)
as satisfactorily as the results log10T

(calt)
1/2 shown by a solid

curve. Further, the same dashed curve in continuation shows
the very large values of log10T

(pred)
1/2 for heavy isotopes with

small Qα values. We believe that these results will guide the
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FIG. 3. The logarithm of α-decay half-lives for different isotopes
of Pb nucleus. The solid curve represents calculated results log10T

(calt)
1/2

using formula (7) and the dashed curve represents the predicted values
log10T

(pred)
1/2 calculated using formula (26) with � = 0. Experimental

results log10T
(expt)

1/2 shown by solid dots are obtained from Table I of
Ref. [36].

experimentalists while trying to measure the decay half-lives
of these neutron-enriched nuclei possessing small Qα values.

We now consider a set of even-even nuclei for which
experimental data of Qα and α decay half-lives for ground-
state to ground-state transition with � = 0 are available. In
Table II, the first column denotes the parent α-decaying
nucleus, the second column represents the α-decay energy Qα

of the nucleus derived from the nuclear mass table by Audi
et al. [37,38], and the third column contains the logarithm
of experimental half-life, τ (expt) = log10T

(expt)
1/2 , obtained from

Refs. [39,40]. In the fourth column we present the logarithm of
T

(calt)
1/2 , τ (calt) = log10T

(calt)
1/2 , obtained by computing expression

(7). In the fifth column, we record the results of logarithm
of T1/2 calculated by using the closed-form expression (26)

denoted by τ (pred) = log10T
(pred)

1/2 where we have used cf =
0.22 for all nuclei. As we see in the fourth and fifth columns of
the table, the results of log10T

(calt)
1/2 and log10T

(pred)
1/2 are very

close with each other and they explain the corresponding
experimental values, log10T

(expt)
1/2 , reported in third column

for 136 cases of even-even nuclei with remarkable success.
We now wish to compare these calculated results with the
corresponding experimental values in graphical forms.

In Fig. 4, the results of log10T
(expt)

1/2 and log10T
(pred)

1/2
are plotted as a function of the Coulomb parameter χ =
ZαZD

√
AaAD

(Aa+AD)Qα
as done in Geiger-Nuttall law. It is seen

that the experimental data (solid dots) do not fall in a narrow
linear path but they are scattered. Our calculated results of
log10T

(pred)
1/2 are shown by solid lines. It is seen that instead of a

single straight line there are many linear lines almost parallel to
each other in this presentation and they are found to cover the
corresponding measured data (solid dots) in close proximity.
However, the comparison of the results in this form of plotting

TABLE II. Comparison of experimental results of ground-state to
ground-state (� = 0) α-decay half-life τ (expt) = log10T

(expt)
1/2 in seconds

with the calculated results τ (calt) = log10T
(calt)

1/2 in seconds obtained by

using formula (7) and predicted values τ (pred) = log10T
(pred)

1/2 in seconds
given by formula (26). Experimental data of α-decay half-life and Qα

value in MeV are obtained from Refs. [37–40].

A
Z Qα τ (expt) τ (calt) τ (pred)

106
52 4.290 −4.15 −4.12 −3.93
108
52 3.445 0.49 0.47 0.52
112
54 3.33 2.53 2.59 2.55
114
56 3.53 1.77 2.56 2.49
144
60 1.905 22.86 23.21 23.15
146
62 2.528 15.51 15.66 15.54
148
62 1.986 23.34 23.74 23.57
148
64 3.271 9.37 9.44 9.38
150
64 2.808 13.75 13.97 13.84
152
64 2.203 21.53 21.98 21.74
150
66 4.351 3.08 3.03 3.07
152
66 3.726 6.93 7.12 7.07
154
66 2.946 13.98 14.00 13.84
152
68 4.934 1.06 1.01 1.08
154
68 4.28 4.68 4.62 4.59
154
70 5.474 −0.35 −0.46 −0.36
156
70 4.811 2.42 2.71 2.71
158
70 4.172 6.63 6.48 6.40
156
72 6.028 −1.63 −1.77 −1.64
158
72 5.405 0.81 0.83 0.87
160
72 4.902 3.29 3.29 3.27
162
72 4.417 5.69 6.08 5.98
174
72 2.497 22.8 23.85 23.98
160
74 6.065 −0.99 −1.00 −0.92
162
74 5.677 0.48 0.58 0.61
164
74 5.278 2.22 2.41 2.38
166
74 4.856 4.74 4.60 4.51
180
74 2.508 25.75 25.68 25.43
162
76 6.767 −2.73 −2.69 −2.55
166
76 6.139 −0.52 −0.41 −0.36
168
76 5.818 0.62 0.90 0.90
170
76 5.539 1.79 2.13 2.09
172
76 5.227 3.98 3.64 3.55
174
76 4.872 5.34 5.54 5.40
186
76 2.823 22.8 22.73 22.57
168
78 6.997 −2.7 −2.66 −2.54
170
78 6.708 −1.85 −1.68 −1.61
174
78 6.184 0.03 0.26 0.26
176
78 5.885 1.22 1.50 1.46
178
78 5.573 2.45 2.91 2.82
180
78 5.24 4.24 4.55 4.41
188
78 4.008 12.53 12.10 12.07
190
78 3.251 19.31 19.09 18.97
174
80 7.233 −2.7 −2.65 −2.55
176
80 6.897 −1.69 −1.53 −1.48
180
80 6.258 0.73 0.84 0.80
182
80 5.997 1.86 1.92 1.85
184
80 5.662 3.44 3.44 3.31
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TABLE II. (Continued.)

A
Z Qα τ (expt) τ (calt) τ (pred)

186
80 5.205 5.71 5.74 5.56
188
80 4.705 8.72 8.67 8.41
186
82 6.47 0.68 0.59 0.79
188
82 6.109 2.06 2.07 2.23
190
82 5.697 4.25 3.94 4.05
192
82 5.221 6.57 6.39 6.44
194
82 4.738 9.99 9.26 9.25
210
82 3.792 16.57 16.06 16.15
190
84 7.693 −2.59 −2.89 −2.58
192
84 7.319 −1.48 −1.70 −1.44
194
84 6.987 −0.38 −0.57 −0.34
196
84 6.657 0.77 0.65 0.83
198
84 6.309 2.27 2.05 2.18
200
84 5.981 3.66 3.48 3.57
202
84 5.701 5.13 4.80 4.85
204
84 5.485 6.28 5.89 5.91
206
84 5.327 7.14 6.72 6.72
210
84 5.407 7.08 6.24 6.24
212
84 8.954 −6.52 −6.63 −6.19
214
84 7.833 −3.78 −3.60 −3.30
216
84 6.906 −0.84 −0.52 −0.34
218
84 6.115 2.27 2.66 2.74
198
86 7.349 −1.18 −1.03 −0.80
204
86 6.545 2.01 1.93 2.05
206
86 6.384 2.74 2.58 2.68
208
86 6.261 3.37 3.09 3.17
210
86 6.159 3.95 3.52 3.59
212
86 6.385 3.16 2.51 2.60
214
86 9.208 −6.57 −6.55 −6.12
216
86 8.200 −4.35 −3.91 −3.61
218
86 7.263 −1.46 −0.96 −0.77
220
86 6.405 1.75 2.33 2.41
222
86 5.590 5.52 6.17 6.14
206
88 7.415 −0.62 −0.50 −0.31
210
88 7.152 0.57 0.39 0.54
212
88 7.032 1.18 0.82 0.95
214
88 7.273 0.39 −0.09 0.07
216
88 9.526 −6.74 −6.63 −6.19
218
88 8.546 −4.59 −4.15 −3.84
220
88 7.592 −1.74 −1.26 −1.07
222
88 6.679 1.59 2.09 2.17
224
88 5.789 5.52 6.14 6.11
226
88 4.871 10.73 11.48 11.33
216
90 8.071 −1.57 −1.95 −1.72
218
90 9.849 −6.96 −6.70 −6.27
220
90 8.953 −5.01 −4.53 −4.21
222
90 8.127 −2.69 −2.19 −1.97
224
90 7.298 0.12 0.13 0.68
226
90 6.45 3.39 3.51 3.96
228
90 5.52 7.93 8.11 8.47
230
90 4.77 12.49 12.80 13.08
232
90 4.082 17.76 18.23 18.44
226
92 7.701 −0.57 −0.47 0.09

TABLE II. (Continued.)

A
Z Qα τ (expt) τ (calt) τ (pred)

228
92 6.803 2.90 2.89 3.36
230
92 5.993 6.43 6.59 6.97
232
92 6.716 4.13 3.66 3.66
234
92 4.858 13.04 13.52 13.55
236
92 4.573 15.0 15.58 15.59
238
92 4.27 17.25 18.02 17.98
232
94 6.716 4.13 4.13 4.55
234
94 6.31 5.89 5.96 6.34
236
94 5.867 8.11 8.18 8.51
238
94 5.593 9.59 9.68 9.98
240
94 5.256 11.45 11.70 11.96
242
94 4.985 13.18 13.47 13.70
244
94 4.666 15.50 15.75 15.95
238
96 6.62 5.51 5.23 5.79
240
96 6.398 6.52 6.24 6.78
242
96 6.216 7.28 7.30 7.63
244
96 5.902 8.87 8.91 9.21
246
96 5.475 11.26 11.35 11.60
248
96 5.162 13.16 13.32 13.54
240
98 7.719 2.03 1.80 2.26
246
98 6.862 4.21 5.16 5.53
248
98 6.361 7.56 7.48 7.79
250
98 6.128 8.69 8.64 8.93
252
98 6.217 8.01 8.15 8.45
254
98 5.927 9.31 9.67 9.94
246
100 8.378 0.17 0.26 0.76
248
100 8.002 1.66 1.52 1.98
250
100 7.557 3.38 3.14 3.55
252
100 7.153 5.04 4.74 5.11
254
100 7.308 4.14 4.08 4.46
256
100 7.027 5.14 5.24 5.58
252
102 8.55 0.74 0.42 0.90
254
102 8.226 1.82 1.48 1.92
256
102 8.581 0.53 0.27 0.75
260
106 9.92 −2.04 −2.23 −1.66
266
106 8.762 2.1 1.12 1.56

is not that clear. Further, the GN law usually designed for a
single line for all α emitters would certainly fail here for the
fitting of the widely scattered data.

The same experimental results log10T
(expt)

1/2 (solid dots)
[39,40] along with few more [18] for Z up to 118 are plotted,
in Fig. 5, as a function of the quantity V = aχ + c used
in Eq. (26). This quantity V, dependent on Qα and ZD ,
is equivalent to the Viola-Seaborg parameter used in the
empirical relation for the logarithm of the α-decay half-life
[18,19]. It is seen that the data shown by solid dots align
themselves in a narrow linear path. We show our calculated
results, log10T

(pred)
1/2 , as a function of V = aχ + c by a solid

line in the same Fig. 5. We find that the experimental results
are closely seated with the perfect straight path (solid line)
generated by our calculated values. This close comparison of
our results with the experimental data reveals that we have
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FIG. 4. Plot of decimal logarithm of half-lives log10T
(expt)

1/2 from

experiments (solid dots) [39,40] and log10T
(pred)

1/2 from calculation
using decay law (26) (solid line) as a function of χ in � = 0 state for
α emitters with Z = 54–118.

been able to explain, not fit, the measured results of decay
rate of α emission with remarkable success by our analytical
formula (26) derived from the basic principle of decay based
on the quantum theory of resonance scattering.

Besides the α decays of even-even nuclei with � = 0 state
of transition analyzed above, we find in the literature plenty
of experimental results of α-decay half-lives for decays of
even-odd, odd-even, and odd-odd nuclei with � = 0 as well
as � > 0 state of transition. Having known the Qα value at a
given state of emission from atomic mass tables or experiments
and the mass, AD , and charge, ZD , numbers of the daughter

FIG. 5. Plot of decimal logarithm of half-lives log10T
(expt)

1/2 from

experiments (solid dots) [18,39,40] and log10T
(pred)

1/2 from calculation
using decay law (26) (solid line) as a function of V = aχ + c in
� = 0 state for α emitters with Z = 54–118.

TABLE III. Logarithm of predicted α-decay half-lives τ (pred) =
log10T

(pred)
1
2

in seconds using formula (26) with parameter cf = 0.22

fixed for � = 0 and cf = 0.1 for � > 0. The experimental results of
half-lives τ (expt) = log10T

(expt)
1
2

in seconds for different �s are obtained

from Ref. [16]. The α-decay energies Qα in MeV are taken from
atomic mass table of Wang et al. [41].

A
Z Qα τ (pred) τ (expt) �

144
60 1.906 23.12 22.86 0
145
60 1.579 30.05 0
145
61 2.324 17.38 17.30 0
146
61 1.909 24.11 2
147
61 1.601 30.59 0
148
61 1.460 34.36 2
146
62 2.5288 15.53 15.51 0
147
62 2.3112 18.41 18.52 0
148
62 1.9869 23.58 23.34 0
149
62 1.8718 25.72 0
150
62 1.4504 35.70 0
130
63 2.9500 11.88 0
131
63 3.0900 10.60 2
132
63 3.1400 10.06 0
133
63 3.2200 9.46 3
134
63 3.0400 10.95 0
135
63 3.3500 8.33 3
136
63 2.9600 12.02 4
137
63 2.8600 13.33 5
138
63 2.5600 15.73 1
139
63 2.2000 21.72 5
140
63 1.7700 29.62 5
141
63 1.7220 29.99 0
148
63 2.6920 14.38 14.72 0
151
63 1.9650 24.96 26.20 2
134
64 3.7800 5.67 0
135
64 3.4200 7.98 1
136
64 3.5700 7.15 0
137
64 3.5900 7.04 2
138
64 3.2900 9.36 0
139
64 2.8000 13.73 1
140
64 2.6000 16.39 0
141
64 2.3800 19.90 5
142
64 2.1100 23.40 0
143
64 1.7200 31.07 0
148
64 3.2712 9.38 9.37 0
149
64 3.1000 10.91 13.27 0
150
64 2.8080 13.84 13.75 0
151
64 2.6531 15.59 15.03 0
152
64 2.2049 21.73 21.53 0
153
64 1.8283 28.63 2
136
65 3.7400 6.56 0
137
65 3.8400 5.85 0
138
65 3.5700 7.78 0
139
65 3.5900 7.62 0
140
65 3.3400 9.61 0
141
65 3.1500 11.58 4
142
65 2.7700 15.77 5
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TABLE III. (Continued.)

A
Z Qα τ (pred) τ (expt) �

144
65 2.1900 22.97 0
145
65 1.2000 48.10 2
149
65 4.0778 4.18 4.97 2
150
65 3.5870 7.54 2
151
65 3.4970 8.22 8.82 2
152
65 3.1600 11.32 4
154
65 2.2100 23.14 5
138
66 3.9500 5.72 0
139
66 4.2300 4.03 3
140
66 3.8400 6.43 0
141
66 3.4100 9.34 1
142
66 3.1100 12.37 0
143
66 3.0400 13.63 5
144
66 2.7870 15.72 0
145
66 2.5570 18.51 0
146
66 1.9800 27.60 0
147
66 1.6100 35.89 0
149
66 2.8000 15.61 3
150
66 4.3512 3.07 3.08 0
151
66 4.1795 4.07 4.28 0
152
66 3.7260 7.07 6.93 0
153
66 3.5590 8.32 8.39 0
154
66 2.9450 13.85 13.98 0
155
66 2.6080 17.77 2
156
66 1.7530 32.25 0
140
67 4.3700 3.69 0
141
67 4.1800 4.85 2
142
67 3.9900 6.01 0
143
67 3.6600 8.34 0
144
67 3.4500 10.00 0
145
67 3.0000 14.45 4
147
67 2.2400 23.94 0
148
67 1.9500 29.14 0
149
67 2.2100 25.02 5
150
67 3.3900 10.06 1
151
67 4.6950 2.26 5
152
67 4.5073 2.74 0
153
67 4.0520 5.97 5
154
67 4.0410 5.50 6.57 0
155
67 3.1590 12.49 2
156
67 2.8100 16.13 2
157
67 2.0570 26.61 1
145
68 3.8800 7.88 5
146
68 3.3700 11.34 0
147
68 3.1400 13.46 0
148
68 2.6660 18.71 0
149
68 2.0760 27.67 0
150
68 2.2990 23.85 0
151
68 3.5050 10.21 3
152
68 4.9344 1.09 1.06 0
153
68 4.8023 1.73 1.85 0
154
68 4.2796 4.60 4.68 0
155
68 4.1180 5.59 6.16 0

TABLE III. (Continued.)

A
Z Qα τ (pred) τ (expt) �

156
68 3.4830 10.23 0
157
68 3.3280 11.61 0 2
158
68 2.6650 18.58 0
159
68 2.1700 25.86 0
160
68 2.0390 28.22 0
161
68 1.7980 33.23 0
162
68 1.6480 36.90 0
164
68 1.3040 47.62 0
153
69 5.2482 0.13 0.21 0
154
69 5.0938 0.83 0
155
69 4.5720 3.47 3.06 0
156
69 4.3450 4.76 5.12 0
157
69 3.8510 8.53 5
158
69 3.5110 10.65 0
159
69 3.0400 15.04 0
160
69 2.7500 18.58 4
161
69 2.5100 21.07 1
162
69 2.2900 25.31 5
163
69 2.1760 26.73 3
164
69 2.0530 29.15 4
165
69 1.8428 33.33 3
154
70 5.4742 −0.36 −0.36 0
155
70 5.3387 0.21 0.30 0
156
70 4.8110 2.72 2.42 0
157
70 4.6220 3.72 3.89 0
158
70 4.1700 6.42 6.63 0
159
70 3.9450 7.98 2
160
70 3.6210 10.38 0
161
70 3.1250 14.87 0
162
70 3.0520 15.61 0
163
70 2.8360 18.01 0
164
70 2.6220 20.69 0
165
70 2.4800 22.70 2
166
70 2.3130 25.19 0
167
70 2.1510 27.94 0
168
70 1.9352 32.15 0
170
70 1.7359 36.73 0
155
71 5.8027 −1.23 0
156
71 5.5960 -0.41 0
157
71 5.1077 2.22 5
158
71 4.7900 3.35 0
159
71 4.4900 5.49 5
160
71 4.1300 7.26 0
161
71 3.7500 10.00 0
162
71 3.4500 12.52 2
163
71 3.3500 13.42 2
164
71 3.2300 14.50 0
165
71 3.0300 16.81 4
167
71 2.8000 19.44 4
168
71 2.4100 25.07 5
169
71 2.4200 24.61 4
170
71 2.1560 28.80 2
171
71 2.2892 26.68 4
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TABLE III. (Continued.)

A
Z Qα τ (pred) τ (expt) �

172
71 2.1503 28.47 1
173
71 1.9681 32.66 4
174
71 1.7992 36.16 0
156
72 6.0280 −1.64 −1.63 0
157
72 5.8800 −1.09 −0.91 0
159
72 5.2250 1.69 0
160
72 4.9023 3.27 2.77 0
161
72 4.6850 4.46 2
162
72 4.4160 5.99 5.80 0
163
72 4.1500 7.73 2
164
72 3.9220 9.29 0
165
72 3.7800 10.39 2
166
72 3.5400 12.31 0
167
72 3.4100 13.50 2
168
72 3.2300 15.17 0
169
72 3.1500 15.97 0
170
72 2.9170 18.52 0
171
72 2.7350 20.38 1
172
72 2.7540 20.48 0
173
72 2.5400 23.45 3
174
72 2.4932 24.04 22.80 0
175
72 2.3993 25.51 2
176
72 2.2528 27.88 0
177
72 2.2443 28.05 2
178
72 2.0830 30.96 0
157
73 6.3550 −1.99 5
158
73 6.1240 −1.57 0
159
73 5.6810 0.58 0.11 5
160
73 5.4510 1.14 0
161
73 5.3300 1.68 0
162
73 5.0100 2.85 3.68 1
163
73 4.7490 4.60 0
164
73 4.5600 5.30 1
165
73 4.2900 7.39 3
166
73 4.3100 6.82 1
167
73 4.0200 9.19 2
168
73 3.8200 10.68 2
169
73 3.7300 11.38 2
170
73 3.4600 13.72 3
171
73 3.3600 14.21 1
172
73 3.3100 15.11 3
173
73 3.2630 15.13 1
174
73 3.1400 16.97 4
175
73 2.9960 18.30 0
179
73 2.3829 26.56 0
158
74 6.6130 −2.84 0
159
74 6.4500 −2.30 −2.09 0
160
74 6.0650 −0.92 −0.99 0
161
74 5.9230 −0.38 0
162
74 5.6773 0.62 0.46 0
163
74 5.5200 1.31 0.83 2
164
74 5.2785 2.39 2.38 0
165
74 5.0290 3.61 0

TABLE III. (Continued.)

A
Z Qα τ (pred) τ (expt) �

166
74 4.8560 4.51 4.74 0
167
74 4.7400 5.14 0
168
74 4.5000 6.54 0
169
74 4.2900 7.87 0
170
74 4.1400 8.88 0
171
74 3.9600 10.16 0
172
74 3.8400 11.07 0
173
74 3.5600 13.39 0
174
74 3.6000 13.03 0
175
74 3.3700 15.19 3
176
74 3.3400 15.40 0
177
74 3.2900 15.88 0
178
74 3.0120 18.83 0
179
74 2.7620 21.92 2
180
74 2.5150 25.33 25.75 0
181
74 2.2050 30.12 1
160
75 6.6980 −2.72 −2.02 0
161
75 6.3280 −1.46 0
162
75 6.2400 −1.15 −0.96 0
163
75 6.0120 −.29 −0.22 0
164
75 5.9260 0.04 0
165
75 5.6330 1.25 0
166
75 5.4600 1.65 1
167
75 5.2670 3.33 5
168
75 5.0630 3.95 2
169
75 5.0140 4.19 2
170
75 4.7600 5.73 4
171
75 4.6800 6.04 3
172
75 4.4400 7.44 0
173
75 4.3100 7.91 1
174
75 4.0400 10.15 0
175
75 4.0100 10.36 0
176
75 3.8400 11.66 0
177
75 3.7000 12.80 0
178
75 3.6600 13.12 0
179
75 3.4000 15.51 2
180
75 3.1000 18.56 0
181
75 2.7710 22.57 2
183
75 2.1240 32.98 2
184
75 2.2870 29.95 3
185
75 2.1941 31.60 2
186
75 2.0777 33.89 2
162
76 6.7670 −2.55 −2.73 0
163
76 6.6800 −2.28 0
164
76 6.4790 −1.60 0
165
76 6.3400 −1.11 0
166
76 6.1390 −0.37 −0.52 0
167
76 5.9800 0.25 0
168
76 5.8161 0.91 0.62 0
169
76 5.7130 1.34 1.59 0
170
76 5.5368 2.11 1.79 0
171
76 5.3710 2.89 2.69 2
172
76 5.2240 3.57 3.91 0
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TABLE III. (Continued.)

A
Z Qα τ (pred) τ (expt) �

173
76 5.0550 4.42 5.03 0
174
76 4.8700 5.41 5.34 0
175
76 4.5600 7.22 0
176
76 4.5700 7.15 0
177
76 4.3500 8.57 2
178
76 4.2600 9.14 0
179
76 4.1900 9.61 0
180
76 3.8500 12.17 0
181
76 3.7300 13.14 0
182
76 3.3750 16.38 0
183
76 3.2100 17.70 1
184
76 2.9570 20.92 0
185
76 3.0190 20.65 5
186
76 2.8204 22.62 22.80 0
187
76 2.7213 23.93 0
188
76 2.1434 33.44 0
189
76 1.9766 36.94 0
164
77 6.9700 −2.82 0
165
77 6.8200 −2.34 0
166
77 6.7220 −2.03 −1.95 0
167
77 6.5048 −1.29 0
168
77 6.3810 −0.85 0
169
77 6.1410 0.04 0.11 0
170
77 6.1100 0.15 0.08 0
171
77 6.0010 0.96 5
172
77 5.9910 0.62 2
173
77 5.7160 1.78 3
174
77 5.6240 2.17 2
175
77 5.4300 3.05 3.02 2
176
77 5.2400 3.95 2.60 0
177
77 5.0800 4.77 4.70 0
178
77 5.0000 5.18 0
179
77 4.7840 6.38 0
180
77 4.6600 7.13 2
181
77 4.3700 8.95 0
182
77 4.1800 10.25 0
183
77 3.9600 11.53 1
184
77 3.8000 13.37 4
185
77 3.7600 13.13 1
186
77 3.8500 12.76 2
187
77 3.8370 12.85 2
188
77 3.4480 16.31 2
189
77 2.9410 21.85 2
190
77 2.7501 24.51 4
191
77 2.0828 35.63 2
166
78 7.2860 −3.42 0
167
78 7.1600 −3.05 0
168
78 6.9900 −2.52 −2.70 0
169
78 6.8580 −2.09 2
170
78 6.7070 −1.61 −1.85 0
171
78 6.6070 −1.27 −1.35 0
172
78 6.4640 −0.77 0
173
78 6.3500 −0.35 −0.36 2

TABLE III. (Continued.)

A
Z Qα τ (pred) τ (expt) �

174
78 6.1830 0.27 0.03 0
175
78 6.1781 0.29 1.73 2
176
78 5.8850 1.46 1.22 0
177
78 5.6428 2.52 2.33 0
178
78 5.5720 2.83 2.45 0
179
78 5.4120 3.59 2
180
78 5.2400 4.42 4.24 0
181
78 5.1500 4.87 4.86 0
182
78 4.9510 5.94 0
183
78 4.8220 6.66 7.48 0
184
78 4.5980 8.00 0
185
78 4.4370 9.45 5
186
78 4.3200 9.81 0
187
78 4.5500 8.30 3
188
78 4.0030 12.12 12.53 0
189
78 3.9000 12.95 2
190
78 3.2500 18.99 19.31 0
191
78 3.0950 20.74 2
192
78 2.4220 30.10 0
193
78 2.0810 36.59 2

nucleus, our formula (26) can provide the results of α-decay
half-life for all types of α-emitting nuclei: even-odd, odd-even,
or odd-odd nuclei with the specified � values. The Qα values of
several such α emitters are obtained from Ref. [39] and used in
formula (26) to estimate the values of α-decay half-lives. We
present these results in Table III as τ (pred) = log10T(pred)

1
2

and

compare them with the available experimental results denoted
as τ (expt) = log10T(expt)

1
2

in the same Table III. On comparison,

we find that our predicted results, τ (pred), of decay rate are
quite close to the corresponding measured values, τ (expt), both
for � = 0 and � > 0 states of emission in almost all cases
of nuclei. In the same Table III, we have listed the cases of
nuclei for which experimental data of decay half-lives are not
known. For these nuclei, the results of α-decay half-lives are
predicted by (26) using Qα values obtained from the atomic
mass table of Wang et al. [41]. These predicted results, τ (pred),
may be useful for future experiments and identification. It may
be pointed out here that the Qα values obtained from Ref. [41]
for the nuclei mentioned in Table III are slightly different from
the values of some similar nuclei presented in Table II, which
are derived from the nuclear mass table by Audi et al. [37,38].

For α emission from a deformed nucleus, one can consider
for the daughter nucleus a Fermi density distribution with
quadrupole deformation and for the α particle a spheri-
cal Gaussian shape in the folding calculation [42,43]. The
resulting deformed double-folded potential with different
quadrupole deformations can be carefully simulated by our
versatile potential expression (13). The exact resonance wave
function corresponding to this potential can be readily used
in the expression (7) for the estimate of decay widths and
hence the half-lives in deformed emitters of α cluster. We
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pursue this investigation and the results will be reported
soon.

IV. CONCLUSION

The general formula of the α decay width expressed in terms
of regular Coulomb function, resonant wave function, and the
difference of potentials is simplified by using the exact wave
function at resonance generated by the α + nucleus potential
that represents the interaction obtained in the mean-field
approximation scheme. From this decay width an extended
expression for the decay half-life is derived. Invoking some
approximations to different functions in this expression,
we obtain a closed formula for the logarithm of half-life
in terms of characteristic Q value equal to the resonance
energy and the mass and charge numbers of the α emitter.
Having all its terms defined, this formula could replace

the empirical Viola-Seaborg rule. The calculated results of
half-life obtained by using the analytic expression of half-life
or the closed formula for the logarithm of the half-life are
shown to explain the corresponding measured data with values
ranging from 10−6 s to 1022 y in the cases of large number
of α emitters that include heavy and superheavy nuclei. The
rectilinear alignment of the logarithm of the experimental
decay half-lives as a function of the Viola-Seaborg parameter is
reproduced by our analytic expression of logarithm of decay
half-lives as a perfectly straight line to mark the excellent
explanation of the measured data. Further, having known the
Qα value from the atomic mass tables at a given state of
emission and the mass, AD , and charge, ZD , numbers of
the daughter nucleus, our closed formula (26) can predict the
results of α-decay half-life for all types of α-emitting nuclei:
even-odd, odd-even, or odd-odd nuclei with the specified �
values.
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