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Possibility of generating a 4-neutron resonance with a T = 3/2 isospin 3-neutron force
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We consider the theoretical possibility of generating a narrow resonance in the 4-neutron system as suggested
by a recent experimental result. To that end, a phenomenological T = 3/2 3-neutron force is introduced, in
addition to a realistic NN interaction. We inquire what the strength should be of the 3n force to generate such a
resonance. The reliability of the 3-neutron force in the T = 3/2 channel is examined, by analyzing its consistency
with the low-lying T = 1 states of 4H, 4He, and 4Li and the 3H +n scattering. The ab initio solution of the 4n

Schrödinger equation is obtained using the complex scaling method with boundary conditions appropriate to the
four-body resonances. We find that to generate narrow 4n resonant states a remarkably attractive 3N force in the
T = 3/2 channel is required.
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I. INTRODUCTION

The possibility of detecting a 4-neutron (4n) structure of
any kind—bound or resonant state—has intrigued the nuclear
physics community for the last 50 years (see Refs. [1–3] for
historical reviews).

First of all, many experimental trials have been undertaken
to seek for 4-neutron systems, in particular some recurrent
claims of such an observation have been published [4–8] but
none of them was really confirmed [9].

Theoretical studies were mostly concentrated in exploring
the possible existence of bound multineutrons, agreeing in
unison about the impossibility to observe a bound 4n state
[10–18]. None of the known nucleon-nucleon (NN ) in-
teractions accommodate such a structure and the required
modifications to ensure the 4n binding—would they be at the
2N or 3N level—are so sizeable that the entire nuclear chart
would be strongly perturbed. Several studies [14–16] indicate
that the required additional extra-binding amounts to several
tens of MeV, much beyond the uncertainties of current nuclear
interaction models, including the 3N forces.

A different situation occurs for the 4n resonant states. On
the one hand, calculation of resonant states turns out to be a
much more difficult task, both formally and technically. On the
other hand, it is far from trivial to relate the calculated resonant
state parameters, usually their S-matrix pole positions, to
the experimental observables. Unless a resonant state is very
narrow and, therefore, a Breit-Wigner parametrization is valid,
the experimental observables have no straightforward relation
with the S-matrix pole position of the resonance. In this case,
a careful analysis of the reaction mechanism is necessary to
establish a relation with the experimental observables. If a

resonance is found very far from the real energy axis (physical
domain) it will have no significant impact on a physical
process.

Following this line of reasoning, some calculations based
on semirealistic NN forces indicated null [13] or unlikely
evidence [14] for an observable 4n resonance. On the other
hand a Green’s function Monte Carlo (GFMC) calculation [15]
using the realistic AV18 [19] NN potential and Illinois-IL2 3N
forces [20] suggested a possible (broad) resonance at ER =
2 MeV. This result was obtained by a linear extrapolation of
tetraneutrons binding energies, artificially bound in an external
Woods-Saxon potential with V0 depth, in the limit V0 → 0.
One should note, however, that to determine the position of a
broad resonance by such a procedure, a special functional
form must be used [21], which critically depends on the
near threshold input values, an energy region where GFMC
calculations are difficult to converge.

The ab initio solutions for the 3N and 4n states in the
continuum were first presented in Refs. [17,18] by solving
the corresponding Faddeev-Yakubovsky (FY) equations [22]
in the complex energy plane. The nn interaction used was
the charge dependent Reid-93 potential from the Nijmegen
group [23]. To locate the resonance position of the physical
tetraneutron an ad hoc 4n interaction was first added to the
nn forces with the aim of artificially creating a 4n bound
state. The strength of this 4n term was adiabatically decreased
and the trajectory of the bound state singularity was traced
in the complex energy plane from the negative real axis to
the resonance position until it reached its physical point. The
conclusion of this work was clear: None of the examined
4n states (Jπ = 0±,1±,2±) could manifest themselves as a
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near-threshold resonance. The corresponding pole trajectories
moved too far from the real axis, reached the third energy
quadrant and generated large widths �∼15 MeV.

A recent experiment on the 4He(8He ,8Be)4n reaction
generated an excess of 4n events with low energy in the
final state. This observation was associated with a possible
4n resonance with an estimated energy ER = 0.83 ± 0.65 ±
1.25 MeV above the 4n breakup threshold and an upper
limit of width � = 2.6 MeV [7,8]. Low statistics, however,
have not allowed one to extract the spin or parity for the
corresponding state. It is worth noting that a further analysis of
the experimental results of Ref. [4] concluded that the observed
(very few) events were also compatible with a ER = 0–2 MeV
tetraneutron resonance [6].

In view of the obvious tension between the theoretical
predictions and the last experimental results, we believe that
it would be of some interest to reconsider this problem from
a different point of view. In the dynamics of Ref. [17], the
3N forces were not included, and the 4n force added to the
nn potential was a pure artifact for binding the system and
controlled the singularity when moving into the resonance
region in the complex energy plane.

The NN interaction models are almost perfect in the sense
of χ2/data ≈ 1. This was already the case with the Nijmegen
[23], Bonn [24], and Argonne [19] charge symmetry breaking
versions, despite some arbitrariness in their meson contents
and couplings. The remarkable progress that the effective field
theory (EFT) approach to nuclear physics offers, even though it
does not dramatically improve the agreement between the NN
models and NN data, does allow a high degree of consistency
and refinement that leaves little room for improvement.

The nn interaction part is the least constrained because of
the absence of the experimental data on nn scattering. Still,
as observed in Refs. [16,18], the margin of uncertainty to
make the tetraneutron bound or visibly resonant remains quite
limited.

The 2-neutron system is virtual state in the 1S0 partial
wave but any arbitrary enhancement introduced to obtain
the 4n binding would be in conflict with the unbound—or
loosely bound [25]—dineutron. However, because of the Pauli
principle the effective interaction between dineutrons is mostly
repulsive and this partial wave does not contribute much in
building attraction between the dineutron pairs.

In contrast, the Pauli principle does not prevent P and
higher partial wave contributions from increasing the attraction
between a dineutron and another neutron. Moreover P waves
have been a long standing controversy in nuclear physics
[26–28], and some few-nucleon scattering observables (as
analyzing powers) would favor stronger P waves. Nevertheless
the discrepancies with scattering data might be accounted for
by a small variation of the nn P waves, of the order of 10%.
In fact, some previous studies [16] showed that, to bind the
tetraneutron, the attractive nn P waves should be multiplied
by a factor η ∼ 4, rendering the dineutron strongly resonant in
these P waves. One should also notice that if all the nn P -wave
interactions are enhanced with the same factor η, the dineutron
becomes bound well before the tetraneutron. To create a narrow
4n resonance, a slightly weaker enhancement is required, but
still this enhancement factor remains considerable, η � 3.

Therefore such a modification strongly contradicts the nature
of the nuclear interaction, which satisfies somewhat well
isospin conservation.

Finally, as noted in Ref. [20], a 3-neutron force might
make a key contribution in building the additional attraction
required to generate resonant multineutron clusters. As we will
see in the next section, the presence of an attractive T = 3/2
component in the 3N force is clearly suggested in the studies
based on the best NN and T = 1/2 3N potentials, which often
underestimate the binding energies of the neutron-rich sys-
tems. Furthermore the contribution of such a force should rise
quickly with the number of neutrons in the system, and we will
indeed demonstrate this when comparing 3N and 4n systems.

In our previous studies [16,18] we have employed different
realistic NN interaction models (Reid93, AV18, AV8′, INOY)
in analyzing multineutron systems and found that they provide
qualitatively the same results. For all these reasons we will
focus on the modification of the 3N force in the total isospin
T = 3/2 channel. The main purpose of this work is, thus, to
investigate whether a resonant tetraneutron state is compatible
with our knowledge of the nuclear interaction, in particular
with the T = 3/2 3N force. To this aim we will fix the NN
force with a realistic interaction and introduce a simple isospin-
dependent 3N force acting in both isospin channels. Its T =
1/2 part will be adjusted to describe some A = 3 and A =
4 nuclear states and the T = 3/2 part will be tuned until a
4n resonance is manifested. The exploratory character of this
study, as well as the final conclusions, justify the simplicity of
the phenomenological force adopted here.

The paper is organized as follows. In Sec. II we will
present the NN and 3N interactions and the unique adjustable
parameter of the problem. Section III is devoted to sketching
the complex scaling method [29–33] that is used to solve
the 4n Schrödinger equation under the correct boundary
condition for resonant states. Also we briefly explain the
Gaussian expansion method [34–39] and the FY equations for
solving the A = 4 problem. Results obtained are presented
and discussed in Sec. IV; finally conclusions are drawn in the
last section, Sec. V.

II. HAMILTONIAN

We start with a general nonrelativistic nuclear Hamiltonian,

H = T +
∑
i<j

V NN
ij +

∑
i<j<k

V 3N
ijk , (2.1)

where T is a four-particle kinetic-energy operator, V NN
ij and

V 3N
ijk are, respectively, 2- and 3-nucleon potentials. In this work

we use the AV8′ version [40] of the NN potentials derived
by the Argonne group. This model describes well the main
properties of the NN system and it is relatively easy to handle.
The main properties of this interaction are outlined in the
benchmark calculation of the 4He ground state [41].

As most NN forces, AV8′ fails to reproduce binding
energies of the lightest nuclei, in particular those of 3H, 3He,
and 4He. A 3N interaction is required and we have therefore
supplemented AV8′ with a purely phenomenological 3N force
which is assumed to be isospin dependent and given by a sum
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of two Gaussian terms:

V 3N
ijk =

3/2∑
T =1/2

2∑
n=1

Wn(T )e−(r2
ij +r2

jk+r2
ki )/b

2
n Pijk(T ), (2.2)

where Pijk(T ) is a projection operator for the total 3-nucleon
isospin T state. The parameters of this force—its strength Wn

and range bn—are adjusted to reproduce the phenomenology.
In the case of T = 1/2 the parameters were fixed in

Ref. [42] when studying the Jπ = 0+ states of 4He nucleus.
They are

W1(T = 1/2) = −2.04 MeV, b1 = 4.0 fm,
(2.3)

W2(T = 1/2) = +35.0 MeV, b2 = 0.75 fm.

Using this parameter set, in addition to the AV8′ and
Coulomb interactions, one obtains the following binding
energies: 3H = 8.41 (8.48) MeV, 3He = 7.74 (7.72) MeV,
4He (0+

1 ) = 28.44(28.30) MeV, and the excitation energy
of 4He(0+

2 ) = 20.25 (20.21) MeV [42], where the experi-
mental values are shown in parentheses. Furthermore, this
parametrization allows one to reproduce the observed tran-
sition form factor 4He(e,e′)4He(0+

2 ) (cf. Fig. 3 of Ref. [42]).
Although the 3H and 3He nuclei contain in their wave func-

tions a small admixture of isospin T = 3/2 configurations,
these calculations have been performed by neglecting it, as it
is the case in most of the few-nucleon calculations.

The 4n system is only sensitive to the T = 3/2 component
of the 3N interaction. This component has almost no effect in
proton-neutron symmetric nuclei, but it manifests clearly itself
in the series of He isotopes, where the purely T = 1/2 3N
force, adjusted to reproduce well the 4He, fails to describe the
increasingly neutron-rich He isotopes. This can be illustrated
with the results of the GFMC calculations, Table II of Ref. [20],
which are displayed in Fig. 1.
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FIG. 1. Experimental binding energies of the He isotopes com-
pared with the predictions based on AV18 and AV18+UIX Hamilto-
nians. The UIX 3N force is purely repulsive in the T = 3/2 channel
and exhibits attraction only in the T = 1/2 one. Displayed values are
taken from Table II of Ref. [20].

This situation was dramatically improved in Ref. [20],
where several 3 � A � 8 nuclei were used to fix the param-
eters of a new series of spin-isospin dependent Illinois 3N
forces (IL1−IL5) which reproduce well the experimental data
in Fig. 1. It is worth noting, however, that, from the results in
Fig. 1, the effect of the T = 3/2 component of the 3N force
remains smaller than the T = 1/2 component.

Throughout the present paper, the attractive strength pa-
rameter of the T = 3/2 component, W1(T = 3/2), will be
considered as a free parameter and varied to analyze the
existence of a possible tetraneutron resonance. The other
parameters retain the same value as in the T = 1/2 case; that
is, we use

W1(T = 3/2) = free, b1 = 4.0 fm,
(2.4)

W2(T = 3/2) = +35.0 MeV, b2 = 0.75 fm.

We will explore in parallel the effect of such a force
on the A = 4 nuclei that could be sensitive to the T = 3/2
component, that is, 4H, 4He, and 4Li, in states with total isospin
T = 1 and angular momentum Jπ = 1− and 2−.

III. COMPUTATIONAL METHOD

Two independent configuration space methods are used
in solving the four-body problem: The Gaussian expansion
method [34–39] is applied to solve the Schrödinger equation
and Lagrange-mesh technique applied to solve the FY equa-
tion. To simplify boundary conditions related to the four-body
problem in the continuum we employ the complex scaling
method [29–33]. These methods will be briefly sketched in
what follows.

A. Complex scaling method

In this work, we focus on the possible existence of the
narrow resonant states of 4n, which may enhance significantly
the 4n production cross section. We employ the complex
scaling method (CSM) to calculate resonance positions and
widths. The CSM and its application to nuclear physics
problems are extensively reviewed in Refs. [43,44] and
references therein. Using the CSM, the resonance energy (its
position and width) is obtained as a stable complex eigenvalue
of the complex scaled Schrödinger equation:

[H (θ ) − E(θ )]�JM,T Tz
(θ ) = 0, (3.1)

where H (θ ) is obtained by making the radial transformation
of the four-body Jacobi coordinates (Fig. 1) in H of Eq. (2.1)
with respect to the common complex scaling angle of θ :

rc → rc eiθ , Rc → Rc eiθ , ρc → ρc eiθ (c = K,H). (3.2)

According to the ABC theorem [29,30], the eigenvalues of
Eq. (3.1) may be separated into three groups:

(i) The bound state poles remain unchanged under the
complex scaling transformation and remain on the negative
real axis.

(ii) The cuts, associated with discretized continuum states,
are rotated downward making an angle of 2θ with the real axis.

(iii) The resonant poles are independent of parameter θ
and are isolated from the discretized nonresonant continuum
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FIG. 2. Four-nucleon Jacobi coordinates of K-type and H-type
configurations.

spectrum lying along the 2θ -rotated line when the relation
tan 2θ > −Im(Eres)/Re(Eres) is satisfied. The resonance width
is defined by � = −2 Im(Eres).

In the next subsection, we shall show, as an example
satisfying the above properties (i)–(iii), narrow and broad 4n
resonances and the 4n continuum spectrum rotated into the
complex energy plane.

B. Gaussian expansion method

A great advantage of the CSM is that it allows one
to describe the resonant states using L2-integrable wave
functions. Therefore, the Gaussian expansion method (GEM)
[34–39] was successfully applied in conjunction with the CSM
in nuclear few-body calculations [43–45] as well as in recent
three- and four-body calculations by two authors (E.H. and
M.K.) of the present manuscript [46–48].

To expand the system’s wave function �JM,T Tz
(θ ) we

employ the Gaussian basis functions of the same type as those
used in the aforementioned references. An isospin rather than a
neutron-proton (particle) basis is used to distinguish between
different nuclear charge states 4n, 4H, 4He, and 4Li. In the
GEM approach, the 4-nucleon wave function is written as a
sum of the component functions in the K- and H-type Jacobi
coordinates (Fig. 2), employing the LS coupling scheme:

�JM,T Tz
(θ ) =

∑
α

C(K)
α (θ )
(K)

α +
∑

α

C(H)
α (θ )
(H)

α , (3.3)

where the antisymmetrized four-body basis functions 
(K)
α and


(H)
α (whose suffixes JM,T Tz are dropped for simplicity) are

described by


(K)
α = A{[[[

φ
(K)
nl (rK)ϕ(K)

νλ (ρK)
]
�

ψ
(K)
NL(RK)

]
I

× [[χs(12)χ1/2(3)]s ′χ1/2(4)]S
]
JM

× [[ηt (12)η1/2(3)]t ′η1/2(4)]T Tz

}
, (3.4)


(H)
α = A{[[[

φ
(H)
nl (rH)ϕ(H)

νλ (ρH)
]
�

ψ
(H)
NL(RH)

]
I

× [χs(12)χs ′ (34)]S]JM [ηt (12)ηt ′(34)]T Tz

}
, (3.5)

with α ≡ {nl,νλ,�,NL,I,s,s ′,S,t,t ′}. A is the 4-nucleon
antisymmetrizer. The parity of the wave function is given
by π = (−)l+λ+L. The χ ’s and η’s are the spin and isospin
functions, respectively. The spatial basis functions φnl(r),
ϕνλ(ρ), and ψNL(R) are taken to be Gaussians multiplied by

spherical harmonics:

φnlm(r) = Nnl r
l e−(r/rn)2

Ylm (̂r),

ϕνλμ(ρ) = Nνλ ρλ e−(ρ/ρν )2
Yλμ(̂ρ), (3.6)

ψNLM (R) = NNL RL e−(R/RN )2
YLM (R̂).

It is important to postulate that the Gaussian ranges lie in
geometric progression (for the reason, see Sec. II B of the first
paper of Ref. [39]):

rn = r1 an−1 (n = 1 − nmax),

ρν = ρ1 αν−1 (ν = 1 − νmax), (3.7)

RN = R1 AN−1 (N = 1 − Nmax).
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FIG. 3. Dependence of the eigenenergy distribution on the
complex scaling angle θ for the 4n system with J π = 0+. Two
different cases are considered: (a) presence of a narrow resonance
at Eres = 3.65 − 0.66i MeV for W1(T = 3/2) = −28 MeV and (b)
presence of a broad resonance at Eres = 5.88 − 2.85i MeV for
W1(T = 3/2) = −21 MeV.
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Such a choice of basis functions is suitable for simultaneous
description of short-range correlations and long-range asymp-
totic behavior (for example, see Refs. [34–39,46]).

The eigenenergy E(θ ) and the expansion coefficients in
Eq. (3.3) are obtained by diagonalizing the Hamiltonian H (θ )
with the basis functions (3.4) and (3.5). In the following
calculations, satisfactory convergence was obtained within
l,L,λ � 2 (cf. an example of rapid convergence in the binding
energies of 3H and 3He with realistic NN and 3N interactions
is presented in Refs. [35,36]). We note that, in the GEM
framework, contrary to the truncation in the wave function,
the interaction is included without partial-wave decomposition
(no truncation in the angular-momentum space); this makes
the convergence rapid (cf. discussion on this point in §2.2 of
Ref. [49]).

In Fig. 3 we present two typical applications of the GEM
in diagonalizing the complex-scaled Hamiltonian H (θ ) that
describes the 4n system. The two panels of this figure display
the θ dependence of the eigenenergies for the cases where the
4n system possesses (a) a narrow resonance and (b) a broad
resonance with �= −2 Im(Eres)∼6 MeV. The resonance pole
position converges when increasing the complex scaling angle
θ , and the pole becomes well isolated from the four-body
continuum along the 2θ line. To obtain the result in Fig. 3,
some 14 000 antisymmetrized four-body basis functions were
needed.

C. Faddeev-Yakubovsky equations

The FY equations use a very similar representation of the
system’s wave function as the one employed by the GEM
and presented in a previous section. The FY equations are
formulated in terms of wave-function components, which are
very similar to the ones expressed in Eqs. (3.4) and (3.5),
namely,

F (K)
α =

∑
αK

CαK

[[[
φ

(K)
nl (rK)ϕ(K)

νλ (ρK)
]
�

ψ
(K)
NL(RK)

]
I

× [[χs(12)χ1/2(3)]s ′χ1/2(4)]S
]
JM

× [[ηt (12)η1/2(3)]t ′η1/2(4)]T Tz
, (3.8)

F (H)
α =

∑
αH

CαH

[[[
φ

(H)
nl (rH)ϕ(H)

νλ (ρH)
]
�

ψ
(H)
NL(RH)

]
I

× [χs(12)χs ′ (34)]S
]
JM

[ηt (12)ηt ′(34)]T Tz
. (3.9)

The major difference in the expansions of Eqs. (3.4) and
(3.5) employed for the GEM is that the FY components
are not straightforwardly antisymmetrized. Symmetry of the
total wave function is enforced by the FY equations whose
components are subject to, namely,

(E − H0 − V12)F (K)
α − V12(P + + P −)

×[
(1 + Q)F (K)

α + F (H)
α

]
= 1

3V123 �JM,T Tz
,

(E − H0 − V12)F (H)
α − V12P̃

[
(1 + Q)F (K)

α + F (H)
α

]
= 0,

where P − = P23P12, P + = P12P23, Q = P34, and P̃ = P13P24

are particle permutation operators.
In terms of the FY components the total system wave

function is obtained as

�JM,T Tz
(θ ) =

∑
α

[1 + (1 + P + + P −)Q](1 + P + + P −)

×F (K)
α +

∑
α

(1 + P + + P −)P̃F (H)
α . (3.10)

It is straightforward to apply the complex scaling operation
to the FY equations, as was demonstrated for the Schrödinger
Eq. (3.1). For a more detailed explanation see one of our
previous papers [17,45].

The transformed FY equations are solved using standard
techniques, developed in [16,17] and references therein. The
radial dependence of the complex-scaled FY components
F (K)

α and F (H)
α is expanded in a Lagrange-Laguerre basis and

the system of integro-differential equations is transformed
into a linear algebra problem by using the Lagrange-mesh
method [50]. Lagrange mesh of ∼ (20–25)3 points is required
to describe accurately the radial dependence of the FY
components. The FY equations converge considerably slower
in partial waves compared to the Schrödinger equation case
using the GEM. When solving the FY equations we include
partial waves with angular momenta max(l,L,λ) � 7. Slow
convergence of these calculations is related to the 3N force
terms we employed in this work, whose contribution turns out
to be unnaturally large. The FY equations are not very well
formulated to handle these terms.

IV. RESULTS AND DISCUSSION

The recent experiment, providing evidence of the possible
existence of a resonant tetraneutron, reported some structure
at E=0.83±0.65(stat.)±1.25(sys.) MeV, measured with re-
spect to the 4n breakup threshold with an estimated upper limit
width �=2.6 MeV [7,8]. This experiment, as well as others
reporting a positive tetraneutron signal [4–6] were not able to
extract information on the spin parity of the observed events.
Our first task is therefore to determine the most favorable
angular momentum states to accommodate a tetraneutron.

A. 4n bound state

For this purpose, we calculate a critical strength of the
attractive 3N force W1(T = 3/2), defined by Eq. (2.2), to make
different 4n states bound at E = −1.07 MeV. This energy
corresponds to the lowest value compatible with the RIKEN
data [8]. The calculated results, denoted as W

(0)
1 (T =3/2), are

given in Table I.
As one can see from this table, the smallest critical

strength is W
(0)
1 (T =3/2) = −36.14 MeV and corresponds to

the J = 0+ state. It is consistent with a result reported in
Ref. [17], where the tetraneutron binding was forced using an
artificial four-body force in conjunction with the Reid93 nn
potential. The next most favorable configuration is established
to be a 2+ state, which is bound by 1.07 MeV for a 3NF
strength of W

(0)
1 (T =3/2). The calculated level ordering is

Jπ = 0+,2+,1+,2−,1−,0−. The level ordering calculated in
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TABLE I. Critical strength W
(0)
1 (T = 3/2) (MeV) of the phe-

nomenological T = 3/2 3N force required to bind the 4n system at
E = −1.07 MeV, the lower bound of the experimental value [8], for
different states as well as the probability (%) of their four-body partial
waves.

J π 0+ 1+ 2+ 0− 1− 2−

W
(0)
1 (T = 3

2 ) −36.14 −45.33 −38.05 −64.37 −61.74 −58.37
S wave 93.8 0.42 0.04 0.07 0.08 0.08
P wave 5.84 98.4 17.7 99.6 97.8 89.9
D wave 0.30 1.08 82.1 0.33 2.07 9.23
F wave 0.0 0.05 0.07 0.0 0.10 0.74

Ref. [17] is Jπ = 0+,1+,1−,2−,0−,2+. These differences are
related to the different binding mechanism of the 4-nucleon
force used in Ref. [17].

It should be noted that, in comparison with W1(T =
1/2) = −2.04 MeV established for the T = 1/2 3N force,
we need an extremely strong T = 3/2 attractive term to
make the 4n system weakly bound; when the J = 0+ state
is at E = −1.07 MeV with W1(T =3/2) = −36.14 MeV, the
expectation values of the kinetic energy, NN and 3N forces
are +67.0, − 38.6, and −29.5 MeV, respectively. We see that
the expectation value of the 3N potential is almost as large as
that of NN potential. The validity of this strongly attractive
T = 3/2 3N force will be discussed after presenting results
for 4n resonant states.

B. 4n resonances

After determining critical strength of W1(T = 3/2) re-
quired to bind the tetraneutron we gradually release this
parameter letting the 4n system move into the continuum.
In this way we follow complex-energy trajectory of the 4n
resonances for J = 0+,2+, and 2− states. We remind the
readers that these trajectories are controlled by a single
parameter W1(T = 3/2), whereas other parameters remain
fixed at the values given in Eq. (2.3) and Eq. (2.4).

In Fig. 4(a), we display the 4n S-matrix pole (resonance)
trajectory for the J = 0+ state by reducing the strength
parameter from W1(T =3/2) = −37 to −16 MeV in steps of
1 MeV. We were unable to continue the resonance trajectory
beyond the W1(T = 3/2) = −16 MeV value with the CSM,
the resonance becoming too broad to be separated from the
nonresonant continuum. To guide the eye, at the top of the
same figure, we presented an arrow to indicate the 4n real
energy range suggested by the recent measurement [8]. In
that range the maximum value of the calculated decay width
� is 0.6 MeV, which is to be compared with the observed
upper limit width � = 2.6 MeV. In Fig. 4(b) the contents
of Fig. 4(a) are illustrated in a different manner to display
explicitly the resonance energy and width versus W1(T =3/2).
The real energy of the resonances reaches its maximum value
of Re(Eres) ∼6 MeV. Once its real energy maximum is reached
the width starts quickly increasing as the strength W1(T =3/2)
is further reduced.
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2 6
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–36

–32

–28
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–16

Re(E) (MeV)
Im

 (
E

) 
(M

eV
)

–3

–5

(a)         resonance n4

J  =0+π

FIG. 4. (a) Tetraneutron resonance trajectory for the J π = 0+

state. The circles correspond to resonance positions for the AV8′ and
the triangles INOY04’(is-m) potential [28]. Parameter W1(T = 3/2)
of the additional 3NF was changed from −37 to −16 MeV in steps of
1 MeV for calculations based on AV8′ and from −36 to −24 MeV in
steps of 2 MeV for INOY04’(is-m). To guide the eye the resonance
region suggested by the measurement [8] is indicated by the arrow at
the top. (b) The same contents as in the upper panel figure (AV8′),
but where the resonance energy (closed circles) and width (shadowed
area) are represented as a function of the W1(T = 3/2) parameter.

As was expected, based on our experience from previous
studies on multineutron systems [16,18], tetraneutron trajec-
tory turns out to be independent of the NN interaction model,
provided this model reproduces well the NN scattering data.
To illustrate this feature we have calculated the 4n resonance
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FIG. 5. Tetraneutron resonance trajectories for J π = 2+ and 2−

states for W1(T = 3/2) values from −38 to −26 MeV and from −58
to −42 MeV, respectively.

trajectory for the J = 0+state using the INOY04(is-m) NN
model [28]. This realistic interaction strongly differs from
the other ones in that it contains a fully phenomenological
and a strongly nonlocal short-range part in addition to the
typical local long-range part based on one pion exchange. Fur-
thermore, this model reproduces the triton and alpha-particle
binding energies without any 3NF contribution. Finally, P
waves of this interaction are slightly modified to match better
the low energy scattering observables in the 3N system.
Regardless of the mentioned qualitative differences of the
INOY04(is-m) interaction with respect to the AV8′ one, the
results for the 4n resonance trajectory are qualitatively the
same and demonstrate only minor quantitative differences.
These results are displayed in Fig. 4(a).

In Fig. 5, we present calculated 4n resonance trajectories for
2+ and 2− states. The J = 2+ state is the next most favorable
configuration to accommodate a bound tetraneutron, whereas
the J = 2− state is the most favorable negative parity state;
see Table I. The trajectory of the 2+ state is very similar to
that of the 0+ state. On the other hand to bind or even to
produce a resonant J = 2− state, in the region relevant for
a physical observation, the attractive 3-nucleon force term
W1(T =3/2) should be almost twice as large as the one for
the J = 0+ state. The strength of W1(T =3/2) required to
produce a resonant 4n system in any configuration producing
a pronounced experimental signal, is one order of magnitude
larger than the value of W1(T =1/2)(−2.04 MeV) required to
reproduce the binding energies of 3H, 3He, and 4He nuclei.

To prove or disprove the possible existence of the tetra-
neutron resonances, one should consider the validity of the
strongly attractive 3N force in the isospin T = 3/2 channel.

As pointed out in Sec. II, the GFMC calculation for
3 � A � 8 suggested the existence of a 3NF with a T = 3/2

component weaker than the T = 1/2 one. From the same
study it follows that the binding energies of neutron-rich
nuclei are described without notable contribution of the
T = 3/2 channel in 3NF. A similar conclusion was reached
in neutron matter calculations, where the expectation values
of the T = 3/2 force are always smaller than the T = 1/2
ones [51]. One should mention that the parametrization of
the phenomenological 3NF adapted in this study is very
appropriate for dilute states, like the expected tetraneutron
resonances. The attractive 3NF term has a larger range than
the one allowed by pion exchange. Moreover, tetraneutron
states, unlike compound 4He or 3H ground states, do not feel
contributions of the short-ranged repulsive term of the 3N
force.

Thus, we find no physical justification for the fact that
the T =3/2 term should be one order of magnitude more
attractive than the T = 1/2 one, as is required to generate
tetraneutron states compatible with the ones claimed in the
recent experimental data [8].

C. T = 1 states in 4H, 4He, and 4Li

In the following we would like to investigate the con-
sequences of a strongly attractive 3NF component in the
isospin T =3/2 channel. It is clear that such a force will
have the most dramatic effect on nuclei with a large isospin
number, i.e., neutron- (or proton-) rich ones as well as on
infinite neutron matter. Nevertheless this includes mostly
nuclei with A > 4, not within our current scope. Still we will
investigate the effect on other well-known states of A = 4
nuclei, namely negative parity, isospin T = 1 states of 4H,
4He, and 4Li. These structures represent broad resonances
[2] (see Table II) established in nuclear collision experiments.
Calculated energies of those states are shown in Fig. 6 with
respect to increasing W1(T = 3/2) from −37 to 0 MeV. The
solid curve below the corresponding threshold indicates a
bound state, whereas the dotted curve above the threshold
stands approximately for the resonant state obtained within a
bound state approximation, that is, by diagonalizing H (θ = 0)
with the L2 basis functions (3.4) and (3.5).

As demonstrated in Fig. 6, values of an attractive 3NF term
in the range of W1(T =3/2) � −36 to −30 MeV, which is
compatible with a reported 4n resonance region in Ref. [8],
gives rise to the appearance of bound J = 2− and J = 1−
states in 4H, 4He(T = 1), and 4Li nuclei. Unlike observed
in the collision experiments, these states become stable with
respect to the 3H 3He +N decay channels. This means that

TABLE II. Observed energies ER and widths � (in MeV) of
the J π = 2−

1 and 1−
1 states in 4H, 4He (T = 1), and 4Li, ER

being measured from the 3H +n, 3H +p, and 3He +p thresholds,
respectively [2].

4H 4He (T = 1) 4Li

J π ER (�) ER (�) ER (�)
2−

1 3.19 (5.42) 3.52 (5.01) 4.07 (6.03)
1−

1 3.50 (6.73) 3.83 (6.20) 4.39 (7.35)
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FIG. 6. (a) Calculated energies of the lowest T = 1,J π = 2−

states in 4H, 4He, and 4Li with respect to the strength of T = 3/2 3N

force, W1(T = 3/2). (b) The same but for T = 1,J π = 1− states. The
horizontal dashed lines show the 3He +N and 3H +N thresholds. The
solid curve below the corresponding threshold indicates the bound
state, while the dotted curve above the threshold stands approximately
for the resonance obtained by the diagonalization of H (θ = 0) with
the L2 basis functions.

the present phenomenological W1(T = 3/2) is too attractive
to reproduce low-lying states of 4H, 4He (T = 1), and 4Li.

In contrast, it is interesting to see the energy of the 4n
system when we have just unbound states for 4H, 4He (T =
1), and 4Li in Fig. 6(a). Use of W1(T = 3/2) = −19 MeV
gives rise to an unbound state with J = 2− in 4H with respect
to disintegration into 3H +N . However, using this strength
of W1(T = 3/2), we have already a very broad 4n resonant
state at Re(Eres) = 6 MeV with � = 7.5 MeV [see Fig. 4(a)],
which is inconsistent with the recent experimental claim [8]

FIG. 7. The calculated total cross section of 3H +n represented
by the thin black solid line using W1(T = 3/2) = −10 MeV. The
experimental data [52] are illustrated by the red thick solid line.

of a resonant 4n. Moreover, the value of W1(T = 3/2) that
reproduces the observed broad resonance data for the 2− state
in 4H should be much less attractive than −19 MeV.

Results presented in Fig. 6(a), however, give little insight
to the properties of 4H, once it becomes a resonant state
for W1(T = 3/2) > −19 MeV. Moreover, it is well known
[2], that for broad resonances the structure given by the
S-matrix poles may be different from that provided by an
R-matrix analysis. Therefore, it makes much more sense to
perform direct calculations of the measurable 3H +n data,
namely scattering cross sections. We display in Fig. 7 the
3H +n total cross section calculated for a value of W1(T =
3/2) = −10 MeV. This cross section is clearly dominated
by pronounced negative-parity resonances in the 4H system.
These resonances contribute too much in the total cross section,
resulting in the appearance of a narrow peak shifted signifi-
cantly to the lower-energy side. Furthermore, to reproduce the
shape of the experimental 3H +n cross section, a very weak
3NF is required in the isospin T =3/2 channel. From this
fact, we conclude that even a W1(T =3/2) = −10 MeV value
renders the 3NF to be excessively attractive.

In conclusion, as far as we can maintain the consistency
with the observed low-lying energy properties of the 4H, 4He
(T = 1), and 4Li nuclei, it is difficult to produce an observable
4n resonant state.

D. 3n resonances

Finally, in Fig. 8, we show the calculated resonance poles
of the trineutron 3n system for the lowest-lying negative-
and positive-parity states (J = 3/2−,1/2−, and 1/2+). The
strength W1(T =3/2) is increased so that there appears a broad
resonance with Im(Eres.) ≈ −Re(Eres.).

Although it is reasonable to have the negative-parity states
much lower than the positive-parity ones from the viewpoint
of a naive 3n shell-model configuration, we have to impose
a value of W1(T = 3/2), a few times stronger than in the 4n
system to bind 3n.
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in steps of 5 MeV.

For W1(T =3/2) = −40 MeV, the most favorable 3n
resonance with J = 3/2− is located at Re(Eres) ∼ 4 MeV with
� ∼ 8 MeV as seen in Fig. 8, whereas the J = 0+ 4n state is
still bound at E = −4.5 MeV [cf. Fig. 4(b)].

On the other hand the 3n is a much more repulsive system
than the 4n one, which benefits from the presence of two
almost bound bosonic dineutron pairs. On the other hand 4n
is much more sensitive to the 3NF than 3n, as four neutrons
involve four 3NF interactions compared to a single one present
in three neutrons. From this result one can expect that if the
3NF contribution turns out to be important in the 4n system
rendering it resonant, other multineutron systems with A > 4
(in particular 6n and 8n) would display even more prominent
resonant structures than 4n.

V. CONCLUSIONS

Motivated by the recent experimental claim regarding the
possible existence of observable tetraneutron 4n [7,8] states,
we have investigated the possibility that the 4n system exhibits
a near-threshold bound or narrow resonant state compatible
with the reported data.

When studying the tetraneutron sensitivity to the ingre-
dients of the nuclear interaction, we have concluded that
this system is not very sensitive to “experimentally allowed”
modifications in NN interaction. The most natural way to
enhance a tetraneutron system near the threshold is through an
additional attractive isospin T = 3/2 term in the three-body
force. We have examined the consistency of the nuclear
Hamiltonian modifications, required to produce observable
tetraneutron states, with other 4-nucleon observables, like the
low-lying T = 1 states in 4H, 4He, and 4Li.

This study was based on the 4N Hamiltonian considered in
Ref. [42] built from the AV8′ version of the NN potential
produced by the Argonne group and supplemented with a
phenomenological 3N force including both T = 1/2 and
T = 3/2 terms. The T = 1/2 term was adjusted [42] to
properly reproduce the binding energies of the 3H and 3He
ground states and the 4He ground and first 0+ excited states as
well as the transition form factor 4He(e,e′)4He(0+

2 ). To check
the model independence of our results we have also considered
the INOY potential which markedly differs from the preceding
ones in its nonlocal character that incorporates the T = 1/2
3NF. Despite these differences the results were very close to
each other.

The T = 3/2 component added in the present work, has
the same functional form as the T = 1/2 one and contains
one single free parameter—the strength of its attractive part—
which was adjusted to generate a 4n bound or resonant states.
The validity of the strength of the T = 3/2 parameter found in
this way, was investigated by calculating the T = 1, Jπ = 2−,
and 1− states of 4H, 4He, and 4Li as well as the total cross
section of the 3H +n scattering, which turned out to be very
sensitive to the T = 3/2 3N force.

The ab initio scattering solutions of the 4n Hamiltonian
were obtained using the appropriate boundary condition of a
four-body resonance provided by the complex scaling method.
The Gaussian expansion method and the Faddeev-Yakubovsky
formalisms were used for solving the A = 4 problem. The two
methods provide accurate results and agreed with each other
within at least two significant digits, both for the resonant as
well as for the bound states.

To produce resonant tetraneutron states which were situated
in the complex energy plane close to the physical axis, and,
thus may have an observable impact, we were obliged to
introduce strong modifications in the T = 3/2 3N force.
These modifications were, however, found to be inconsistent
with other well-established nuclear properties and low energy
scattering data. This result is in line with our previous study
of the tetraneutron system [17].

In conclusion, we were not able to validate the recent
observation of a 4n signal [7,8] as related to the existence
of resonant 4n states.

Further experimental studies of the tetraneutron system are
planned in the near future at RIKEN [53–55] to confirm the
finding of [7,8] with higher statistic. If this would be the case
it will constitute a real challenge for theoretical interpretation.

Another possibility could be that the low-energy 4n signal is
a result of some unknown dynamical phenomena, which is not
directly related to the existence of S-matrix (resonance) poles
in the 4n system. In this respect it is worth mentioning that,
in the framework of the scattering theory, there exist other
possibilities to generate sharp structures in a reaction cross
section without any presence of S-matrix pole singularities
[56]. Such phenomena have not yet been established in any
physical system.
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