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Cutoff regulators in chiral nuclear effective field theory
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Three-dimensional cutoff regulators are frequently employed in multinucleon calculations, but they violate
chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically
at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when
a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can
still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.
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I. INTRODUCTION

In applications of the chiral Lagrangian to multinucleon
systems, ultraviolet (UV) three-momentum cutoffs, denoted by
�, are often used in numerical calculations to regularize loop
integrations over multinucleon intermediate states. Smooth or
sharp truncation of nucleon momenta can be thought of as
momentum-dependent interactions, and they can be realized at
the Lagrangian level by many insertions of operators involving
derivatives acting on the nucleon fields. In order to preserve
chiral symmetry, these ordinary derivatives must be part of
chiral covariant derivatives [SU(2)L × SU(2)R]:

DμN ≡
(

∂μ + τ

2
·Eμ

)
N, (1)

where the so-called chiral connection operator is defined as

Eμ ≡ i
π

fπ

×Dμ, (2)

with

Dμ ≡ D−1 ∂μπ

2fπ

, D ≡ 1 + π2

4f 2
π

. (3)

Here fπ � 92 MeV is the pion decay constant. Because the
cutoff normally truncates three-momenta, Lorentz invariance
is also broken by cutoff regulators. Therefore, it is a good
strategy to deal with both symmetries at the same time.

Chiral symmetry and Lorentz invariance are expected to be
better preserved with larger �’s (also to be shown more explic-
itly here), but that would imply more expensive calculations for
multinucleon systems. Even for smaller systems where higher
cutoffs can be afforded, in an era when nuclear physicists
are pushing for high-precision calculations with chiral nuclear
forces, we may want to think carefully about how to estimate
and how to control these artificial symmetry-breaking effects.

To various extents, this issue in the context of nucleon struc-
ture or nuclear forces has also been discussed in Refs. [1,2].
Having been evaluated with cutoff regularization, the chiral
expansion of certain quantities, namely, the nucleon mass and
nucleon-nucleon scattering observables, is checked against
their expected behavior based on chiral symmetry. Therefore,
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the inspection of symmetry-violating artifacts performed in
in Refs. [1,2] relies on knowing in advance how chiral
symmetry constrains the observables. The approach offered
in the present paper starts with an effective Lagrangian
that has symmetries and regularization built in. Because
symmetries and regularization are constructed simultaneously
at the Lagrangian level, it is much less obligatory to check after
calculations the observable against the symmetry constraints.

The paper is structured as follows. Section II introduces
a specific cutoff regulator. In Sec. III, its application to one-
and two-nucleon systems demonstrates how to keep track of
regulator-related symmetry violations. Finally, we summarize
the main points in Sec. IV.

II. FRAMEWORK

To recycle previous calculations done with dimensional
regularization (DR), we will not fix the dimensionality to
exactly four. A consistent way to have available both DR
and a chiral-invariant cutoff regulator is to write formally the
regulator into the Lagrangian with chiral covariant derivatives
in D dimension. The bare coupling constants will depend on
the UV cutoff � and μ, which is the arbitrary mass scale
appearing with DR: g̊i(�,μ; ε), where 2ε ≡ 4 − D. One can
for instance regularize the Lagrangian as follows:

S[π ,N †,N ] =
∫

dDx

[
1

2
(N †O(0)e−O(0)/λN + h.c.) + · · ·

]
,

(4)

where

O(0) ≡ iD0 +
�D2

2mN

+ · · · , (5)

and the energy cutoff λ is related to the momentum cutoff
� by

λ ≡ �2

2mN

. (6)

HereO(0) is by construction chiral and Lorentz invariant, order
by order in m−1

N [3,4].
Before we proceed to discuss this Lagrangian, it is worth di-

gressing to a slightly academic note. Consider the path integral
of Lagrangian (4). The integration measure [dπ][dN][dN †] is
not necessarily chiral invariant, for π does not have to rotate
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as an isovector under chiral transformations in a nonlinear
realization of chiral symmetry [5–7]. This is not a bona fide
anomaly of QCD Lagrangian, so a noninvariant term �L must
be added to cancel out the chiral violation of the integration
measure. It is shown in the Appendix that �L involves only
the pion fields but not the nucleon fields, and it vanishes with
DR. This is another motivation to hold on to DR, for pionic
interactions can then be treated more easily.

To make use of this Lagrangian, we can expand O(0) in
powers of the pion fields:

N †
[
i

(
∂0 + τ

2
·E0

)
+

�∇2

2mN

+ · · ·
]

×e
− �∇2

�2

[
1 − i

λ

(
∂0 + τ

2
·E0

)
+ · · ·

]
N

= N †
(

i∂0 +
�∇2

2mN

+ · · ·
)

e
− �∇2

�2

(
1 − i

∂0

λ
+ · · ·

)
N

− 1

4f 2
π

N †τ ·
(

π×π̇

)
N + i

4λf 2
π

N †τ ·
(

π×π̇

)
Ṅ + · · · ,

(7)

where the first term is purely kinetic and the rest contribute
to pion-nucleon interactions. In constructing the kinetic term
we have tactfully chosen to leave −�∇2/�2 (but not the time
derivative) in the exponent of the Gaussian, whereas the
Gaussian is expanded in 1/� everywhere else. The second
term is the famed Weinberg-Tomozawa term. The third one
is the chiral connection accompanying the λ-suppressed time
derivative, and it is the lowest-order operator to cancel chiral
violations by the cutoff regulator. Although it has a nominal
chiral index ν = 1 [8], it can often be relegated to ν = 2
by invoking the equation of motion for nucleons, thanks to
the time derivative acting on it. To justify the perturbative
treatment of chiral connection operators, we recall one of
the conclusions made in Ref. [8], that the pion loops are
generally suppressed for external momenta much smaller than
4πfπ � 1.2 GeV.

The carefully arranged kinetic term translates into a nucleon
propagator with the wanted suppression for nucleonic three-
momenta:

1

i
S(p) = exp

( − �p 2

�2

)
p0 − �p 2

2mN
+ · · · + iε

(
1 + p0

λ
+ · · ·

)
. (8)

Note that leaving p0/λ in the exponent would have caused any
integral over p0 to diverge. In the parentheses are operators to
compensate for Lorentz violations of the Gaussian function.

III. APPLICATIONS

A. One-nucleon processes

Consider the nucleon self-energy with incoming four-
momentum p. The baryon energy is one order lower than
the recoil correction, so the static-limit approximation can be
used at leading order (LO). The loop integral of the sunset

diagram for the self-energy is given by
∫

dDl

(2π )D
�l 2

l2 − m2
π

exp[−( �p + �l )2/�2]

p0 + l0

×
[

1 + p0 + l0

λ
+ ( �p + �l )2

2mN (p0 + l0)
+ · · ·

]
. (9)

The terms in the second bracket are to be computed order
by order, with the counting rule p0 + l0 ∼ | �p + �l | ∼ Q and
λ ∼ �2

χ/mN , where Q refers generically to external momenta
and �χ ∼ 1 GeV is the chiral-symmetry-breaking scale.

If DR is to be used, the exponential factor will not be needed.
So we expand the Gaussian in 1/�, and return the integral to
its more familiar form:∫

dDl

(2π )D
�l 2

l2 − m2
π

1

p0 + l0

×
[

1 + p0 + l0

λ
+ ( �p + �l )2

2mN (p0 + l0)
− ( �p + �l )2

�2
+ · · ·

]
.

(10)

Again, the terms in the bracket are to be computed per-
turbatively, and all of them need DR to be sensible. The
�-suppressed terms, including (p0 + l0)/λ and −( �p + �l)2/�2,
would not have been there if only DR had been used from the
very beginning. They provide the extra care one must give to
subleading orders when both regulators are used. A technical
note is in order regarding DR. It is convenient to write in
evaluation that

p0 = vμlμ, �p · �q = v · p v · q − p · q, (11)

and to have v = (1,�0) when D = 4.
Integrals (9) and (10) have different UV behaviors, so

they require drastically different bare nucleon mass m̊N to
renormalize. With cutoff regularization (9), m̊N has nontrivial
running with respect to �, whereas it has a singularity
like 1/ε in renormalizing integral (10). At any rate, after
renormalization they will give similar results at each order,
with discrepancy counted as higher-order effects.

We have gone to great lengths to have access to both DR and
a cutoff regulator in a unified framework. The most significant
gain is that we can now reuse previous calculations using
DR for some diagrams and in the mean time to use a cutoff
regulator for others, e.g., in multinucleon processes.

B. Two-nucleon processes

For definiteness, consider nucleon-nucleon scattering. The
incoming (outgoing) momenta are denoted as �p1 and �p2 ( �p ′

1
and �p ′

2). Define relative momenta and the center-of-mass
energy as follows: �k = ( �p1 − �p2 )/2, �k ′ = ( �p ′

1 − �p ′
2 )/2, and

E ≡ P0 − �P 2/4mN , where Pμ ≡ (P0, �P ) is the total four-
momentum of the two-nucleon system.

The presence of pure nucleonic intermediate states, with
four-momenta denoted by (P0/2 ± l0, �P/2 ± �l ), suggests that
the nucleons can be very close to their mass shell. This
invalidates even at LO the static-limit approximation for
nucleons [9]. Stated in terms of power counting, �P/2 ± �l ∼ Q
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and P0 ± l0 ∼ Q2/mN . This counting requires the recoil term
− �p 2/2mN to be retained in the denominator of propaga-
tor (8), and resummation is necessary of the LO potential
V (�k ′,�k ), which is the sum of one-pion exchange (OPE) and a
few four-nucleon operators. The resummation in momentum
space usually takes the form of the Lippmann-Schwinger
equation.

If numerical calculations are inevitable in solving the
Lippmann-Schwinger equation, it is necessary to regularize
high three-momentum modes with the Gaussian in propa-
gator (8). Integrating out the zeroth component of the loop
momentum gives the three-dimensional (off-shell) Lippmann-
Schwinger equation:

T λ
E

(�k ′,�k) = Vλ(�k ′,�k) +
∫

d3l

(2π )3
Vλ(�k ′,�l )

T λ
E

(�l,�k)

E − l2

mN
+ iε

.

(12)

Here the regularized potential Vλ(�k ′,�k ) is related to V (�k ′,�k ),
which is the sum of LO amputated, two-nucleon-irreducible
diagrams, by

Vλ(�k ′,�k) ≡ fλ(k′; P )V (�k ′,�k)fλ(k; P ), (13)

where

fλ(k; P ) = exp

(
−

�P 2

4�2

)
exp

(
−

�k 2

�2

)
. (14)

If there is no need to cut off contributions from large �P , one
can even expand the exponent of Eq. (14) in �P 2/�2, which
brings us to the more conventionally regularized Lippmann-
Schwinger equation.

Besides the �p 4/m3
N correction from the denominator of

the nucleon propagator (8), one needs to worry about the p0/λ
term in the numerator. The contribution it gives to the next-to-
next-to-leading potential has a simple structure:

V
(2)
λ (�k ′,�k) = P0

λ
Vλ(�k ′,�k) + · · · . (15)

When calculating higher-order irreducible diagrams, we can
use the same regularization scheme as in one-nucleon pro-
cesses. One can follow the discussions in Sec. III A, choosing
either cutoff regulator (9) or DR (10) to regularize loop
integrals.

IV. DISCUSSIONS AND CONCLUSIONS

Chiral symmetry and Lorentz invariance are often broken
by cutoff regulators that truncate only three-momenta. Except
for purely pionic systems, the symmetry-breaking artifacts of
regulators can be mitigated by raising the momentum cutoff �.
But in the cases where � is somewhat soft, as in calculations
for few- or many-nucleon systems, it is especially desirable to
compensate for these symmetry violations order by order in
1/� and 1/mN .

The regularization scheme proposed here starts with La-
grangian (4), with a “kinetic” term that is formally chiral and
Lorentz invariant in D dimensions. A careful arrangement
was then made to obtain a nucleon propagator that suppresses

high three-momentum contributions from the nucleons [see
Eq. (8)]. Expanding the chiral and Lorentz-invariant kinetic
term generates a string of symmetry-breaking operators [see
Eq. (7)], which have fixed, �-dependent coefficients, and they
will cancel order by order the symmetry breaking associated
with the highly momentum-dependent propagator. Without
them, we can no longer state at a given order that symmetry
violations are higher-order effects.

Dimensional regularization can still be used. As demon-
strated in Sec. III A, once the choice of regulator is made
at LO, the consequence of choosing a certain regulator will
arise in subleading orders. A nontrivial benefit is that we can
recycle previous DR-based calculations for, say, one-nucleon
processes and irreducible pion-exchange diagrams. In the
meantime, cutoff regulators are used for resummation in
multinucleon processes. The price is the extra care we must
give to higher-order calculations, as demonstrated in Sec. III.

The justification of the method uses a Lagrangian path
integral formalism; therefore, the unitarity of the S matrix
is not manifest at the beginning, as opposed to canonical
quantization. But we can always verify the unitarity by
checking explicitly whether the amplitudes obey the optical
theorem. Such a check has been done to integral equation (12).

One may want to design other cutoff regularization schemes
for various purposes. The important points to keep in mind are
that (a) the integration over thee-momenta is regularized as
desired, (b) we have a generating device to keep track of chiral
and Lorentz violations in a systematic fashion, and (c) it does
not interfere with counting Feynman diagrams in powers of
external momenta.

Since the regularization scheme devised here is merely one
possibility, its features may not be shared by other consistent
schemes. For instance, it has only one cutoff value, but other
schemes could be imagined in which multiple cutoff values
are utilized. One can for example attach a chiral and Lorentz-
invariant form factor to every Lagrangian interaction operator,
each with a distinctive cutoff value. With such a construction,
a possible consequence is that part of three-nucleon forces will
be regularized differently than two-nucleon forces.

The regularization scheme presented here will lead to
nonlocal pion-exchange nucleon-nucleon potentials. Refer-
ences [10,11] argue that local cutoff regulators are preferable
for pion exchanges because local regulators do not distort
the analytical structures of pion-exchange diagrams, although
several quantum Monte Carlo calculations found strong regu-
lator dependence in neutron matter when local regulators are
used [12,13]. It remains an open issue as to why analyticity and
unitarity impose more constraints on regularization schemes
than symmetries and power counting do. (For further reading
on nucleon-nucleon scattering using the analytic properties
and unitarity of the S matrix, see Refs. [14,15].)

Note added in proof. After the manuscript had been
accepted, we noticed that Ref. [20] had employed an idea
similar to ours. But there are significant differences in the
implementation. Heavy-baryon formalism was used here from
the beginning, and order-by-order preservation of Lorentz
invariance was carefully demonstrated. We chose a different
regulator, the Gaussian function in three-momenta, as the
example, which is more often used in practical calculations.
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APPENDIX: �L IS PURELY PIONIC

The path integral of chiral effective field theory is∫
[dπ ][dN][dN †] exp

[
i

∫
dDx L(

N †,N,π
) + �L(π )

]
,

(A1)

where the Lagrangian L(N †,N,π ) is invariant under nonlin-
early realized chiral transformation [5], parametrized by θA:

δAπ ≡ π � − π = fπθA

(
1 − π2

4f 2
π

)
+ θA· π

2fπ

π , (A2)

δAN ≡ N� − N = i

(
θA× π

2fπ

)
·τ

2
N. (A3)

Here N is a heavy-baryon field instead of a Dirac field, so
it has a two-valued spin index instead of Dirac ones. Upon
a chiral transformation, N undergoes a space-time-dependent
isospin rotation, parametrized by θA×π/2fπ ; on the contrary,
the chiral transformation of π does not resemble in any way
a space-time-dependent isospin rotation. Because of that, as it
turns out, the measure is not chiral invariant, and it requires a
chiral-noninvariant term �L to neutralize the violations. We
wish to show here that �L depends only on the pion fields:
�L(π ). References [16–19] discussed similar issues, however,
without baryonic degrees of freedom.

We can choose to integrate over the baryonic degrees of
freedom before dealing with the pion fields. Noticing that
π �(x) depends on π (x), but not on N (x),

π �(x) = π �[π (x); θA], (A4)

one can transform first [dN][dN †] to [dN�][dN
†
� ] with π (x)

or π �(x) as fixed parameters. Therefore, the Jacobian of the
whole measure factorizes into two parts:

[dπ �][dN�][dN †
� ] = Jπ (π ; θA)JN (N,N †; π ,θA)

×[dπ][dN][dN †], (A5)

where JN is defined as if π(x) were unchanged in the
transformation (A3)

[dN�][dN †
� ] = JN

(
N,N †; π ,θA

)
[dN][dN †]. (A6)

Jπ is defined according to the transformation (A2) regardless
of presence of the baryon fields:

Jπ (π ; θA) = det

(
∂πa

�

∂πb

δ(D)(x − x ′)
)

,

= exp

[
Nf

2fπ

∫
dDx δ(D)(0) θA·π

]
, (A7)

where Nf = 3 is the number of flavor of the pions.

The fermionic Jacobian JN is related to the transformation
matrices as follows:

JN = (det U det Uc)−1, (A8)

where

Uaσx, a′σ ′x ′ ≡
[

1 − i

(
θA× π

2fπ

)
·τ

2

]
a a′

δσσ ′ δ(D)(x − x ′),

(A9)

Uc
aσx, a′σ ′x ′ ≡

[
1 + i

(
θA× π

2fπ

)
·τ

2

]
a a′

δσσ ′ δ(D)(x − x ′),

(A10)

with a(a′) being isospin indices, σ (σ ′) spin indices, and x(x ′)
space-time coordinates. It is easy to verify that Uc is the
Hermitian conjugate of U ,

Uc = U †, (A11)

and that U is unitary,

(
UUc

)
aσx, a′σ ′x ′ = δa a′δσσ ′ δ(D)(x − x ′). (A12)

It follows immediately that JN is unity:

JN = 1. (A13)

Therefore, the overall integral measure transforms as if the
nucleon fields are not present, and �L needs to cancel out
only Jπ (π ; θA). Therefore, it must have the following form:

�L = iδ(D)(0) g
(
π2/4f 2

π

)
, (A14)

with g(x) satisfying

dg

dx
= Nf (1 + x)−1. (A15)

Solving for g(x), we arrive at

�L(π ) = iδ(D)(0)Nf ln

(
1 + π2

4f 2
π

)
. (A16)

As promised, �L is found to be independent of the baryon
fields and it vanishes with DR.

Although we have used a particular parametrization for
nonlinear realization of chiral symmetry, the above conclusion
will hold for other parametrizations, provided that the pion
fields transform without any reference to the baryon fields
and chiral transformation of the baryon fields is realized as
an unbroken rotation with angles depending only on the local
values of the pion fields. Any parametrization schemes fol-
lowing the renowned Callan-Coleman-Wess-Zumino (CCWZ)
technique [6,7] will meet the above requirements.
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