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Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

S. Binder,1,2 A. Calci,3 E. Epelbaum,4 R. J. Furnstahl,5 J. Golak,6 K. Hebeler,7,8 H. Kamada,9 H. Krebs,4

J. Langhammer,7 S. Liebig,10 P. Maris,11 Ulf-G. Meißner,12,10,13 D. Minossi,10 A. Nogga,10 H. Potter,11 R. Roth,7
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We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new
analysis of the theoretical truncation errors to study nucleon-deuteron (Nd) scattering and selected low-energy
observables in 3H ,4He, and 6Li. Calculations beyond second order differ from experiment well outside the range
of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the
employed framework. The sizes of the required three-nucleon-force contributions agree well with expectations
based on Weinberg’s power counting. We identify the energy range in elastic Nd scattering best suited to study
three-nucleon-force effects and estimate the achievable accuracy of theoretical predictions for various observables.
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I. INTRODUCTION

Chiral effective field theory (EFT) provides a powerful
framework for analyzing low-energy nuclear structure and
reactions in harmony with the symmetries of quantum chro-
modynamics (QCD), the underlying theory of the strong
interactions. It allows one to derive nuclear forces and currents
in a systematically improvable way in terms of a perturbative
expansion in powers of Q ∈ (p/�b,Mπ/�b), the so-called
chiral expansion. Here, p refers to the magnitude of the
nucleon three-momentum, Mπ is the pion mass, and �b is the
breakdown scale of chiral EFT [1]. One finds, in particular,
that the leading-order (LO) contribution to the Hamiltonian at
order Q0 and the first corrections at order Q2 (NLO) are given
solely by nucleon-nucleon (NN) operators while three-nucleon
forces (3NFs) appear first at order Q3 (N2LO) (see Ref. [2]
and references therein). Four-nucleon forces are even more
suppressed and start contributing at order Q4 (N3LO). The
chiral power counting thus provides a natural explanation of
the observed hierarchy of nuclear forces.

With accurate N3LO NN potentials being available for
about a decade [3,4], the main focus of research has moved
in recent years towards the 3NFs [5,6]. While providing small
corrections to the nuclear Hamiltonian as compared to the
dominant NN force, its inclusion seems to be necessary for

quantitative understanding of nuclear structure and reactions.
Historically, the importance of the 3NF has been conjectured
already in the thirties [7] while the first phenomenological
3NF models date back to the fifties. However, in spite of
extensive efforts, the spin structure of the 3NF is still poorly
understood [5].

Chiral EFT is expected to provide a suitable theoretical
resolution to the long-standing 3NF problem. Indeed, the
leading chiral 3NF has already been extensively explored in
ab initio calculations by various groups and found to yield
promising results for nuclear structure and reactions [6,8].
The first corrections to the 3NF at order Q4 (N3LO) have
also been derived [9–11] (and are parameter free) while the
sub-sub-leading contributions at order Q5 (N4LO) are being
derived [12–14].

On the other hand, understanding and validating the fine
details of the 3NF clearly requires precise and systematic
NN potentials and a reliable approach for estimating the
accuracy of theoretical predictions at a given chiral order.
References [15,16] initiated the direction that we follow here
by developing a new generation of chiral EFT NN forces up
to N4LO, in which the amount of finite-cutoff artifacts has
been substantially reduced by employing a novel ultraviolet
regularization scheme, and by introducing a new procedure
for estimating the theoretical uncertainty. In particular, the
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FIG. 1. Chiral expansion of the 3H Eg.s. based on the NN potentials of Refs. [15,16] for the regulator R = 1.0 fm and using Q = Mπ/�b.
Panel (a) shows incomplete results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6). Panel (b) shows incomplete
results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for
i � 3. Panel (c) shows the projected results assuming that the LECs in the N2LO 3NF are tuned to reproduce the 3H Eg.s. and using Eqs. (5)
and (6) to specify the uncertainty.

long-range part of the NN potential is regularized in position
space by multiplying with the function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (1)

with the cutoff R chosen in the range 0.8–1.2 fm.
In this paper we, for the first time, apply these novel chiral

NN forces beyond the two-nucleon system and demonstrate
their suitability for modern ab initio few- and many-body
methods. By applying the new method for error analysis, we
present unambiguous evidence for missing 3NF effects and
demonstrate that the size of the required 3NF contributions
agrees well with expectations based on Weinberg’s power
counting. We also estimate the theoretical accuracy for various
observables achievable at N4LO and identify the energy region
in elastic Nd scattering that is best suited for testing the chiral
3NF.

II. UNCERTAINTY QUANTIFICATION

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with p
referring to the corresponding momentum scale and X(i)(p),
i = 0,2,3, . . ., a prediction at order Qi in the chiral expansion.

We further define the order-Qi corrections to X(p) via

�X(2) ≡ X(2) − X(0), �X(i) ≡ X(i) − X(i−1), i � 3, (2)

so that the chiral expansion for X takes the form

X(i) = X(0) + �X(2) + · · · + �X(i). (3)

Generally, the size of the corrections is expected to be

�X(i) = O(QiX(0)). (4)

In Ref. [16], the validity of this estimate was confirmed
for the total neutron-proton cross section. In Refs. [15,16],
quantitative estimates of the theoretical uncertainty δX(i) of the
chiral EFT prediction X(i) were made by using the expected
and actual sizes of higher-order contributions. Specifically, the
following procedure was employed:

δX(0) = Q2|X(0)|,
δX(i) = max

2�j�i
(Qi+1|X(0)|, Qi+1−j |�X(j )|), (5)

where i � 2 and Q = max(p/�b, Mπ/�b) with �b =
600, 500, and 400 MeV for the regulator choices of R =
0.8–1.0, 1.1, and 1.2 fm, respectively. The sizes of actual
higher-order calculations provide additional information on

TABLE I. Ground-state energies Eg.s. of 3H and 4He (in MeV) and the point-proton radius rp of 4He (in fm) calculated by using the
improved NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm in comparison with empirical information. The quoted
uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i � 3.

LO NLO N2LO N3LO N4LO Empirical

Eg.s. (3H) −11.3(3.7) −8.36(83) −8.26(20) −7.53(5) −7.63(1) −8.48
Eg.s. (4He) −45.5(21.7) −28.6(4.8) −28.1(1.2) −23.75(28) −24.27(6) −28.30
rp (4He) 1.064(499) 1.389(174) 1.405(41) 1.563(9) 1.547(2) 1.462(6)
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FIG. 2. Predictions for Nd total cross section based on the NN potentials of Refs. [15,16] for R = 1.0 fm without including the 3NF at
(a) E = 10 MeV, (b) 70 MeV, (c) 135 MeV, and (d) 200 MeV. Theoretical uncertainties (blue) are estimated via Eqs. (5) and (6) for chiral order
i = 0,2 and via Eqs. (7) and (8) for i � 3. Experimental data are taken from Ref. [19].

the theoretical uncertainties, which we use by imposing the
constraint

δX(i) � max
j,k

(|X(j�i) − X(k�i)|). (6)

The above procedure for estimating the uncertainty needs
to be adjusted in order to account for the neglect of many-body
forces in the present analysis. In particular, iterating the NN T
matrix in the Faddeev equations generates contributions whose
short-range behavior is order- and regulator-dependent. For
low-energy Nd observables calculated in the EFT framework,
approximate scheme independence is restored upon perform-
ing renormalization, i.e., upon expressing the bare low-energy
constants (LECs) accompanying short-range 3NFs at orders
Q3,Q5, . . . in terms of observable quantities, such as the
triton binding energy. In practice, this is achieved by fitting the
corresponding LECs to experimental data. Therefore, when
performing incomplete calculations based on NN interactions
only, the estimate in Eq. (4) is not justified at or beyond N2LO,
the chiral order at which the contact 3NF starts contributing.
Therefore, we adopt here a more appropriate procedure for
estimating the uncertainty δX(i) for i � 3; namely,

δX(i) = max(Qi+1|X(0)|,Qi−1|�X(2)|,Qi−2|�X(3)|), (7)

and do not employ Eq. (6). However, to be conservative in our
estimates, we impose the additional constraints

δX(2) � QδX(0), δX(i�3) � QδX(i−1). (8)

In the future, more complete calculations will provide infor-
mation on the actual size of contributions beyond N2LO which
should lead to a more reliable uncertainty quantification using
Eqs. (5) and (6).

The dependence of the chiral NN forces on the local
regulator R over the range 0.8–1.2 fm has been extensively
investigated in Ref. [16] showing that cutoff artifacts become
visible for R > 1.0 fm. On the other hand, we seek to obtain
many-body results as close to convergence as possible, and
this favors the largest feasible value of R. We therefore balance
these competing conditions with the choice of R = 1.0 fm in
this work.

III. PREDICTIONS FOR FEW-NUCLEON SYSTEMS

Our results for the chiral expansion of the 3H ground-state
energy (Eg.s.) using Q = Mπ/�b are visualized in Fig. 1, see
also Table I. In addition to the strong potentials, we have
taken into account the electromagnetic interactions from the
AV18 potential [17] for pp and nn interactions. Given that
the 3H Eg.s. is commonly used to constrain the LECs entering
the short-range part of the 3NF which implies that it is, as per
construction, reproduced starting from N2LO, we are able to
show in the right panel of Fig. 1(a) the complete result for this
quantity up to N4LO already at this stage. As expected, we
observe that Eqs. (7) and (8) provide a more reliable approach
for error estimation in calculations based on NN interactions

TABLE II. Predicted values for Nd total cross section (in mb) based on the NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff
R = 1.0 fm at laboratory energies of 10, 70, 135, and 200 MeV. The quoted uncertainties for the theoretical predictions are estimated via
Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i � 3. Experimental data are from Ref. [19].

EN (MeV) LO NLO N2LO N3LO N4LO Expt.

10 922(133) 1030(31) 1034(7.3) 1055(1.7) 1053(0.4) 1040.2(3.4)
70 146.5(13.4) 149.2(4.0) 147.6(1.2) 147.1(0.4) 148.0(0.1) 153.9(0.5)
135 61.1(15.8) 69.0(7.9) 72.5(3.3) 76.7(1.4) 76.6(0.6) 81.5(0.4)
200 34.1(26.0) 44.2(15.9) 50.3(8.1) 60.1(4.2) 58.6(2.1) 65.0(0.4)
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FIG. 3. Predictions for the differential cross section and nucleon
Ay in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. Theoretical uncertainties
are estimated via Eqs. (5) and (6) for chiral order i = 2 and via
Eqs. (7) and (8) for i � 3. The bands of increasing width show the
estimated theoretical uncertainty at N4LO (red), N3LO (blue), N2LO
(green), and NLO (yellow). The dotted (dashed) lines show the results
based on the CD Bonn NN potential [20] (CD Bonn NN potential in
combination with the Tucson–Melbourne 3NF [21]). For references
to proton-deuteron data (symbols), see Ref. [5].

only, while using Eqs. (5) and (6) amounts to overestimating
the actual error. The N3LO (N4LO) results for the 3H Eg.s. are
expected to be accurate at the level of ∼50 keV (∼10 keV)
for the regulator choices of R = 0.8, 0.9, and 1.0 fm. Note
that the size of the inferred 3NF contribution agrees well
with the uncertainty at NLO, which reflects the estimated
impact of the N2LO contributions to the Hamiltonian. This
is fully in line with expectations based on the Weinberg
power counting [1,2]. We further emphasize that the sizable
underbinding of the triton with the NN potentials at N3LO
and N4LO is not limited to the employed regulator choice of
R = 1.0 fm. We find Eg.s. = −7.47 . . . − 7.56 MeV (Eg.s. =
−7.48 . . . − 7.63 MeV) for the variation of the regulator in the
range R = 0.8 . . . 1.2 fm at N3LO (N4LO).

We now turn to Nd scattering observables, which are
calculated by solving the Faddeev equation in the partial-wave

FIG. 4. Predictions for the tensor analyzing powers Ayy and Axx

in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. For notations see Fig. 3.

basis. We take into account all partial waves up to the
total angular momentum jmax = 5 in two-nucleon subsystems.
Isospin-breaking effects are taken into account in the standard
way as described in Ref. [18]. Our predictions for the Nd
total cross section are visualized in Fig. 2, see also Table II.
Similar to the 3H Eg.s., one observes a significant discrepancy
between the theoretical predictions based on the NN forces
only and data, which provides clear evidence for missing 3NF
contributions. The size of the discrepancy agrees within 1.5
times the estimated size of N2LO corrections shown by the
NLO error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated size of
N2LO contributions. Given that the cross section at low energy
is governed by the S-wave spin-doublet and spin-quartet Nd
scattering lengths, this observation can be naturally explained.
Indeed, the spin-quartet scattering length is almost an order of
magnitude larger than that of the spin-doublet and much less
sensitive to the 3NF as a consequence of the Pauli principle.

Our predictions for Nd differential cross section and
analyzing powers Ay(N),Ayy , and Axx are shown in Figs. 3 and
4. At the lowest energy of 10 MeV, there is little apparent need
for 3NF effects except for Ay . Interestingly, the fine-tuning
nature of this observable is clearly reflected in large theoretical
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FIG. 5. Predictions for (a) Eg.s. and (b) rp of 4He and the energies of the lowest two states of (c) 6Li based on the NN potentials of
Refs. [15,16] for R = 1.0 fm without including the 3NF. Theoretical uncertainties (blue error bars with shorter horizontal lines) are estimated
via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i � 3. Numerical uncertainties from the NCSM (red error bars with
longer horizontal lines) are estimated following Ref. [23].

uncertainties at NLO and N2LO. Starting from the laboratory
energy of EN = 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section and
tensor analyzing powers which are expected to be explained
by the 3NF. In all cases, the required 3NF contributions are of
a natural size. Based on the width of the bands, one may expect
Nd scattering observables at N4LO to be accurately described
up to energies of at least 200 MeV. It is also reassuring to see
that the accuracy of chiral EFT predictions for Nd and NN
[16] scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials of
Refs. [15,16] show clearly smaller finite-cutoff artifacts as
compared to the N3LO potentials of Ref. [4] and, in particular,
do not lead to distortions in the cross-section minimum that
were found in Ref. [22].

Next, we apply the improved NN potentials to A > 3
systems. We present in Fig. 5 order-by-order calculations of
selected observables for 4He and 6Li. The results for 4He
are obtained both by solving the Faddeev–Yakubovsky (FY)
equations and with the no-core shell model (NCSM) [8],
which agree to within the estimated uncertainties of these
methods. The numerical uncertainties in the FY solutions
are a few keV for the energy and about 0.001 fm for the
point-proton radius (rp). The numerical uncertainties from
incomplete convergence of the NCSM (see Ref. [23] for
details) are shown as error bars (red) together with the

estimated theoretical uncertainties from the truncated chiral
expansion with Q = Mπ/�b (blue).

The quoted empirical value for the point-proton radius of
4He is extracted from the charge radius rc = 1.681(4) fm [24],
measured in electron scattering experiments, by means of the
relation [25]

r2
p = r2

c −
(

R2
p + 3

4m2
p

)
− N

Z
R2

n − r2
so − r2

mec, (9)

where Rp and Rn are the proton and neutron finite-size correc-
tions, respectively, and mp is the proton mass. Furthermore,
r2

so is a relativistic correction due to spin-orbit coupling of
the nucleons with nonzero orbital angular momentum while
r2

mec denotes the contribution of meson-exchange currents. The
quoted value of rp = 1.462(6) fm is taken from Ref. [26] which
also gives the values for Rp, Rn and rso. The contribution r2

mec
is neglected. Notice that, within the theoretical uncertainties,
our results for 3H and 4He are consistent with quantum Monte
Carlo calculations using local chiral EFT NN potentials up to
N2LO [27].

For the 6Li energies, we carried out similarity renor-
malization group (SRG) evolution [28] in order to enhance
the convergence rate of the NCSM calculations that were
performed in basis spaces up through Nmax = 12 and extrap-
olated to the infinite-matrix limit following Refs. [23,28]. We
retained the induced 3NF arising from the SRG evolution
(see Ref. [29] for details), and this produces results for the

TABLE III. Predicted values for the energies of the ground and the first excited state of 6Li (in MeV) based on the NN chiral potentials of
Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm. The first uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for
chiral order i = 0,2 and via Eqs. (7) and (8) for i � 3. The second uncertainties are the many-body uncertainties. See main text for additional
details.

LO NLO N2LO N3LO N4LO Expt.

Eg.s. −46.9(20.7)(0.3) −31.7(5.5)(0.1) −31.1(1.3)(0.1) −26.2(0.3)(0.2) −26.8(0.1)(0.2) −31.99
E3+ −41.9(18.7)(0.6) −29.0(5.8)(0.2) −28.3(1.4)(0.2) −23.2(0.3)(0.3) −23.8(0.1)(0.3) −29.81
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6Li energies in Fig. 5 that are independent of the SRG
scale over the range α = 0.04–0.08 fm4 to within our quoted
many-body uncertainties. For example, at N4LO we obtain
Eg.s. = −26.9(4) [−26.9(2)] MeV at α = 0.04 (0.08) fm4 for
6Li where the quantified numerical uncertainty in the last digit
of the energy is quoted in parentheses. Our predictions for the
energies of the ground and the first excited state of 6Li are
summarized in Table III for α = 0.08 fm4.

The patterns for the energies in Fig. 5 as well as for the rp of
4He are very similar to the pattern for the Eg.s. of 3H in Fig. 1
and the Nd total cross section at 10 MeV in Fig. 2. As in 3H, we
again observe underbinding, indicative of the need for 3NFs,
especially at N3LO and N4LO. This underbinding is correlated
with larger rp in 4He, which is expected to decrease toward
the experimental result as Eg.s. is lowered toward experiment
with the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with Jπ = 3+, follows the same pattern
as the ground-state energy, leading to an excitation energy that
depends much less on the chiral order than one might naively
expect based on the theoretical uncertainties of the binding
energies.

IV. SUMMARY AND CONCLUSIONS

To summarize, we study in this paper selected few-nucleon
observables by using improved chiral NN potentials of
Refs. [15,16] up to N4LO. Our results suggest that these
new chiral forces are well suited for modern ab initio
few- and many-body methods. Using the novel approach
for error analysis introduced in Ref. [15], we found truly
unambiguous evidence for missing 3NF effects within the
employed framework by observing discrepancies between our

predictions and experimental data well outside the range of
quantified uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chiral 3NF
whose dominant contribution appears at N2LO. Furthermore,
we demonstrate that the predictions for Nd and NN scattering
observables at the same energy have comparable accuracy, in
agreement with the general principles of EFT. Most impor-
tantly, the expected theoretical uncertainty for Nd scattering
observables at N3LO and N4LO in the energy range of Elab �
70–200 MeV is shown to be substantially smaller than the
observed discrepancies between state-of-the-art calculations
and experimental data. This suggests that chiral EFT at these
orders should be capable of resolving the long-standing 3NF
problem in nuclear physics. Work on the explicit inclusion of
the consistent 3NFs is in progress.
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