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β-decay study within multireference density functional theory and beyond
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A pioneering study of Gamow-Teller (GT) and Fermi matrix elements (MEs) using no-core-configuration-
interaction formalism rooted in multireference density functional theory is presented. After a successful test
performed for 6He → 6Li β decay, the model is applied to compute MEs in the sd- and pf -shell T = 1/2 mirror
nuclei. The calculated GT MEs and the isospin-symmetry-breaking corrections to the Fermi branch are found
to be in very good agreement with shell-model predictions in spite of fundamental differences between these
models concerning model space, treatment of correlations, or inclusion of a core. This result indirectly supports
the two-body-current-based scenarios behind the quenching of the axial-vector coupling constant.
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Atomic nuclei are unique laboratories for the study of
fundamental processes and the search for possible signals
of new physics beyond the standard model in ways that are
complementary or even superior to other sciences. Tradi-
tionally, they are used to study the weak interaction. A
flagship example is the superallowed I = 0+ → I = 0+ β-
decay among the members of the isobaric triplets T = 1. With
small, on the order of 1%, theoretical corrections accounting
for radiative processes and isospin symmetry breaking (ISB),
these semileptonic pure Fermi (vector) decays allow one to
verify the conserved vector current (CVC) hypothesis with
a very high precision. In turn, they provide the most precise
values of the strength of the weak force, GF, and of the leading
element, Vud, of the Cabbibo-Kobayashi-Maskawa (CKM)
matrix, see [1] for a recent review.

The T = 1/2 mirror nuclei offer an alternative way to test
the CVC hypothesis [2]. These nuclei decay via the mixed
Fermi and Gamow-Teller (GT) transitions. Hence, apart from
the radiative and the ISB theoretical corrections, the final
values of GF and Vud depend on the ratio of statistical rate
functions for the axial-vector and vector interactions, fA/fV,
and the ratio of nuclear matrix elements ρ ≈ λMGT/MF

where λ = gA/gV denotes the ratio of axial-vector and vector
coupling constants.

The CVC hypothesis implies that the vector coupling
constant is a true constant gV = 1. The axial-vector current
is partially conserved, meaning that the coupling constant
gets renormalized in a nuclear medium. The effective axial-
vector coupling constant, g

(eff)
A = qgA, is quenched by an

A-dependent factor, q, with respect to its free neutron
decay value gA ≈ −1.2701(25). Quenching factors deduced
from comparisons between the large-scale nuclear shell-
model (NSM) calculations and experiment are q ≈ 0.82,
q ≈ 0.77 [3], and q ≈ 0.74 [4] in the p, sd, and pf shells,
respectively. In heavier, A = 100–134, nuclei, the average
quenching is q ≈ 0.48 [5]. This result is consistent, up to
a theoretical uncertainty, with the result of Ref. [6]. Even
stronger quenching, gAA−0.18, is used in the IBM-2 model [7].

The question about physical causes of the quenching has no
unique answer. The quenching is usually related to (i) missing
correlations in the wave function, (ii) truncation of model

space, or (iii) to a very fashionable nowadays renormalization
of the GT operator due to the two-body currents [8,9].
Scenarios involving non-nucleonic degrees of freedom like
NN → N� excitations are shown to contribute only rather
weakly [10].

Proper understanding of quenching is essential for many
branches of modern physics from modeling of astrophysical
processes in stars to elusive neutrinoless double-β decay. To
address quenching, it is of paramount importance to investigate
the GT matrix elements (MEs) using diverse theoretical
models. The goal of this work is to communicate the pioneering
application of the multireference density functional theory
(MR-DFT) rooted no-core-configuration-interaction (NCCI)
approach to study β decay, with a particular emphasis on the
GT process. After a short introduction to the model we shall
present the numerical results starting with the β decay of 6He
in order to test reliability of the model. Afterward, the model
will be applied to the sd- and lower pf -shell T = 1/2 mirror
nuclei, where both the GT MEs and the Fermi MEs will be
computed.

The NCCI models rooted in MR-DFT offer nowadays
an interesting alternative to the conventional nuclear shell
model [11–13]. First, they are capable of treating rigorously
both the fundamental (spherical, particle number) as well
as approximate (isospin) symmetries. Second, by invoking
the generator coordinate method and/or mixing of discrete
(quasi)particle-(quasi)hole (or particle-hole) configurations,
they allow one to incorporate important correlations into the
nuclear wave function. Third, they can be applied to any
nucleus irrespective of A and the neutron and proton number
parities. Moreover, by construction, they are able to capture
core-polarization effects resulting from a subtle interplay
between the long- and short-range nucleon-nucleon forces,
which is of critical importance for the calculation of isospin
impurities and ISB corrections [14].

The NCCI formalism developed by our group [12,13]
involves the angular momentum and isospin projections and
subsequent mixing of states having good angular momentum
and properly treated isospin. It proceeds in three distinct steps.
First, we compute self-consistently a set of k Hartree-Fock
(HF) (multi)particle-(multi)hole configurations, {|ϕj 〉}kj=1,
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relevant for the problem under study. The Slater determinants
{|ϕj 〉}kj=1 are calculated using the Hamiltonian consisting of
Coulomb and density-independent Skyrme interactions. The
use of density-independent true Skyrme interaction is a serious
limitation but, at present, is the only alternative allowing us to
avoid singularities [15,16] at the next stage, at which we apply
the angular momentum and isospin projections to determine,
for each j , the family of states {|ϕj ; IMK; T Tz〉} having good
isospin T Tz, angular momentum IM , and angular-momentum
projection on the intrinsic axis K . Subsequently, the states
{|ϕj ; IMK; T Tz〉} are mixed in order to account for the K and
isospin mixing. This gives a set of good angular-momentum
states {|ϕj ; IM; Tz〉(i)}lji=1 with properly treated isospin mixing
for each HF configuration j [14,17]. The set is nonorthogonal
and, in general, over complete. In the final step, the states
are mixed over different configurations by solving the Hill-
Wheeler-Griffin (HWG) equation, Ĥu = ENu, with the same
Hamiltonian that was used at the HF level. The HWG equation
is solved in the collective space spanned by the natural states
corresponding to nonzero eigenvalues n of their norm matrix
N . The same technique is used in the code to handle K mixing
alone as described in detail in Ref. [18].

On exit, the NCCI code provides eigenfunctions that are
labeled by the index n numbering eigenstates in ascending
order according to their energies and the strictly conserved
quantum numbers I , M , and Tz = (N − Z)/2. The eigenstates
can be decomposed in the original projected (nonorthogonal)
basis:

|n; IM; Tz〉 =
∑
i,j

a
(n;IM;Tz)
ij |ϕj ; IM; Tz〉(i)

=
∑
i,j

∑
K,T �|Tz|

f
(n;IM;Tz)
ijKT P̂ T

TzTz
P̂ I

MK |ϕj 〉, (1)

where P̂ T
TzTz

and P̂ I
MK stand for the isospin and angular-

momentum projection operators, respectively. This form is
particularly useful to compute MEs of the GT operator:

Mμ,ν ≡ ∓〈n′; I ′M ′; T ′
z |Oμ,ν |n; IM; Tz〉, (2)

where Oμ,ν = 1√
2

∑A
k τ̂

(k)
1μ σ̂

(k)
1ν is expressed by means of one-

body spherical tensors. The isospin index above is fixed μ =
±1 and it determines the overall phase factor. The matrix
element (2) fulfills the Wigner-Eckart theorem

Mμ,ν = 1√
2I ′ + 1

CI ′M ′
IM,1ν 〈n′,I ′||Oμ||n,I 〉, (3)

where CI ′M ′
IM,1ν stands for the Clebsch-Gordan coefficient. The

reduced matrix element equals

〈n′,I ′||Oμ||n,I 〉
= ∓

∑
ijKT

∑
i ′j ′K ′T ′

f
(n′;I ′M ′;T ′

z ) ∗

i ′j ′K ′T ′ f
(n;IM;Tz)
ijKT

×√
2I ′ + 1 C

T ′T ′
z

T Tz,1μ

∑
η,ξ

C
T ′T ′

z

T T ′
z−η,1ηC

I ′K ′
IK ′−ξ,1ξ J

(T TzT
′
z ;IKK ′)

η,ξ ;j,j ′ .

(4)

The integral J runs over the β Euler angle in isospace, βT , and
the Euler angles in space � = (α,β,γ ):

J
(T TzT

′
z ;IKK ′)

η,ξ ;j,j ′ = 2T + 1

2

∫ π

0
dβT sin βT dT

T ′
z−η,Tz

×2I + 1

8π2

∫
d�DI ∗

K ′−ξ,K〈ϕj ′ |Oη,ξ | ˜̃ϕj 〉, (5)

where dT
T ′

z ,Tz
and DI

M,K are the Wigner functions and ˜̃ϕj

denotes the Slater determinant rotated in space and isospace.
Mean-field (MF) matrix elements in Eq. (5) can be expressed
by means of transition densities. The formulas are somewhat
lengthy and will be published in our forthcoming paper.
All integrals appearing above can be calculated exactly by
applying appropriate quadratures, see [18] for further details.

The Wigner-Eckart relation (3) implies that the total
probability of decay summed up over the components ν of
the operator Oμ,ν and over polarizations of the final state M ′
is

B(Oμ; n,I → n′,I ′) = g2
A

|〈n′,I ′||Oμ||n,I 〉|2
2I + 1

≡ g2
A

|MGT|2
2I + 1

. (6)

The calculations discussed below were done using a new
unpublished version of the HFODD solver [18,19], which was
equipped with the NCCI module. To track mean-field (MF)
configurations and facilitate convergence properties at the MF
level all reference states used in the NCCI calculations were
self-consistently calculated assuming parity and signature
symmetries. In the calculations we used a basis consisting of
either N = 10 or 12 spherical harmonic oscillator (HO) shells.
The calculations were performed using either the SV Skyrme
force of Ref. [20] or a variant of this force, dubbed SVSO,
having 20% stronger spin-orbit interaction. The latter force
was introduced to improve slightly the single-particle (s.p.)
properties of the SV, in particular, by shifting the d3/2 subshell
with respect to the s1/2 subshell. The near degeneracy of these
subshells in the SV energy density functional (EDF) causes
strong mixing and, in turn, leads to unphysically large ISB
corrections in the superallowed 0+ → 0+ β-decay in A = 38
isospin triplet [14]. The SVSO force does not cure the problem
of incorrectly placed s.p. levels but makes the spectrum slightly
more realistic. Indeed, in 40Ca, the s1/2 and d3/2 neutron
subshells are separated by 0.22 MeV in the SV EDF and
1.18 MeV in the SVSO EDF, respectively. For comparison,
the experimental splitting is 2.55 MeV [21].

It should be also mentioned here that the Skyrme interac-
tions are almost ultimately fitted to time-even observables. In
turn, their spin-isospin properties are strongly parametrization
dependent [22,23], which impairs the calculated charge-
changing processes as demonstrated in Ref. [24]. To improve
the reliability of the calculated spin-isospin observables the
Skyrme forces should be refitted to include carefully selected
time-odd data, which is, however, beyond the scope of the
present work.

Recently, Knecht et al. [25] performed high-precision
measurement of the 0+ → 1+ β decay of 6He, which proceeds
exclusively to the ground state (GS) of 6Li and determined
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FIG. 1. GT ME for β decay of 6He as a function of a number of
configurations taken in the NCCI calculations in 6Li and 6He. Solid
line shows the experimental value of Ref. [25].

the corresponding GT matrix element |MGT| = 2.1645(43)
assuming gA = −1.2701(25). This is an excellent test case
for our model mainly because of a limited number of ph
configurations that can contribute in these p-shell nuclei.

The results of the NCCI calculations performed for this
transition are depicted in Fig. 1. The figure shows the
calculated GT ME versus a number of configurations taken in
the mixing. The very left point corresponds to a situation where
no mixing was performed in either of the nuclei. In this limit,
called hereafter the MR-DFT limit, the HF reference states
were selected based ultimately on the energy criterion. Note
that already in this limit the calculated ME is in fair agreement
with the empirical value underestimating it by ≈7%. Next,
keeping the wave function of 6He fixed, we attempted to
correlate the wave function of 6Li by admixing 1+ states
projected from the lowest ph configuration (second point) and
from the first two lowest ph configurations (third point). This
caused an increase of the ME to 2.208 and 2.223, respectively,
i.e., circa 3% above the experiment, see Fig. 1. At this point we
froze the wave function of 6Li and attempted to correlate the
wave function of 6He (last two points). This weakly influenced
the ME giving eventually 2.238.

The test shows that the model is capable of capturing the
main features of the wave functions that are important for
reliable reproduction of the GT ME and provides stable pre-
dictions as a function of a number of admixed configurations.
It is worth noticing that an even better result, |MGT| = 2.185,
can be obtained based on a simple p-shell configuration
interaction calculation involving the surface-δ interaction,
see [26] for further details. These results seem to indicate
rather weak sensitivity of this specific decay to the details of
underlying nucleon-nucleon interactions. This conjecture will
be thoroughly examined below.

Encouraged by the result obtained for the 6He decay, we
performed a systematic study of the GT and Fermi MEs for the
GS → GS transitions in the T = 1/2 mirror nuclei covering
the sd- and lower pf -shell nuclei from A = 17 to 55. All
results shown below were obtained using the SVSO EDF. This
functional, apart from slightly more realistic s.p. levels, is also
superior in reproducing binding energies (BEs) in comparison
to the SV EDF. The ability to reproduce masses is considered
to be one of the most important signatures of the quality of
DFT-rooted models. The calculated BEs relative to empirical
results are depicted in Fig. 2. Although the theory tends to
overbind the lightest species and underbind the heavier, the

FIG. 2. Theoretical binding energies of T = 1/2 mirror nuclei
calculated using the NCCI framework. The results are shown relative
to the experimental data.

overall agreement is at a quite impressive level of ±1%. It
is better almost by a factor of 2 than the level of agreement
obtained for the SV interaction.

It appears also that the SVSO has reasonable spectroscopic
properties. The theory is able to reproduce the GS spins already
at the MR-DFT level with the exception of the A = 19 case,
where the model predicts I = 5/2+ instead of I = 1/2+ to
be the GS spin. The energy spectra are, in general, in fair
agreement with the data. For the sake of illustration, Fig. 3
shows theoretical and experimental I = 3/2+ and 5/2+ states
in the lower sd-shell nuclei. Similar agreement is obtained for
heavier nuclei.

Figure 4 shows the GT MEs, |gAMGT|, calculated using
the MR-DFT and the NCCI models. The NCCI calculations
involve typically four to five low-lying ph MF configurations.
The results of both approaches are strikingly similar except
for the 45V → 45Ti transition. Both models systematically
overestimate the data beside the nuclei ranging from A = 29
to 35. Strong suppression of the GT MEs in this mass range
is related to the aforementioned clustering of the s1/2 and d3/2

subshells in MF calculations. Proximity of these two subshells
causes strong mixing, which has a destructive impact on the
calculated MEs. Comparison of the MR-DFT results obtained
using the SV and SVSO EDFs supports this conclusion. Indeed,
the MEs calculated using these two functionals are almost
identical everywhere except for the mass region discussed
above.

FIG. 3. Excitation energies of the lowest 3/2+ and 5/2+ states in
sd-shell T = 1/2, Tz = 1/2 nuclei ranging from A = 19 to 33. The
calculated (experimental) levels are marked by thick solid (dashed)
lines. The calculated states come from MR-DFT. Theoretical energies
have been normalized to the experimental ground states.
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FIG. 4. Gamow-Teller matrix elements calculated using the MR-
DFT (triangles) and NCCI (diamonds) approaches in comparison
with experimental data (dots) taken from Ref. [3] (sd shell) and
Refs. [4,27] (pf shell).

Figure 5 shows the NCCI results in comparison to the NSM
calculations of Ref. [3] (sd shell) and Refs. [4,27] (pf shell).
The two sets of calculations are very consistent with each
other. Indeed, a linear fit to the MR-DFT (NCCI) GT MEs
gives q = 0.77 (0.78) in the sd shell (excluding problematic
A = 31–35 cases) and q = 0.75 (0.69) in the lower pf shell,
respectively. These values agree almost perfectly with the
NSM quenching in spite of numerous differences between
the models. In particular, our model (i) includes the core
and takes into account core polarization effects, (ii) accounts
for correlations in a different, more schematic way, than the
shell-model, (iii) uses functionals, which were not optimized
for the NCCI calculations, or (iv) uses completely different
model space. To address the last point, we performed an
additional set of MR-DFT calculations using a larger basis,
consisting of N = 12 spherical HO shells. We found that
the increase of the basis size has almost no impact on the
calculated MEs. Note also, a systematic difference between

FIG. 5. GT MEs calculated using the NCCI model (triangles) in
comparison to the NSM results of Ref. [3] (sd shell) and Refs. [4,27]
(pf shell).

FIG. 6. Ikeda sum rule for the GS of 39Ca. Thick horizontal lines
indicate the theoretical (solid) and experimental (dashed) total BEs
of the GS in 39Ca and the lowest 1/2+, 3/2+, and 5/2+ states in 39K.
The numbers over the arrows indicate the total calculated GT strength
for each I . Multiple arrows and shadowing indicate that the strength
is distributed over several states.

the shell-model and NCCI results in the heaviest calculated
nuclei. The origin of this difference requires deeper study.

The Ikeda sum rule is an important indicator of the quality
of theoretical models. For the T = 1/2 mirrors it takes
a particularly simple form:

∑
n′,I ′ B(O+; n,I → n′,I ′) = 3.

Systematic study of the Ikeda sum rule with the present
formalism involving the isospin and angular momentum
projections is CPU expensive. Hence, it was limited here to one
of the simplest cases of A = 39 nuclei. In this case, inclusion
of all possible ph excitations within the sd shell exhausts 99%
of the sum rule as illustrated in Fig. 6. It is worth mentioning
that inclusion of ph excitations between the spin-orbit partners
d5/2 → d3/2 is crucial for the sum rule. More systematic study
of the sum rules will be done with the variant involving only
the angular-momentum projection.

The use of the NCCI approach involving both the isospin
and angular-momentum projected states is absolutely neces-
sary to study Fermi transitions and, in particular, to extract
the ISB corrections to the Fermi branch of β decay. Let us
recall that the ISB corrections are needed to study the CVC
hypothesis and the CKM matrix via the transitions in the
mirrors, see Ref. [2]. The results obtained in this study are
collected in Table I. It is beneficial to see that our corrections
are very consistent with the NSM results of Ref. [28].

In summary, we have presented a systematic study of the
GS → GS GT and Fermi MEs in T = 1/2 mirror nuclei using,
for the first time, the NCCI approach based on the isospin
and angular-momentum projected MR-DFT formalism. The
framework is universal and can be applied to any nucleus
irrespective on its mass and the proton and neutron number
parities. It can be also improved and optimized in many
different ways, in particular, concerning the tensor force which
is known to have an impact on the shell structure [29,30] and
β decay [31].

In the present implementation with the SV or SVSO

EDFs the calculated GT MEs systematically overestimate
experimental data for the free neutron strength of the axial
current. The level of disagreement is found to be very similar
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TABLE I. Theoretical ISB corrections δ
(NCCI)
C (in %) adopted in

this work. For the sake of comparison the table contains also the NSM
results, δ

(NSM)
C , of Ref. [28].

A δ
(NCCI)
C δ

(NSM)
C A δ

(NCCI)
C δ

(NSM)
C

17 0.166(17) 0.585(27) 37 0.907(91) 0.734(61)
19 0.339(34) 0.415(39) 39 0.318(32) 0.855(81)
21 0.300(30) 0.348(27) 41 0.426(43) 0.821(63)
23 0.316(32) 0.293(22) 43 0.690(69) 0.50(10)
25 0.413(41) 0.461(47) 45 0.589(59) 0.87(12)
27 0.439(44) 0.312(34) 47 0.673(67)
29 0.520(52) 0.976(53) 49 0.646(65)
31 0.585(59) 0.715(36) 51 0.714(71)
33 0.705(71) 0.865(59) 53 0.898(90)
35 0.366(37) 0.493(46) 55 0.620(62)

to the one obtained using a large-scale shell model in spite
of the fundamental differences between the two approaches

in handling the core and the core polarization effects, the
correlations, or the basis truncation. It strongly suggests that
the mechanism of in-medium renormalization of the axial
strength may indeed be related to the two-body currents. This
conjecture requires further study. It is, however, very appealing
because the two-body currents do not renormalize the Fermi
transition operator [8] in agreement with the experimental
data and theoretical results on superallowed 0+ → 0+ Fermi
decays [1,14].

Finally, we also calculated the ISB corrections to the Fermi
decay branch in the T = 1/2 mirror nuclei. The corrections
turned out to be in very good agreement with the NSM
calculations.
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and 2014/15/N/ST2/03454. The CSC-IT Center for Science
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[22] M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz,

Phys. Rev. C 65, 054322 (2002).
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