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Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy
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This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616
(2015)] to examine if signatures of a phase transition can be extracted from transport model calculations of heavy
ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal
distribution in P, (k) in finite systems. Here P, (k) is the probability that the maximum of the multiplicity
distribution occurs at mass number k. Using a well-known model for event generation [Botzmann-Uehling-
Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120
on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical
model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other
phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if
such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If
first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably
the reason this has not been seen already is because this aspect was not investigated before.
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Introduction. In a recent paper [1] we used a well-known
model of fluctuations [2] in Botzmann-Uehling-Uhlenbeck
(BUU) [3] to generate event-by-event simulation of collisions
of fairly large (mass 120 on mass 120) ions as well as not so
large (mass 40 on mass 40) ions. The multiplicity distribution
of the final collision products showed a remarkable similarity
with the results given by equilibrium statistical models where
we used a canonical thermodynamic model (CTM) [4].
Both canonical [4,5] and grand canonical thermodynamic
models [6] predict first-order phase transitions in hot nuclear
systems. So the similarity suggested that probably transport
model calculations also will give more direct evidence of
first-order phase transition. This work is aimed at exploring
this further. It is not so obvious how to go about doing
this. In canonical and grand canonical models there are two
parameters, temperature 7 (which is the basic parameter) and
average energy E. The behavior of E against T can indicate
the order of the phase transition. Usually two parameters are
needed, but in the transport model calculations that we do
here there is only one parameter, the beam energyEE . Deéf;ning

a temperature is quite difficult. Formulas like Z* = - are

obviously inappropriate. One might try 7 = (%)V but that
requires obtaining the entropy of an interacting system and an
accurate evaluation would be very hard.

We recall that as early as 1998, in compiling existing knowl-
edge from experimental data and comparing these with lattice
gas model predictions, it was concluded that in intermediate-
energy heavy ion collisions one passes through a first-order
phase transition [7]. This was subsequently investigated by
many authors with different approaches. One approach uses
the idea of “bimodality.” A very useful exposition of this
can be found in [8] which also has a list of other references
using the bimodality approach. The size of the largest cluster
k is considered to be an order parameter. Phase transitions
occur in very large systems but practical calculations (and
experiments with heavy ions) need to be done with finite
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systems. Gulminelli and Chomaz pointed out that we should
expect for P, (k) (probability that the biggest cluster has mass
k) a double humped distribution (hence the name bimodality)
if the phase transition is first order. The authors establish this
with a lattice gas model. For a relevant study of this in the
Ising model, see [9].

Bimodality also emerges in CTM [10] which has a first-
order phase transition. The objective of this work is to investi-
gate if bimodality emerges from a transport model calculation.
Using what is labeled as QMD (quantum molecular dynamics),
Lefevre and Aichelin used ideas from bimodality to show
that in some noncentral collisions [11] there is evidence of
first-order phase transition [12]. In the calculation the full
distribution P, (k) was not displayed. The complete curves
P, (k) as functions of beam energy are quite interesting and
we present them here. In contrast with the QMD work we
use central collisions. As we are interested in phase transition
under the influence of nuclear force, Coulomb effects will be
switched off. The use of central collisions to display bimodality
has been questioned before. Also the transport model we use
is quite different from QMD.

Model description. The calculations done here follow those
of [1] except for small but important details which will be
fully presented. For completeness we outline the model. More
details are givenin [1]. The original model was developed in [2]
where the formal structure was discussed and an application
was presented. Initially each nucleon in the target and the
projectile is given a semiclassical phase-space density. For
each nucleon this phase-space density is represented by N test
particles where each test particle is generated by Monte Carlo
and has a position 7 and a momentum p. Initially the two
nuclei are apart with an impact parameter b (in this work we
only consider the central collisioni.e., b = 0) and the projectile
starts with a beam velocity toward the target. As they propagate
in time, the test particles will move in a mean field and suffer
hard scattering. As N test particles will represent a nucleon,
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FIG. 1. Largest cluster probability distribution for A, = 40 on
A, =40 reaction at beam energies (a) 20, (b) 42.5, and (c)
100 MeV /nucleon. The average value of 2 mass units are shown.
At each energy 1000 events are chosen. The results shown in this
figure are calculated at # = 300 fm/c.

]
o

the collision cross section between test particles is reduced to
Oun/ N where o, is the nucleon-nucleon cross section. In [2],
to simulate an event, the cross section is further reduced by a
factor N but if a collision happens not only the the two test
particles go from p; to p; + A p and from p, to p» — Ap, but
also N — 1 test particles contiguous to test particle 1 undergo
momentum change Ap and N — 1 test particles contiguous
to test particle 2 undergo momentum change —Ap. This is
followed in time till the collisions are over and we have one
event. To simulate another event we start with initial positions
of the ions and generate by Monte Carlo fresh sets of test
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FIG. 2. Largest cluster probability distribution for A, = 120 on
A, = 120 reaction at beam energies (a) 20, (b) 60.125, and (c)
100 MeV /nucleon. The average value of 5 mass units are shown.
At each energy 1000 events are chosen. The results shown here are
calculated at r = 600 fm/c.
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particles. Many events are needed before any comparison with
experiments can be made.

The calculation for each event is quite large as collisions
between (A, + A;)N test particles need to be checked. Here
A, is the number of nucleons in the projectile and A; is the
number of nucleons in the target and N is rather large (usually
about 100). It was shown in [ 1] that the problem can be reduced,
for each event, to checking collisions between just (A, + A;)
test particles. This feature makes it possible for us to do large
systems. We refer to Sec. II of [1] for details. No compromise
to theory or numerical accuracy is introduced.
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FIG. 3. Largest cluster probability distribution for A, =40 on
A, = 40 reaction at beam energies (a) 41.5, (b) 42.5, (c)43.5, and (d)
44.5 MeV /nucleon. The average value of 2 mass units are shown. At
each energy 1000 events are chosen. The results shown in this figure
are calculated at t = 300 fm/c

Some details of the simulation. For completeness, we
provide some details of the calculation that will be needed
to explain our cluster recognition algorithm. Collisions are
treated as in [3]. For Vlasov propagation we use the lattice
Hamiltonian method [13] which accurately conserves energy
and momentum. The mean field is also taken from [13].
The configuration space is divided into cubic lattices. The
lattice points are / fm apart. Thus the configuration space is
discretized into boxes of size I fm>. Density at the lattice point
¥ is given by

pL(a) =Y S(o — 7). (1)

Here the sum over i goes over all the test particles and the
form factor is

S@) 8(x)g(y)g(2), 2

1
Nl
where

8(q) = (nl — |lg)O(nl — |q|). 3)

In this work we have used n = 1 and [ = 1 fm. Because of
this choice, at a given time, if two test particles are more than
2 fm apart, they cannot affect each other’s motion directly.
This prompts us to prescribe the following algorithm. Two test
particles are part of the same cluster if the distance between
them is less than or equal to 2 fm. Two clusters are distinct
if none of the test particles of cluster 1 is within a distance
of 2 fm from any of the test particles of cluster 2. With this
prescription, the number of clusters and their sizes will change
as a function of time at early times. Because of the momenta
that test particles carry, two test particles which are less than 2
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FIG. 4. Upper panel: Dependence of kinetic energy per nucleon
(red), potential energy per nucleon (blue), and total energy per
nucleon (black) for theA, = 40 on A, = 40 reaction on the projectile
beam energy per nucleon. Lower panel: Dependence of first-order
derivatives of kinetic energy and potential energy with respect to
total energy on total energy per nucleon for the A, =40 on A, =40
reaction.

fm apart (or more than 2 fm apart) may not remain so at a later
time. The physical picture we depend upon is that when two
heavy ions collide, clusters are formed which begin to move
away from one another. If this is true then at large times, the
momentum p; and position 7; in each individual cluster are
strongly correlated and the transfer of test particles between
different clusters will disappear. One can test this by plotting
the multiplicity distribution as a function of time. We find that
for 40 on 40, near constancy is observed around 300 fm/c, and
for 120 on 120 (because this is a much larger system) around
600 fm/c. From the multiplicity distributions of 1000 events,
we construct P, (k), the probability that the largest cluster in an
event has k nucleons. Examples are shown in Figs. 1 and 2. Our
algorithm for enumerating cluster numbers and their sizes has
some similarities and also some differences with the method
used in [14] in QMD.
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FIG. 5. Same as Fig. 4 but here the nuclear reactionis A, = 120
on A, = 120.

Results. To study bimodality from our event generation
model (BUU plus fluctuation) we simulate central collisions
of mass 40 on mass 40 and mass 120 on mass 120 at
different projectile beam energies. For 40 on 40 reaction the
largest cluster probability distribution is plotted in Fig. 1 for
Epeam = 20,42.5,and 100 MeV /nucleon. Ateach energy 1000
events are taken, and for each event, calculation is done up to
t = 300 fm/c. The results shown are averages for graphs of
2 consecutive mass number at # = 300 fm/c. At projectile
beam energy Epeam = 20 MeV /nucleon, the P, (k) is peaked
at around mass 60 which represents the liquid phase whereas at
Epeam = 100 MeV /nucleon, the probability distribution peaks
at very low mass, i.e., it suggests the system is in the gas phase.
In between these two extremes, at Epeam = 42.5 MeV /nucleon
the largest cluster probability distribution shows the bimodal
behavior where the heights of the two peaks are almost the
same. Figure 2 shows similar features for a much heavier
system: 120 on 120. Here we take the results at 600 fm/c.
Several points are worth mentioning. Whether in the case of
40 on 40 or 120 on 120, bimodality occurs in a very narrow
range of energy. For 40 on 40 we demonstrate that in Fig. 3.
Thus to locate bimodality in experiments, the beam energy
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FIG. 6. Same as Fig. 5 but here the calculation is done by the
standard BUU method (i.e., without fluctuation).

variation has to be done in small energy steps. The narrow
width of energy over which bimodality appears is common in
CTM also.

A phase-transition-like behavior emerges more directly
from our calculations. This is quite revealing. For 40 on 40
(and 120 on 120) we do our calculation as a function of beam
energy. For example for 40 on 40 we did our calculation from
beam energy 20 to 100 MeV /nucleon. For each beam energy
1000 events were generated. From these events we compute
the average total energy Eiy, the average kinetic energy Ej,
and the average potential energy E, per particle. Let us plot
the total energy Eyy in the center of mass (c.m.) frame. This
will of course increase in value as the Eye,m (MeV /nucleon)
increases. This energy Ei is the sum of kinetic energy E; and
potential energy E,. The origin of E; is more complicated.
It arises from Fermi motion of the test particles and also
the c.m. kinetic energy of each cluster. The quantity E, is
more straightforward. It arises from the potential energy of
the clusters. Insight is obtained by examining the derivative
dE,/dE. A sudden change in the derivative dE,/dEy
occurs at the point where bimodality is observed. This type
of break in the first derivative is typical of first-order phase
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transitions. We might consider this break to be an additional
signature of a first-order phase transition.

Since here we plotted values for the average of many events,
it is natural to ask, could it be seen in standard BUU which
does give average values? This is not obviously so because
the average might depend also on the details of fluctuations
that were used in our event generation model. However,
straightforward BUU as has been used before [3] does produce
similar result (Fig. 6). Thus the possibility exists that one
might get a signature for first-order phase transition from BUU
itself. This is an important step forward. Fluctuation models
are numerous and often impossible to implement for realistic
situations. The one we have used here is unable to ensure that
Pauli principle is satisfied in every step, although estimates
in Ref. [1] suggest that such corrections are small. Standard
BUU [3] has no such problem, and is highly respected in the
nuclear community; if standard BUU also provides signatures
of first-order phase transition (although not recognized in any
earlier work) it is a very significant step forward.

Discussion. We have studied central collisions of 40 on
40 and 120 on 120 to test the appearance of bimodality
which is considered to be a signature of first-order phase
transition in finite systems. Bimodality was observed. Since
calculations were done with a fixed beam energy, one might
be tempted to call it a microcanonical calculation. But even in
central collisions at least two different reaction mechanisms
operate. One is collision between peripheral parts. Here some
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nucleons may simply pass by or at most make one collision.
We would include preequilibrium emission in this category.
The number of nucleons in preequilibrium emission and the
energy they carry off will vary from event to event. Thus
the number of nucleons which suffer multiple collisions and
the energy that is available for such multiple collision events
will vary. Presumably such multiple collision events can show
signatures of statistical equilibrium, phase transitions, etc., but
in experiments and in transport model calculations such as
those discussed here, all different reaction mechanisms will
play a role. Nonetheless, this calculation shows that a dynam-
ical model describing the collision with just nuclear forces
can lead to the observation of first-order phase transitions in
intermediate-energy heavy ion collisions.

The similarity between CTM results and transport model
results might be exploited to estimate the freeze-out den-
sity in statistical models. In CTM a freeze-out density is
assumed but there is no such parameter in the transport
model. In CTM the temperature at which bimodality appears
depends on the assumed freeze-out density. There will be a
freeze-out density at which CTM gives the same bimodality
temperature as the transport model. This could be an estimate
for freeze-out density. Detailed calculations have not been
carried out.
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