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Magnetic properties of quantized vortices in neutron 3P2 superfluids in neutron stars
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We discuss quantized vortices in neutron 3
P2 superfluids, which are believed to realize in high density neutron

matter such as neutron stars. By using the Ginzburg-Landau free energy for 3
P2 superfluids, we determine the

ground state in the absence and presence of the external magnetic field, and numerically construct 3
P2 quantized

vortices in the absence and presence of the external magnetic field along the vortex axis (poloidal) or angular
direction (toroidal). We find in certain situations the spontaneous magnetization of the vortex core, whose typical
magnitude is about 107–8 G, but the net magnetic field in a neutron star is negligible because of the ratio of the
vortex core size ∼10 fm and the intervortex distance ∼10−6 m in a vortex lattice.
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I. INTRODUCTION

Neutron stars provide unique laboratories in the universe
not only for astrophysics but also for nuclear physics and con-
densed matter physics. Neutron stars have some observables
such as the mass (M), radius (R), surface temperature (Ts), and
magnetic fields on the surface (Bs). The observed masses of
neutron stars give a stringent constraint on the stiffness of the
equation of state. Other observables such as Ts and Bs give us
rich information about the states of high density nuclear matter.

It is generally believed that a neutron superfluid state is
realized inside neutron stars, which is a high density fermionic
system. At low densities less than the normal nuclear matter
density, the dominant effective pair interaction is the 1S0

attractive one, and the possibility of 1S0 superfluidity was
pointed out by Migdal in 1959 [1]. From the observational
point of view, pulsar glitches, which are the sudden speed-up
events of neutron stars [2], might show the existence of the
superfluidity inside neutron stars, although the mechanism
of pulsar glitches is still controversial. The origin of pulsar
glitches was proposed to be the starquake from the core or the
crust of neutron stars [3–5]. It was also proposed that pulsar
glitches can be explained by the unpinning dynamics of a large
number of neutron vortices pinned on the nuclei [6]. In spite
of several different proposals, there is a common point for the
existence of superfluids among several models: the observed
long relaxation time τ (∼ weeks for Crab and ∼years for
Vela) can be explained by assuming that neutron stars have
the two components, normal neutrons and superfluid neutrons
[3–5]. Moreover, recent observation of the cooling process
of a neutron star may indicate the existence of superfluid
components in the neutron star [7,8]. Therefore, it is very im-
portant to study the detailed properties of neutron superfluidity
to understand the dynamics and evolution of neutron stars.
Once it is established, a large number of quantized vortices
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are inevitably created along the rotation axis due to the rapid
rotation of neutron stars, and consequently understanding the
dynamics of superfluid vortices should be crucial.

Due to the repulsive core in the 1S0 partial wave, the
effects of pairing in the 3

P2 attractive interaction becomes
comparable to that of the 1S0 case at about the normal nuclear
matter density. Therefore, a transition from an isotropic 1S0

superfluid to an anisotropic 3
P2 superfluid has been predicted

to occur at this density [9–14]. The Ginzburg-Landau (GL)
free energy for the 3

P2 superfluid, which is valid near the
critical temperature, was derived in Refs. [13,14] in the weak
coupling limit. The ground state was determined in the GL
theory to be in the nematic phase [15] according to the
classification by Mermin [16] for the GL free energy with total
angular momentum 2. The strong coupling effect was taken
into account in Ref. [17]. Although no definite observational
signal of the existence of 3

P2 superfluids was obtained yet, the
existence of quantized vortices is inevitable if it is realized.
Vortex structures in 3

P2 superfluids were discussed in the GL
equation for the 3

P2 superfluid [14,18,19]. In particular, the
spontaneous magnetization of a vortex was pointed out in
Ref. [19]. Recent study of 3

P2 superfluids includes for instance
low energy excitations, their low energy theory, neutrino
emission [20–29], their effects on the cooling process [30],
and the entrainment [31].

In this paper, we determine the ground state in the presence
of magnetic fields, and work out quantized vortex structures
in the 3

P2 superfluids in the presence and absence of magnetic
fields in the framework of the GL theory. Due to the tensorial
nature of the order parameter of the 3

P2 superfluids, the basis
in which the tensor order parameter take a form depends
on the considered physical situation. The vortex was studied
before in the absence of the external magnetic field and the
sixth order term in the GL free energy, in which case the
coordinate basis of the tensor order parameter is cylindrical
for the vortex solution with the least energy [14,18,19]. We
obtain the full numerical solution in this case. We further
take into account the effect of the sixth order term in the
absence and presence of the magnetic field. We find that the
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Cartesian (xyz) basis for the tensor order parameter gives the
least energy configurations in the presence of the sixth order
term and/or the magnetic field along the vortex axis while
the cylindrical bases are preferred only in the absence of the
external magnetic fields or in the presence of the magnetic
field along the angular direction encircling the vortex. We
construct the vortex profiles in all these cases. We further
calculate the magnetization of the vortex core induced by the
neutron anomalous magnetic moment and find that it is present
only when off-diagonal elements in the tensor order parameter
appear around the vortex core; the case that the off-diagonal
elements have the same winding number with the diagonal
elements when the cylindrical basis is preferred for the tensor
order parameter, and the case that the off-diagonal elements
have a winding number differing from that of the diagonal
elements by 2 when the Cartesian basis is preferred for the
tensor order parameter. Among these, a net magnetization is
present for the former case, that is, the case that the sixth order
term is negligible in the absence of the magnetic field and
the case in the presence of the magnetic fields in the angular
direction. For the Cartesian basis, we find a magnetization
upward and downward along the vortex axis locally existing
in the angular coordinate, with zero net magnetization. In these
cases, the typical magnitude of the magnetic field inside the
vortex core is about 107–8 G, and the average value is much
less when averaged in the vortex lattice.

This paper is organized as follows. In Sec. II we introduce
the GL equation for 3

P2 superfluid states and determine the
ground states in the absence and presence of the magnetic
fields. In the weak coupling limit, degenerate ground states
can be parametrized by one parameter. We also point out some
analogy to that of 3He superfluids and spin-2 Bose-Einstein
condensates (BECs). In Sec. III we construct vortex solutions
numerically by using the 3

P2 GL equation in various cases
in the presence and absence of magnetic fields along the
vortex axis or angular direction. In Sec. IV, we calculate
a spontaneous magnetization caused by the 3

P2 vortices.
Section V is devoted to a summary and discussion. In Appendix
A we give the detailed calculation to determine the ground
states taking into account the sixth order term. In Appendix B
we give full equations of motion of 3

P2 superfluids.

II. GINZBURG-LANDAU FREE ENERGY
FOR 3P2 SUPERFLUIDS

In this section, we first give the GL free energy and
determine the ground states in various cases in the absence
and presence of the magnetic fields.

A. Ginzburg-Landau free energy

The GL free energy for the 3
P2 superfluidity in the weak

coupling limit was derived in Refs. [13,14,32] assuming the
contact interaction. Here let us follow their derivation. To this
end, we consider properties of dense neutron matter by the
following Hamiltonian H , which includes a zero range 3

P2

force:

H =
∫

d3ρ ψ†
(

− ∇2

2M
− μ

)
ψ − 1

2
gT

†
αβ(ρ)Tαβ(ρ), (1)

where ρ denote space coordinates, ψ is a neutron field, μ is
a baryon chemical potential, M is the mass of neutrons, and
g(>0) is the coupling constant. Here, α,β are the space indices,
and the tensor Tαβ is given by

T
†
αβ(ρ) = ψ†

σ (ρ)(t∗αβ)σσ ′(∇)ψ†
σ ′(ρ) (2)

with a differential operator t defined by

(tαβ)σσ ′(∇) = 1
2 [(Sα)σσ ′∇β + ∇α(Sβ)σσ ′]

− 1
3δαβ(S)σσ ′ · ∇ (3)

and S is defined by (Sα)σσ ′ = i(σyσα)σσ ′ (α = x,y,z).
The order parameter for 3

P2 superfluidity is the 3 × 3
traceless symmetric tensor Aμi , which is defined by

	 =
∑
μi

iσμσyAμiki, (4)

where 	 is the gap parameter. The Latin letter μ stands for the
spin index as before while the Roman index i stands for the
spatial coordinates. The symmetry acts on the tensor Aμi as

A → eiθgAgT , eiθ ∈ U (1), g ∈ SO(3) (5)

in the matrix notation. The free energy density F as a function
of tensor Aμi can be written as

F =
∫

d3ρ (fgrad + f2+4 + f6 + fH ) (6)

where fgrad is the gradient term, f2+4 and f6 [32] are the free
energy densities up to fourth order and sixth order, respectively,
and fH is the magnetic term, given by

fgrad = K1∂iAμj∂iA
†
μj + K2(∂iAμi∂jA

†
μj + ∂iAμj∂jA

†
μi),

(7)

f2+4 = αTrAA† + β[(TrAA†)2 − TrA2A†2], (8)

f6 = γ {−3(TrAA†)|TrAA|2 + 4(TrAA†)3

+ 12(TrAA†)Tr(AA†)2 + 6(TrAA†)Tr(A2A†2)

+ 8Tr(AA†)3 + 12Tr[(AA†)2A†A]

− 12Tr[AA†A†A†AA] − 12TrAA(TrAA†AA)∗},
(9)

and

fH = g′
HH 2Tr(AA†) + gHHμ(AA†)μνHν. (10)

In Table I, we summarize the coefficients (the GL parameters)
calculated in the weak coupling limit by considering only the
excitations around the Fermi surface [13,14,32]. In this limit,
K1 and K2 take the same value. In the derivation above, it
should be noted that the following relations hold:

Tr[AA†(AA†)∗] = Tr[AAT (AAT )∗],

Tr[(AA†)2(AA†)∗] = Tr[(AA†)(AAT )(AAT )∗],

Tr(AAT )Tr(AA†AAT )∗ = Tr(AAT )∗Tr(AA†AAT ),

because Aμi is a symmetric tensor.
We ignore the first term with the coefficient g′

H of fH in
Eq. (10) since the effect of this term can be incorporated into
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TABLE I. The GL parameters in the weak coupling limit. In the derivation of α, we took g = 3π2

Mk3
F

in order for the T dependence of α to

become the same with that of the BCS theory. Here, kF is the Fermi momentum defined by kF = �c(3π 2ρ)1/3 where ρ is the neutron density.
N (0) ≡ MkF

2π2 is the density of states N = Mk

2π2 on the Fermi surface k = kF , Tc is the critical temperature for the 3
P2 superfluidity, and the

Riemann ζ function ζ (n) is defined by ζ (n) = ∑∞
k=1

1
kn , for which ζ (3) ∼ 1.202 and ζ (5) ∼ 1.037. γn is the gyromagnetic ratio of the neutrons

and F is the Fermi liquid correction about the Pauli spin susceptibility. In this paper, we take F = −0.75, Tc = 0.2 MeV, T = 0.8Tc, and
ρ = 0.17/fm3 for numerical simulations.

α K1 = K2 β γ gH

N(0)
3

T −Tc

T
k2

F
7ζ (3)

240M2
N(0)

(πTc)2 k4
F

7ζ (3)
60

N(0)
(πTc)2 k4

F − 31
16

ζ (5)
840

N(0)
(πTc)4 k6

F
7ζ (3)

24
N(0)

(πTc)2
(γn�)2

2(1+F )2 H 2k2
F

the shift of α in f2+4 and consequently the phase structure is
not modified.

Let us make comments on other systems similar to 3
P2

superfluids: 3He superfluids and ultracold atomic gases of
spin-2 BEC. The 3He superfluids are also described by a
3 × 3 tensor Aμi but it is not traceless symmetric unlike
3
P2 superfluids [33,34]. The gradient terms are the same

in the weak coupling limit. Spin-2 BECs are described by
the Gross-Pitaevskii equation of a 3 × 3 traceless symmetric
tensor [35]. The sixth order term f6 is absent in the energy
functional of the Gross-Pitaevskii equation. In addition, the
terms proportional to K2 in the gradient term fgrad are absent
in spin-2 BECs. In other words, the terms proportional to K2

in the gradient term exhibits characteristic features of the 3
P2

superfluids.

B. Ground states

The ground states of the GL free energy with total angular
momentum 2 were classified by Mermin [16]. According to
this classification, the ground state of 3

P2 superfluids in the
weak coupling limit is in the nematic phase [15].

We summarize the effects of each term on the symmetry
breaking pattern in the cases (1) f2+4, (2) f2+4 + f6, (3) f2+4 +
fH , and (4) f2+4 + f6 + fH .

(1) First, we consider the simplest case f2+4. The magnitude
of the sixth order term is much smaller than that of the fourth
order term in the region that the GL theory is appropriate, that
is, when the gap parameter is small enough. Here we consider
the energy scale in which f6 is negligible.

At the fourth order level, the ground state A4th can be written
as

A
(x,y,z)
4th =

√
|α|

β(r2 + (1 + r)2 + 1)

⎛
⎝r 0 0

0 −(1 + r) 0
0 0 1

⎞
⎠ (11)

with a continuous degeneracy r up to the SO(3) action, where
(x,y,z) implies that we take the Cartesian xyz coordinates for
the indices of the tensor A. Here, r ∈ R is a parameter whose
range can be restricted to −1 � r � −1/2 without the loss of
generality. In this range, the eigenvalues in the order parameter
have the following magnitude relation:

(1 + r)2 � r2 � 1. (12)

The ground states are continuously degenerate with the
parameter r [36] and are referred to as the nematic phase. The
ground state manifold can be decomposed into three regions
called strata that have the isomorphic unbroken symmetries
H : the uniaxial nematic (UN) phase for r = −1/2, the D2

biaxial nematic (D2 BN) phase for −1 < r < −1/2, and the
D4 biaxial nematic (D4 BN) phase for r = −1. We summarize
the unbroken symmetry H , the order parameter manifold
G/H , and the homotopy groups from π0 to π4 of the order
parameter manifold in Table II.

While the order parameter G/H represents gapless Nambu-
Goldstone (NG) modes, the parameter r here represents an
additional gapless mode called a quasi-NG mode, that was
found in a spin-2 BECs [37]. In the nematic phase, the
SO(3) is enhanced to SO(5) in the level of the equation of
motion, and when it is spontaneously broken, there appears
the additional gapless mode, that is, the quasi-NG mode.
The whole ground state manifold (extended order parameter
manifold) that contains both the NG and quasi-NG modes is
U(1)×SO(5)
Z2�SO(4) 
 U(1)×S4

Z2
.

(2) Next, let us add the sixth order term f6 (so that the total
free energy is f2+4 + f6), and see which state is selected by this
term. In Appendix A, we show that the ground state is still in
the nematic phase in the presence of the sixth order term, with
correcting the amplitude of the condensates in the previous
study [15]. We can derive the ground state A6th exactly by

TABLE II. The strata in the nematic phase. We show the range of r , the phase, the unbroken symmetry H , the order parameter manifold
G/H , the homotopy groups from π0 to π4, and the physical situations (free energy) that realize these states. ∗ indicates the universal covering
group, and Q = D∗

2 is a quaternion group. For the definition of the product ×h, see Sec. 4.2.2 and Appendix A of Ref. [38].

r Phase H G/H π0 π1 π2 π3 π4 Physical situation

−1/2 UN O(2) U(1) × [SO(3)/O(2)] 0 Z ⊕ Z2 Z Z Z2 f2+4 + f6

−1 < r < −1/2 D2 BN D2 U(1) × [SO(3)/D2] 0 Z ⊕ Q 0 Z Z2 f2+4 + f6 + fH

−1 D4 BN D4 [U(1) × SO(3)]/D4 0 Z ×h D∗
4 0 Z Z2 f2+4 + fH
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(a) (b)

FIG. 1. The normalization and free energy f2+4 + f6. (a) Normalization N6th as a function of r . (b) f ′
6th defined by f2+4 + f6 ≡ |α|2

6β
f ′

6th as
a function of r . The UN state with r = −1/2 is the ground state.

minimizing free energy with the ansatz,

A
(x,y,z)
6th =

√
|α|
6β

N6th

⎛
⎝r 0 0

0 −(1 + r) 0
0 0 1

⎞
⎠. (13)

By minimizing the free energy density,

f2+4 + f6 = 2α(1 + r + r2)N2
6th

+β(2r4 + 4r3 + 6r2 + 4r + 2)N4
6th

+ γ (48r6 + 144r5 + 312r4 + 384r3

+ 312r2 + 144r + 48)N6
6th, (14)

with respect to N6th, we obtain N6th and f2+4 + f6. We plot
N6th and f2+4 + f6 as functions of r in Fig. 1. From this figure,
we find that the case with r = −1/2 is realized, which is the
UN phase. At r = −1/2, we find N6th:

N6th =
√

6β −
√

(6β)2 − 2784αγ

1392|γ | . (15)

In the UN phase, the unbroken symmetry is D∞ 
 O(2) =
SO(2) � Z2, where � denotes a semidirect product.

(3) Let us consider the case that we take into account the
magnetic fields but without the sixth order term: f2+4 + fH .
Here, we consider the two cases for the magnetic fields: those
along the z (poloidal) direction (H ‖ z), and along the angular
(toroidal) direction (H ‖ θ). The second case may not be
physical for the ground state but we use it for the boundary in
the presence of a vortex in the next section. We can derive the
ground state Amag with the same method as the case (2). Let us
consider the magnetic field along the z axis. With the ansatz,

A(x,y,z)
mag =

√
|α|
6β

Nmag

⎛
⎝1 0 0

0 r 0
0 0 −(1 + r)

⎞
⎠, (16)

we can minimize the free energy density,

f2+4 + fH = [
2α(1 + r + r2) + gHH 2

z (1 + r)2
]
N2

mag

+β(2r4 + 4r3 + 6r2 + 4r + 2)N4
mag, (17)

with respect to Nmag. Figure 2 shows Nmag and f2+4 + fH that
minimize the free energy as functions of r . From this figure,
we find that the case with r = −1 is realized, which is the D4

BN phase.

(a) (b)

FIG. 2. The normalization and free energy f2+4 + fH . (a) Normalization Nmag as a function of r . (b) f ′
mag defined by f2+4 + fH ≡ |α|2

6β
f ′

mag

as a function of r . The D4 BN state with r = −1 is the ground state.
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(a) (b)

rtot ∼ −0.572

FIG. 3. The normalization and free energy f2+4 + f6 + fH . (a) Normalization Ntot as a function of r . (b) f ′
tot defined by f2+4 + f6 + fH ≡

|α|2
6β

f ′
tot as a function of r (for H = 1015 G). The intermediate state, the D2 BN state (with r ∼ −0.572 for H = 1015 G), is the ground state.

To summarize. the ground state Amag becomes

A(x,y,z)
mag =

√
|α|
2β

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ (H ‖ z)

A(ρ,θ,z)
mag =

√
|α|
2β

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ (H ‖ θ ). (18)

The energy contribution from the magnetic fields vanish in
these cases. The symmetry of this state is D4 symmetry, and
we call this phase the D4 BN phase [35,39].1

(4) Finally, we consider the total free energy including
the sixth order term and magnetic term (f2+4 + f6 + fH ),
where we consider the magnetic field along the z axis. The
intermediate states with the symmetry D2, that we call the D2

BN phase, are realized. The order parameter has the following
form:

A(x,y,z) = Ntot

⎛
⎝1 0 0

0 r 0
0 0 −1 − r

⎞
⎠. (19)

The free energy density f4 + f6 + fH can be written in terms
of the parameter r and Ntot as follows:

f2+4 + f6 + fH = [
2α(1 + r + r2) + gHH 2

z (1 + r)2
]
N2

tot

+β(2r4 + 4r3 + 6r2 + 4r + 2)N4
tot

+ γ (48r6 + 144r5 + 312r4 + 384r3

+312r2 + 144r + 48)N6
tot. (20)

By minimizing this free energy density with respect to r and
Ntot, we can obtain the ground state. In Fig. 3, we plot Ntot and
the free energy density as a function of r with H = 1015 G. In
this case, the minimum free energy density can be achieved at

r ∼ −0.572 ≡ rtot for H = 1015 G. (21)

1In the context of spinor BEC, this is simply called the BN phase
[35,39].

In Fig. 4, we plot r that minimizes the energy as a function
of the strength of the magnetic field H . The ground state is in
the UN phase for the weak magnetic field, while the D4 BN
phase is realized for the strong magnetic field. The parameter
r changes drastically around the magnetic field of 1015 G.

III. VORTEX STRUCTURES IN 3P2 SUPERFLUIDS

A. Vortex lattice

When superfluids are rotating, superfluid vortices are
created along the rotation axis. In this section, we discuss
vortices in the 3

P2 superfluids. The existence of vortices in the
3
P2 superfluids is topologically ensured by the first homotopy

group summarized in Table II. The number Nv of vortices with
the unit circulation created inside rotating neutron stars can be
estimated to be

Nv ∼ 1.9 × 1019

(
1 ms

P

)(
M∗

900 MeV

)(
R

10 km

)2

, (22)

FIG. 4. The parameter r = rtot(H ) minimizing the free energy
f2+4 + f6 + fH as a function of magnetic field H .
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where P is the period of the neutron star, M∗ is the effective
neutron mass, and R is the radius of the 3P2 superfluid. Then,
we can estimate the distance between vortices d from

πd2 × Nv = πR2, (23)

that implies the intervortex distance d to be

d ∼ 1.7 × 10−6 m (24)

for the typical values for P, M∗, and R in Eq. (22).
On the other hand, the coherence length ξ of 3

P2 superfluid
is about 10–100 fm. Therefore the distance between vortices
is much larger than the coherence length, and therefore we
consider a single vortex below.

B. Vortex ansatz and asymptotic energy of a vortex

Let us derive the equation of motion from the free energy F
introduced in the last section. Since we study axially symmetric
configurations, we consider the position dependence of the
order parameters in the cylindrical coordinates (ρ,θ,z). Apart
from this choice of coordinates, due to the tensorial nature
of the order parameter A, there is freedom to choose a basis
in which A is diagonalized at the boundary with its diagonal
components as eigenvalues of the matrix A. As we see below,
the order parameter A is diagonalized either in the Cartesian
coordinate basis or cylindrical coordinate basis. We consider
the following ansatz for the order parameter of a vortex state
[13,14]:

A(x,y,z) =
√

|α|
6β

R(nθ )A(ρ,nθ,z)RT (nθ )eilθ ,

A(ρ,nθ,z) =

⎛
⎜⎝

f1 igeimθ+iδ 0

igeimθ+iδ f2 0

0 0 −f1 − f2

⎞
⎟⎠, (25)

where l,m,n are integers, l,m,n ∈ Z are explained below, δ is
a constant, R is a rotation matrix, given by

R(nθ ) =
⎛
⎝cosnθ −sinnθ 0

sinnθ cosnθ 0
0 0 1

⎞
⎠, (26)

and f1,f2,g are profile functions depending only on the radial
coordinate ρ, and the boundary conditions for them are

f1,f2 → constant, g → 0 as ρ → ∞,

f1,f2 → 0,

{
g → 0 for m = −l
g′ → 0 for m = −l

as ρ → 0, (27)

where the case of m = −l is exceptional since the the total
winding of g vanishes. In the ansatz given in Eq. (25), A(x,y,z)

in the left hand side is the order parameter in the Cartesian
coordinate basis that we substitute in the free energy, while the
matrix A(ρ,nθ,z) on the right hand side is the order parameter di-
agonalized at the boundary ρ → ∞, with its eigenvalues in the
diagonal components. In the case of n = 0, A is diagonalized
in the Cartesian coordinate basis, while in the case of n = 1
it is diagonalized in the cylindrical coordinate basis. Higher
generalizations n > 1 do not correspond to any coordinate
basis anymore. As denoted, the configuration is labeled by the
three integers l,m,n ∈ Z, where l is the winding number of the

vortex, n represents a rotation of SO(3) that does not have a
topological nature, and m is a semitopological winding number
(relative to that of f1,2) defined locally for the component g.2

For the later convenience, here we write down the explicit
form of each component of the tensor parameter A(x,y,z) in the
Cartesian coordinate basis in Eq. (25), that we will substitute
into the GL free energy or the equations of motion:

Axx = (f1cos2nθ+f2sin2nθ − igeimθ+iδsin2nθ )eilθ

Axy =Ayx = [(f1 − f2)sin2nθ+igeimθ+iδcos2nθ ]eilθ

Ayy = (f1sin2nθ+f2cos2nθ+igeimθ+iδsin2nθ )eilθ (28)

Azz =−(f1+f2)eilθ

Aothers =0.

Let us consider the tension, the energy per unit length, of the
vortex. A bulk part of the free energy density, f2+4 + f6 + fH ,
does not depend on the integers l,m,n, while the gradient term
depends on them. The leading contribution to the gradient
energy at large ρ depends on n and l as follows:

F =
∫

d2ρ
1

ρ2

{
2K1

[
l2

(
f 2

1 +f1f2+f 2
2

)+n2(f1−f2)2
]

+ 2K2
[
f 2

1 sin2(n−1)θ+f 2
2 cos2(n−1)θ

+ n2(f1−f2)2]}
∼2π lnL2K1

[
l2

(
f 2

1 +f1f2+f 2
2

)+n2(f1−f2)2
]

+
{

2K2
[
l2f 2

2 +n2(f1−f2)2
]

(n = 1)

K2
[
l2

(
f 2

1 +f 2
2

)+2n2(f1−f2)2
]

(n = 1)
, (29)

where ∼ denotes the asymptotic form and L is the system size
transverse to the vortex, and f1 and f2 in the last line are the
boundary values evaluated at ρ → ∞.

From this equation, we first see that the configuration
with l = 1 has the lower energy than the configuration with
higher winding numbers l > 1, as for conventional superfluids,
thereby a vortex with the higher winding l is unstable to be split
into l unit winding vortices. In the following, we concentrate
on l = 1.

As for n, we find that either the case of n = 0 (the xyz
basis) or of n = 1 (the cylindrical basis) gives the lowest free
energy. The condition on f1 and f2 that determines which
configuration with n = 0 or n = 1 has lower energy is plotted
in Fig. 5, where the cylindrical basis (n = 1) gives lower
energy in the shaded region defined by

3
5f1 < f2 < f1, (30)

while the xyz basis (n = 0) gives lower energy in the rest.
This condition can also be translated in terms of the

parameter r . If f 2
2 � f 2

1 � (f1 − f2)2 is not satisfied, the
configuration with n = 0 always gives the least energy state.
Therefore, if n = 1 is realized, the order parameter becomes

2Since the boundary condition for g is zero for ρ = 0,∞ (for
n = −1), it is a ring shape if it appears, and m denotes how many
times the phase of g is twisted along the ring; see Ref. [40] for a
similar example in a spinor BEC.
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FIG. 5. The conditions for determining whether the Cartesian
basis or cylindrical basis is realized. The cylindrical basis (n = 1)
is realized in the shaded area while the Cartesian basis (n = 0) is
realized in the rest.

the following form:

A(x,y,z) ∝
√

1

r2+r+1
R(nθ )

⎛
⎝r 0 0

0 −1 − r 0
0 0 1

⎞
⎠RT (nθ )eiθ .

(31)

In Fig. 6, we plot the leading contribution to the free energy
proportional to lnL in Eq. (29) as a function of r for the cases
of n = 0 (purple curve) and n = 1 (green curve). From this
figure, we can see that the configuration of n = 1 has the
lower energy in the region −5/8 � r � −1/2. At the cross
point r = −5/8, there is a first order phase transition. In the
following, we consider only the cases of n = 0 and n = 1.

r = −5/8 rgrad
rgrad ∼ −0.557

r = −5/8

FIG. 6. The leading contribution to the free energy F ∼
2πK1lnL × f ′

grad in Eq. (29) as functions of the parameter r at the
infinity for the n = 0 (purple curve) and n = 1 (green curve) cases,
which cross at r = −5/8. The minimum point is rgrad = 6 − √

43 for
n = 1 in Eq. (42).

C. Tension of a vortex

We calculate the free energy per unit vortex length analyti-
cally for each basis:

F =
∫

d2ρ
|α|
6β

(
K1t1 + K2t2 + αt3 + |α|

6β
βt4 + α2

36β2
γ t5

)
,

(32)

where the terms t1 and t2 come from the gradient terms and
the terms t3, t4, and t5 come from the second, fourth, and sixth
order terms, respectively, in the GL free energy density in
Eq. (6). Here t1,2 can be written in the cylindrical basis as

t
(ρ,θ,z)
1 = 2

(
f ′2

1 + f ′2
2 + f ′

1f
′
2 + g′2)

+ 1

ρ2

{
4f 2

1 + 4f 2
2 − 2f1f2 + [8 + 2(m + 1)2]g2

− 4(f1 − f2)g(m + 2)cos(mθ + δ)
}
, (33)

t
(ρ,θ,z)
2 = 2

(
f ′2

1 + g′2) + 2

ρ2

[
f 2

2 + 4g2 + (m + 1)2g2

+ (f1 − f2)2 − 2g(m + 1)(f1 − f2)cos(mθ + δ)

+ 4f2gcos(mθ + δ)
]

+ 1

ρ
[−2(f ′

1 + f ′
2)g(m + 1)cos(mθ + δ)

+ 2(f1 + f2)g′cos(mθ + δ)

+ 2(f ′
1 + f ′

2)(f1 − f2)], (34)

and in the xyz basis as

t
(x,y,z)
1 = 2

(
f ′2

1 + f ′2
2 + f ′

1f
′
2 + g′2)

+ 2

ρ2

[
f 2

1 + f 2
2 + f1f2 + (m + 1)2g2

]
, (35)

t
(x,y,z)
2 = 2

(
cos2θf ′2

1 + sin2θf ′2
2 + g′2)

+ 2

ρ2

[
sin2θf 2

1 + cos2θf 2
2 + (m + 1)2g2]

− 2sin2θsin(mθ + δ)(f ′
1 + f ′

2)g′

− 2

ρ
cos2θcos(mθ + δ)(m + 1)(f ′

1 + f ′
2)g

+ 2

ρ
cos2θcos(mθ + δ)(f1 + f2)g′

+ 2

ρ2
sin2θsin(mθ + δ)(m + 1)(f1 + f2)g. (36)

The rest of the terms of the free energy density t3,4,5 can be
written in both bases as

t3 = 2
(
f 2

1 + f 2
2 + f1f2 + g2

)
, (37)

t4 = 2f 4
1 + 4f 3

1 f2 + 6f 2
1 f 2

2 + 4f1f
3
2 + 2f 4

2

+ {
[6 + 2cos2(mθ + δ)]f 2

1 + 4f1f2

+ [6 + 2cos2(mθ + δ)]f 2
2

}
g2 + 2g4, (38)
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TABLE III. The boundary conditions and physical situation for each case. rgrad ≡ 6 − √
43 ∼ −0.557 given in Eq. (42), and rtot depends

on the magnetic field [rtot ∼ −0.572 in Eq. (21) for H = 1015 G].

Phase Case (1) Case (2) Case (3a) Case (3b) Case (4)
D2 BN UN D4 BN D4 BN D2 BN (or UN, D4 BN)⎛

⎝f1

f2

−f1 − f2

⎞
⎠ at ρ → ∞

⎛
⎝rgrad

−1 − rgrad

1

⎞
⎠

⎛
⎝1

1
−2

⎞
⎠

⎛
⎝1

0
−1

⎞
⎠

⎛
⎝1

−1
0

⎞
⎠

⎛
⎝1

rtot

−1 − rtot

⎞
⎠

Basis n = 1 n = 0 (or 1) n = 1 n = 0 n = 0
Situation (fgrad + f2+4 plus) non f6 fH (||θ ) fH (||z) f6 + fH (||z)

t5 = 48f 6
1 + 144f 5

1 f2 + 312f 4
1 f 2

2 + 384f 3
1 f 3

2

+ 312f 2
1 f 4

2 + 144f1f
5
2 + 48f 6

2 + 48g6

+ {
[288 + 144cos2(mθ + δ)]f 4

1

+ [360 + 120cos2(mθ + δ)]f 3
1 f2

+ [576 + 240cos2(mθ + δ)]f 2
1 f 2

2

+ [360 + 120cos2(mθ + δ)]f1f
3
2

+ [288 + 144cos2(mθ + δ)]f 4
2

}
g2

+ {
[288 + 120cos2(mθ + δ)]f 2

1

+ [144 − 48cos2(mθ + δ)]f1f2

+ [288 + 120cos2(mθ + δ)]f 2
2

}
g4. (39)

The effect of δ on the free energy density is not clear. In this
paper, we restrict the case with δ = 0, which is consistent with
the equation of motion, since the imaginary part of nondiagonal
elements is directly connected with the real part of diagonal
elements through the equation of motion. By substituting the
order parameter into Eq. (6) and differentiating it with respect
to f1, f2 and g, we obtain the sets of the equation of motions
for each basis, as summarized in Appendix B.

D. Vortex solutions

In this paper, we construct the vortex configurations in the
following five cases:

(i) case 1: F = ∫
d2ρ f4;

(ii) case 2: F = ∫
d2ρ (f4 + f6);

(iii) case 3a: F = ∫
d2ρ (f4 + fH ) and H ‖ θ ;

(iv) case 3b: F = ∫
d2ρ (f4 + fH ) and H ‖ z;

(v) case 4: F = ∫
d2ρ (f4 + f6 + fH ) and H ‖ z.

We summarize the forms of the order parameters in these
cases in Table III. In numerical simulations, we change the
variable ρ (0 � ρ < ∞) by tanhρ (0 � tanhρ < 1). We divide
the domain of tanhρ into 100 parts and solve the equations
of motion given in Appendix B simultaneously by using
Newton’s method.

Case 1. This is only the case studied before [14,18,19]. This
case may be thought to be unphysical because of the presence
of the sixth order term, but it is relevant when the gap is small
enough (f6 is much smaller than f4) and the magnetic field is
small compared with f4. In this case, the ground state takes the
form in Eq. (11) due to the fourth order term. We can see from

Eq. (29) that the leading part of the free energy proportional
to lnL becomes lower when f 2

2 � f 2
1 , so that we take the

following order parameter form:

A(x,y,z) ∝
√

1

r2 + r + 1
R(nθ )

⎛
⎝r 0 0

0 −1 − r 0
0 0 1

⎞
⎠RT (nθ )eiθ

(40)

with −1 � r � −1/2. Let us assume that the ground state is in
the cylindrical basis (n = 1) from Fig. 6. By putting the order
parameter into Eqs. (33) and (34), we obtain

F ∝ 9r2 + 10r + 3

r2 + r + 1
lnL. (41)

Then, by differentiating this free energy with respect to r , we
get [14,18,19]

r = 6 −
√

43 ∼ −0.557 ≡ rgrad (42)

that satisfies −5/8 < rgrad < −1/2, and so the lowest energy
state is in the cylindrical basis (n = 1) consistently. It is
interesting to emphasize that the particular r is selected as
the vortex boundary state although the ground states are
continuously degenerate with r .

Let us make a comment on the case of spin-2 BECs
for which the gradient term consists of only the first term
proportional to K1 with K2 = 0. In this case, the boundary
becomes the UN phase with r = −1/2 (up to the fourth order).
This phenomenon of selection of the vortex boundary state
is not known in the context of BEC. The quasi-NG mode
is gapped through the gradient term in the presence of a
vortex.

In Fig. 7, we plot the profile functions f1, f2, and g as
functions of the distance ρ from the vortex center. The red
curves correspond to the case of m = 0 with g = 0, which
is the case considered in Ref. [19] without explicit solutions.
The new solution here is the case with g = 0 represented by
the black curves. We see that all the terms in the equation of
motion for g [Eq. (B3) in Appendix B] contain g if m = 0.
Consequently, in this case, g = 0 is a trivial solution in the
entire region of ρ since g is fixed to be zero at both boundaries.
This implies that all m = 0 give the same solution of g = 0.
In order to determine which state between g = 0 (with m = 0)
and g = 0 has less energy, we should compare the free energies
for these two cases, but we leave it as a future problem.

035804-8



MAGNETIC PROPERTIES OF QUANTIZED VORTICES IN . . . PHYSICAL REVIEW C 93, 035804 (2016)

(a) (b) (c)

FIG. 7. The profile functions (a) f1, (b) f2, and (c) g as functions of the distance ρ/ξ from the vortex center in the case (1). The red and
black curves correspond to the cases of g = 0 with m = 0 and g = 0, respectively.

Case 2. As we discussed before, if we add the sixth order
term, the ground state is in the UN phase. Since f1 = f2 is
the boundary between the cases with n = 0 and n = 1 (see
Fig. 4), we cannot determine the basis easily. However, by
considering the rotational energy from the basis, we take n = 0
in this paper. Figure 8 shows f1, f2, and g as functions of ρ.
In this situation, we find from Eq. (B6) in Appendix B that
g = 0 is a trivial solution in the entire region of ρ except for
the cases of m = ±2. This implies that all m( = ±2) give the
same solution. In the n = 0 basis, the equation of motions for
f1 and f2 have the same form. Since f1 = f2 is satisfied at
the boundary as we have already mentioned, f1 = f2 holds at
all ρ for any m. The blue and green curves correspond to the
cases of g = 0 with m = 2 and m = −2, respectively, while
the black curves represent the case of g = 0. In the figures for
f1 and f2, we cannot see the differences among all the cases
but they have tiny differences numerically.

Cases 3a and 3b. Let us consider the cases that external
magnetic fields are present either along the θ direction
encircling the vortex (case 3a) or along the vortex direction
(case 3b).

When the magnetic field along the θ direction is present,
the D4 BN phase in the cylindrical (n = 1) basis is realized

as the boundary state. We plot f1, f2, and g as functions of
ρ in Fig. 9. In the n = 1 basis, for the same reason as in case
1, only the case with m = 0 has a nonzero value for g. The
red and black curves correspond to the cases of g = 0 (with
m = 0) and g = 0, respectively.

When the magnetic field along the z axis is present, we
obtain the D4 BN phase as the boundary state of the vortex
as shown in Eq. (18). Since f1 = −f2 holds at the boundary
ρ → ∞, we find from Fig. 4 that the boundary state is in the
Cartesian (n = 0) basis. Figure 10 shows the profile functions
f1, f2, and g as functions of ρ in case 3b. Since the relation
f1 = −f2 is satisfied at the two boundaries and the equation
of motions for f1 and f2 take the same form, the relation
f1 = −f2 holds in the entire region of ρ. Consequently, the

terms proportional to ∂2f1(2)

∂ρ2 and ∂f1(2)

ρ∂ρ
vanish. As a result, g has

a trivial solution g = 0 for all m, implying that all m give the
identical solution.

In cases 3a and 3b, the ground state does not depend on the
magnitude of the magnetic field, while the profile of vortices
of course depends on the magnitude of the magnetic field.
We set the magnetic field to be 1015 G, which corresponds
to magnetars. To realize the situations in cases 3a and 3b, we
need a strong magnetic field larger than about 3 × 1015 G as

(a) (b) (c)

FIG. 8. The profile functions (a) f1, (b) f2, and (c) g as functions of the distance ρ/ξ from the vortex center in case 2. The profile functions
f1 and f2 are identical: f1 = f2 in this case. The blue, green black curves correspond to the cases of g = 0 with m = 2, g = 0 with m = −2
and g = 0, respectively. All the cases take different values numerically although the profiles of f1 and f2 are almost overlapped.
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(a) (b) (c)

FIG. 9. The profile functions (a) f1, (b) f2, and (c) g as functions of the distance ρ/ξ from the vortex center in case 3a. The red and black
curves correspond to the cases of g = 0 with m = 0 and g = 0, respectively.

can be seen from Fig. 4. Therefore, the value 1015 G is not
appropriate, but the qualitative behaviors of vortex profiles
are not changed even when we change the magnitude of the
magnetic field to 1016–17 G.

Case 4. Finally, let us consider the most realistic case for
neutron stars, that is, the case with the sixth order term in the
presence of the magnetic field of 1015 G along the z axis. This
case reduces to case 2 in the absence of the magnetic field and
to case 3b in the presence of strong magnetic field for which
the sixth order term is negligible.

In this case, the smallest eigenvalue −1 − r comes to the
z component. By using Fig. 4, we can see that the xyz basis
(n = 0) is realized. By minimizing Eq. (20), we have r =
rtot ∼ −0.572 in Eq. (21) as the boundary condition at large
distance.

In Fig. 11, we plot f1, f2, and g as functions of ρ with
m = −2, . . . ,2 in case 4. For the same reason as in case 2,
only the cases with m = ±2 have a nonzero value for g. The
blue, green, and black curves correspond to the cases of g = 0
with m = 2, g = 0 with m = −2, and g = 0, respectively. In
figures for f1 and f2, the cases of g = 0 with m = ±2 and of
g = 0 take the different values numerically although they are
almost overlapped.

IV. SPONTANEOUS MAGNETIZATION
OF THE 3P2 VORTEX CORE

In this section, we calculate the spontaneous magnetization
of 3

P2 vortex cores due to the neutron anomalous magnetic
moment for the vortex profiles obtained in the last section.
The spontaneous magnetization was already reported in case
1 [19]. This is a characteristic feature of 3

P2 vortices that is
absent for conventional 1S0 vortices. The vortex magnetization
M(ρ) can be calculated as

M = γn�

2
σ̂ ,

σ̂ = T
∑

n

∫
d3k

(2π )3
Tr[σG(k,ωn)]

=
∫

d�

4π
Tr(σ		†)T

∑
n

∫
dξN (0)

iωn + ξ(
ω2

n + ξ 2
)2

= 4

9
N ′(0)k2

F

|α|
6β

g(ρ)[f1(ρ) − f2(ρ)]cosmθ ẑ, (43)

where G(k,ωn) is a thermal Green function, ωn = (2n + 1)πT

is the Matsubara frequency, and N ′(0) = M2

2π2kF
is the density

(a) (b) (c)

FIG. 10. The profile functions (a) f1, (b) f2, and (c) g as functions of the distance ρ/ξ from the vortex center in case 3b. All m result in the
same solution.
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(a) (b) (c)

FIG. 11. The profile functions (a) f1, (b) f2, and (c) g as functions of the distance ρ/ξ from the vortex center in case 4. The blue, green,
and black curves correspond to the cases of g = 0 with m = 2, g = 0 with m = −2 and g = 0, respectively. In the figures of f1 and f2, all the
cases take the different values numerically.

of states differentiated by the energy E = k2/2M, N ′ = M2

2π2k
,

evaluated at the Fermi surface k = kF .
By using the results of the last section, we obtain the

magnetization M as a function of ρ. We plot Mz (for θ = 0) as
functions of ρ for cases 1–4 in Fig. 12. The red, blue, and green
curves correspond to the cases of g = 0 with m = 0, m = 2,
and m = −2, respectively, while the black curves correspond
to the case of g = 0. The maximum value of Mz is about
108–109 G when it is nonzero. The mean magnetic field in

a vortex lattice, which is obtained roughly by multiplying
(ξ/d)2 ∼ 10−14, is much smaller than the observed magnetic
field about 1012–1015 G, and consequently this magnetic field
is negligible.

Note that the magnetization Mz is proportional to [f1(ρ) −
f2(ρ)]g(ρ) cosmθ . Since it is proportional to the off-diagonal
profile function g appearing around the vortex cores, it is
nonzero only for the cases of m = 0 in the xyz basis and
of m = ±2 in the cylindrical basis. When f1 = f2 in the

(1) (2) (3a)

(3b) (4)

FIG. 12. The dependence of the magnetizations Mz on the distance ρ/ξ from the vortex core in cases 1, 2, 3a, 3b, and 4. The red, blue,
and green curves correspond to the cases of m = 0, m = 2, and m = −2 with g = 0, respectively, while the black lines correspond to the case
with g = 0 in cases 1, 3a, 3b, and 4. The magnetization Mz vanishes in case 2 because of f1 = f2 even for g = 0.
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region g = 0, the magnetization can occur. However, in case
2, as we have already discussed, f1 = f2 is satisfied for all ρ,
and the magnetization Mz vanishes. Among all the cases with
nonzero magnetization Mz, only the case with m = 0 has a net
magnetization, since the θ integration of cosmθ vanishes for
m = 0. Although the case of m = ±2 in the cylindrical basis
has no net magnetization, the direction of the magnetization
drastically changes upward and downward depending on θ ,
thereby implying the existence of the large current crossing to
the vortex.

V. SUMMARY AND DISCUSSION

We have determined the ground states of the 3
P2 superfluids

in the presence of the external magnetic fields and have
obtained the vortex solutions in various situations in the
absence and presence of magnetic fields along the vortex
axis or the angular direction. First, the boundary state at
ρ → ∞ has been determined to lower the bulk free energy.
Second, the basis diagonalizing the order parameter Aμi has
been determined by the leading contribution to the gradient
energy proportional to lnL and the coefficients K1 and K2.
The presence of the gradient energy proportional to K2 is
essential for the 3

P2 superfluids unlike the spinor BEC for
which such terms are absent. In the absence of the magnetic
field and the sixth order term, the ground state is continuously
degenerate with the parameter r . Nevertheless the boundary
value r for the vortex state is fixed and the cylindrical basis
is realized due to the gradient energy. We have constructed
the free energy density and equation of motion for the xyz
basis and cylindrical basis. By using the ansatz of the vortex
profiles with the nondiagonal component g which has the local
winding number m relative to that of f1,2, we have constructed
the vortex profiles and have found that g is nonzero around the
vortex core only for m = 0 in the cylindrical basis and m = ±2
in the xyz basis. The former was known before without
explicit profiles [14,18,19] for which we have given the explicit
solution. As a result, the spontaneous magnetization around the
vortex cores proportional to g cosmθ is present for these cases.
The net magnetization survives for m = 0 in the cylindrical
basis, while in the case of m = ±2 in the xyz basis the net
magnetization vanishes with local magnetization upward and
downward depending on the angle coordinates. The typical
value for the spontaneous magnetization is about 108 G, which
is much smaller than the neutron star observations.

Here we address some discussion. The unbroken symmetry
is D4 for the D4 BN phase realized in cases 3a and 3b.
Since the element of the D4 group consists of an element
of simultaneous action of a U(1) phase rotation by π and an
SO(3) rotation by π/2, the most fundamental vortex is a half
quantized vortex [41]. In the BN phase, a single integer vortex
discussed in this paper may be unstable against the decay
into two half quantized vortices. The half quantized vortices
belong to the non-Abelian first homotopy group D∗

4 as in Table
II. When two vortices characterized by elements that do not
commute with each other collide, a bridge between them must
be created [42]; see Ref. [43] for such a collision dynamics
in spinor BEC. We should consider the effects of the half
quantized vortices in the 3

P2 neutron superfluids.

We have discussed only vortices characterized by the first
homotopy group. On the other hand, in Table II, we summa-
rized higher homotopy groups that allow higher codimensional
topological objects like monopoles, Skyrmions, and so on.

It was argued in Ref. [44] that in helium 3 superfluid,
the SO(3) symmetry unbroken in the ground state is further
spontaneously broken around the core of an integer vortex
due to the gradient term proportional to K2, giving rise to
a (quasi)gapless mode localized along the vortex. The same
discussion may be made for the integer vortex in the 3

P2

superfluids studied in this paper.
In order to study the fermionic degree of freedom, the

Bogoliubov–de Gennes equation should be used beyond the
GL free energy. It will turn out to be useful to show topo-
logical properties of the 3

P2 superfluidity such as topological
superfluidity and fermion zero modes trapped inside the vortex
core.

The interface between 1S0 and 3
P2 superfluids should be

important to consider: in particular how vortices are connected
in both regions. On the other hand, at much higher density,
quark matter may appear such as color superconductors [45],
where there exist 1/3 quantized superfluid vortices that carry
color magnetic fluxes [46–50], and the boojum structure on
which vortices join will appear at the interface [51]. Dynamics
of vortices at such interfaces (1S0- 3

P2 and 3
P2-quark matter)

may be important for dynamics of neutron stars.
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APPENDIX A: GROUND STATE WITH THE SIXTH
ORDER TERM

In this Appendix, we determine the ground state taking into
account the sixth order term in the GL free energy. We correct
the amplitude of the state with the sixth order term previously
obtained in Ref. [15], but the difference is negligible. We also
show that off-diagonal elements do not appear, and so the state
remains in the nematic phase even when we take into account
the sixth order term.
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We consider the following free energy:

F =
∫

d3ρ (f4 + f6). (A1)

By minimizing f4, we can obtain the ground state up to fourth
order A4th,

A4th =
√

|α|
6β

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (A2)

To see the ground state up to the sixth order, we expand the
order parameter A as follows:

A = A4th + 	A

= A4th + i

√
|α|
6β

⎛
⎝f1 g h

g f2 j
h j −f1 − f2

⎞
⎠. (A3)

Then, we put this order parameter into the free energy density
and expand it up to the second order with respect to the 	A:

F =
∫

d3ρ

[
α2

18β
[(f1 − f2)2 + 4g2 + 10h2 + 10j 2]

+γ
|α|3

216β3

(
1704f 2

1 + 1704f 2
2 + 768f1f2

+2640g2 + 5808h2 + 5808j 2
)]

. (A4)

Therefore, if we take f1 = f2, we can obtain the lower free
energy density since γ is negative. Next, we assume that the

ground state up to the sixth order to be

A6th = N6th

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (A5)

By minimizing the free energy with respect to N6th, we get

N6th ≡
√

6β −
√

(6β)2 − 2784αγ

1392|γ | . (A6)

Finally, let us expand the free energy density by using

A = A6th + 	′A

= A6th + iN6th

⎛
⎝f1 g h

g f2 j
h j −f1 − f2

⎞
⎠. (A7)

We thus reach at

F =
∫

d3ρ [c1(f1 − f2)2 + c2g
2 + c3h

2 + c4j
2], (A8)

where the coefficients c1, c2, c3, and c4 are positive. Therefore,
we have shown that A6th is at least at the local minimum.

APPENDIX B: EQUATION OF MOTION

In this Appendix, we write down the equation of motion in
the cylindrical basis (n = 1) and xyz basis (n = 0).

(i) The equations of motion for the cylindrical basis (n = 1)
are given as follows:

7
∂2f1

∂ρ2
+ 1

ρ

(
5
∂f1

∂ρ
− 4

∂f2

∂ρ
− 2δm,0

∂g

∂ρ

)
+ 1

ρ2
(−15f1 + 14f2 + 22δm,0g) + 3f1 − f1

(
f 2

1 + f 2
2 + f1f2 + 5 + 2δm,0

3
g2

)

+ f2

(
1 + δm,0

3
g2

)
− |α|

36β2
γ
(
216f 5

1 + 408f 4
1 f2 + 672f 3

1 f 2
2 + 528f 2

1 f 3
2 + 264f1f

4
2 + g2

[
(972 + 516δm,0)f 3

1

+ (504 + 120δm,0)f 2
1 f2 + (612 + 300δm,0)f1f

2
2 − (216 + 168δm,0)f 3

2

] + g4[(504 + 264δm,0)f1 − (144 + 168δm,0)f2]
)

+ g

|α| ×
{−(f1 + f2)H 2

z (H ‖ z)
f2H

2
θ (H ‖ θ )

= 0, (B1)

3
∂2f2

∂ρ2
− 2

∂2f1

∂ρ2
+ 1

ρ

(
2
∂f1

∂ρ
+ 5

∂f2

∂ρ
− 2δm,0

∂g

∂ρ

)
+ 1

ρ2
(12f1 − 19f2 − 26δm,0g) + 3f2 − f2

(
f 2

1 + f 2
2 + f1f2 + 5 + 2δm,0

3
g2

)

+ f1

(
1 + δm,0

3
g2

)
− |α|

36β2
γ
(
216f 5

2 + 408f 4
2 f1 + 672f 3

2 f 2
1 + 528f 2

2 f 3
1 + 264f2f

4
1 + g2

[
(972 + 516δm,0)f 3

2

+ (504 + 120δm,0)f 2
2 f1 + (612 + 300δm,0)f2f

2
1 − (216 + 168δm,0)f 3

1

] + g4[(504 + 264δm,0)f2

− (144 + 168δm,0)f1]
) + g

|α| ×
{− (f1 + f2)H 2

z (H ‖ z)
−2f2H

2
θ (H ‖ θ )

= 0, (B2)

2
∂2g

∂ρ2
+ 1

ρ

(
δm,0

∂f1

∂ρ
+ δm,0

∂f2

∂ρ
+ 2

∂g

∂ρ

)
+ 1

ρ2
{3δm,0f1 − 5δm,0f2 − [8 + 2(m + 1)2]g} + g

− g

6

[
(3 + δm,0)f 2

1 + (3 + δm,0)2f 2
2 + 2f1f2 + 2g2

] − |α|
36β2

γ
(
72g5 + [

(288 + 120δm,0)f 2
1 + (144 − 48δm,0)f1f2

+ (288 + 120δm,0)f 2
2

]
g3 + [

(144 + 72δm,0)f 4
1 + (180 + 60δm,0)f 3

1 f2 + (288 + 120δm,0)f 2
1 f 2

2 + (180 + 60δm,0)f1f
3
2

+ (144 + 72δm,0)f 4
2

]
g
) + g

|α| ×
{

0 (H ‖ z)
−gH 2

θ /2 (H ‖ θ ) = 0. (B3)
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(ii) The equations of motion for the xyz basis (n = 0) are given as follows:

5
∂2f1

∂ρ2
− ∂2f2

∂ρ2
+ 1

2
(−δm,2 + δm,−2)

∂2g

∂ρ2
+ 1

ρ

[
5
∂f1

∂ρ
− ∂f2

∂ρ
+

(
−3

2
δm,2 − 1

2
δm,−2

)
∂g

∂ρ

]

+ 1

ρ2

(
−5f1 + f2 + 1

2
(−δm,2 + δm,−2)g

)
+ 3f1 − f1

(
f 2

1 + f 2
2 + f1f2 + 5 + 2δm,0

3
g2

)
+ f2

(
1 + δm,0

3
g2

)

− |α|
36β2

γ
(
216f 5

1 + 408f 4
1 f2 + 672f 3

1 f 2
2 + 528f 2

1 f 3
2 + 264f1f

4
2 + g2

[
(972 + 516δm,0)f 3

1

+ (504 + 120δm,0)f 2
1 f2 + (612 + 300δm,0)f1f

2
2 − (216 + 168δm,0)f 3

2

] + g4[(504 + 264δm,0)f1

− (144 + 168δm,0)f2]
) + g

|α| ×
{−(f1 + f2)H 2

z (H ‖ z)
f2H

2
θ (H ‖ θ )

= 0, (B4)

5
∂2f2

∂ρ2
− ∂2f1

∂ρ2
+ 1

2
(−δm,2 + δm,−2)

∂2g

∂ρ2
+ 1

ρ

[
5
∂f2

∂ρ
− ∂f1

∂ρ
+

(
−3

2
δm,2 − 1

2
δm,−2

)
∂g

∂ρ

]

+ 1

ρ2

(
−5f2 + f1 + 1

2
(−δm,2 + δm,−2)g

)
+ 3f2 − f2

(
f 2

1 + f 2
2 + f1f2 + 5 + 2δm,0

3
g2

)
+ f1

(
1 + δm,0

3
g2

)

− |α|
36β2

γ
(
216f 5

2 + 408f 4
2 f1 + 672f 3

2 f 2
1 + 528f 2

2 f 3
1 + 264f2f

4
1 + g2[(972 + 516δm,0)f 3

2

+ (504 + 120δm,0)f 2
2 f1 + (612 + 300δm,0)f2f

2
1 − (216 + 168δm,0)f 3

1

] + g4[(504 + 264δm,0)f2

− (144 + 168δm,0)f1]
) + g

|α| ×
{−(f1 + f2)H 2

z (H ‖ z)
−2f2H

2
θ (H ‖ θ )

= 0, (B5)

2
∂2g

∂ρ2
+ 1

4
(−δm,2 + δm,−2)

(
∂2f1

∂ρ2
+ ∂2f2

∂ρ2

)
+ 1

ρ

[(
1

4
δm,2 + 3

4
δm,−2

)(
∂f1

∂ρ
+ ∂f2

∂ρ

)
+ 2

∂g

∂ρ

]

+ 1

ρ2

(
m + 1

4
(−δm,2 + δm,−2)(f1 + f2) − 2(m + 1)2g

)
+ g − g

6

[
(3 + δm,0)f 2

1 + (3 + δm,0)2f 2
2 + 2f1f2 + 2g2

]
− |α|

36β2
γ
(
72g5 + [

(288 + 120δm,0)f 2
1 + (144 − 48δm,0)f1f2 + (288 + 120δm,0)f 2

2

]
g3

+ [
(144 + 72δm,0)f 4

1 + (180 + 60δm,0)f 3
1 f2 + (288 + 120δm,0)f 2

1 f 2
2 + (180 + 60δm,0)f1f

3
2

+ (144 + 72δm,0)f 4
2

]
g
) + g

|α| ×
{

0 (H ‖ z)
−gH 2

θ /2 (H ‖ θ ) = 0. (B6)
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