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Classic calculations of static properties of nucleons reexamined
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Classic calculations of the magnetic moments μp and μn of the nucleons using the traditional exponential kernel
show instability with respect to variations of the Borel mass as well as arbitrariness with respect to the choice of
the onset of perturbative QCD. The use of a polynomial kernel, the coefficients of which are determined by the
masses of the nucleon resonances stabilizes the calculation and provides much better damping of the unknown
contribution of the nucleon continuum. The method is also applied to the evaluation of the coupling gA of proton
to the axial current and to the strong part of the neutron-proton mass difference δMnp . All these quantities depend
sensitively on the value of the 4-quark condensate 〈0 | q̄qq̄q | 0〉, and the value 〈0 | q̄qq̄q | 0〉 � 1.6〈0 | q̄q | 0〉2

reproduces the experimental results.
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I. INTRODUCTION

The QCD sum rule method introduced 35 years ago by
Shifman, Vainshtein, and Zakharov [1] has been a powerful
analytic approach to the problem of extracting low-energy
physical quantities from QCD expressions valid in the space-
like asymptotic domain. The method starts from a dispersion
integral

Residue = 1

π

∫ ∞

th
dt e−t/M2

ImP (t). (1)

The residue contains the physical quantity of interest and the
integral runs from some physical threshold to infinity. The
integral is then split into two parts∫ ∞

th
dt e−t/M2

ImP (t) =
∫ s0

th
dt e−t/M2

ImP (t)

+
∫ ∞

s0

dt e−t/M2
ImP (t), (2)

where the divider s0 signals the onset of perturbative QCD. In
the first integral on the right-hand side of the equation above,
ImP (t) describes the unknown contribution of the resonances.
The second integral takes into account the contribution of the
QCD part of the amplitude when P (t) is replaced by its QCD
expression. M2, the square of the Borel mass, is a parameter
introduced in order to suppress the unknowns of the problem.
If M2 is small, the damping of the first unknown integral on the
right-hand side of Eq. (2) is good but the contribution of the
unknown higher order nonperturbative condensates increases
rapidly. If M2 increases, the contribution of the unknown
condensates decreases but the damping in the resonances
region worsens. An intermediate value of M2 has to be chosen.
Because M2 is a nonphysical parameter the results should be
independent of it in a relatively broad window; this is not the
case in the problems at hand. The choice of the parameter s0

which signals the onset of perturbative QCD is another source
of uncertainty.

In this work I shall re-examine the classic calculations
of the magnetic moments of the nucleons [2,3] and the
coupling of protons to the axial current [4,5], and I shall use

polynomial kernels in dispersion integrals in order to eliminate
the contribution of the unknown integrands. The coefficients of
these polynomials are determined by the masses of the nucleon
resonances themselves and involve none of the instability and
arbitrariness inherent in the use of exponential kernels. The
same kernels have been used to evaluate the neutron-proton
mass difference [6] and the nucleon mass [7].

The method will be first applied to the calculation of the
magnetic moments of the nucleons μp and μn. As a second
application I shall consider the coupling gA of the proton to
the axial-vector current [4,5], and I shall finally review briefly
a previous calculation of the strong part of the neutron-proton
mass difference [6].

All the quantities turn out to depend sensitively on the
four-quark condensate

〈0 | q̄qq̄q | 0〉 = κ〈0 | q̄q | 0〉2. (3)

The value of κ has been the subject of much investigation
[8] and the result is estimated to vary between 1 (vacuum
dominance) and 4. An interesting result of the present
investigation is that the single value κ � 1.6 reproduces the
experimental values of all four quantities μp, μn, gA, and
δMnp.

II. NUCLEON MAGNETIC MOMENTS

I shall concentrate on the work of Balitsky and Yung [2]
because it offers better convergence of the operator product
expansion (OPE) than that of Ioffe and Smilga [3]. Starting
from the 3-point function

Wμν(p) = i

2

∫∫
dx dy eip.xyν〈0|Tjμ(y)

× η

(
x

2

)
η

(−x

2

)
|0〉 − μ ↔ ν, (4)

where jμ is the electromagnetic current and η(x) =
εabc[ua(x)Cγμub(x)]γ5γμdc(x) is the proton current of Ioffe
and Smilga [3]. The double-nucleon pole contribution to the
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tensor Wμν(p) has the form

Wμν(p) = −λ2

(
p2 − m2

N

)2

[
i

2
{p̄,σμν}FN

m + iσμν

(
FN

m + FN
e

)

+ i

2

(
FN

m − FN
e

)
p̄σμνp̄

]
, (5)

where p̄ = pμγ μ, σμν = i
2 [γμ,γν], FN

m = 2mN

e
μN and FN

e =
eN

e
are the values of the magnetic and electric form factors of

the nucleons at zero momentum transfer, and λ denotes the
coupling of the nucleon current to the nucleon

〈0|η|N〉 = λUN. (6)

In general

Wμν(p) = −i{p̄,σμν}W1(p2) − iσμνW2(p2)

− ipσμνp̄W3(p2). (7)

W1(p2) is selected, which I call W (p2) for simplicity. W (p2)
has first to be evaluated in the deep Euclidean region. This
is carefully done by Balitsky and Yung [2] who exploit both
local and bilocal representations of the OPE and who use
vector meson dominance to estimate the bilocal contributions.
The result is

WQCD(t) = Wpert(t) + c1

t
+ c2

t2
+ c3

t3
+ · · · , (8)

with

c1 = −4

3

eu

m2
V

〈0|qqqq|0〉,

c2 = −
[

8

27

eu

m2
V

〈0|qq|0〉〈0|uσGu|0〉

+ 1

3

(
ed + 2

3
eu

)
〈0|qqqq|0〉

]

� −1

3

[
8

9
eu

m2
0

m2
V

+
(

ed + 2

3
eu

)]
〈0|qqqq|0〉, (9)

where mV = mρ � mω and m2
0 = 〈0|uσG|0〉

〈0|qq|0〉 � 0.8 GeV2 and c3

is an unknown term which will be used to estimate the error.
For small and moderate momentum transfers, W (t = p2)

has double and single poles

W (t) = λ2F
p
m(t)(

t − m2
N

)2 + b1(
t − m2

N

) + · · · . (10)

The single pole arises from the unknown nucleon-continuum
transitions and the remainder from the continuum-continuum
intermediate states. As a function of t , W (t) is analytic in the
complex t plane with poles shown in Eq. (10) and a cut along
the positive t axis starting at tth = (mN + mπ )2.

Consider the contour C consisting of two straight lines
just above and below the cut and running from threshold
to a large value R and a circle of radius R and consider
the integral

∫
C

dt(m2
N − t)f (t)W (t). The factor (m2

N − t) has
been introduced in order to eliminate the unknown single-pole
contribution and f (t) is an entire function. On the circle, W (t)
can be replaced by WQCD(t) to a good approximation except

possibly near the real axis. Repeated application of Cauchy’s
theorem leads to

− 1

2
λ2FN

m f
(
m2

N

) = 1

π

∫ R

th
dt

(
m2

N − t
)
f (t)ImW (t)

− 1

2πi

∫ R

0
dt

(
m2

N − t
)
f (t)DiscWpert(t)

+m2
Nc1 − (

1 + a1m
2
N

)
c2, (11)

where

1

2πi
DiscWp(t) = eu

16π4
t (12)

to lowest order in as .
The second term on the right-hand side of Eq. (11) equals

the contribution of the integral on the circle of W
QCD
pert (t). The

last two terms represent the contribution of the integral on the
circle of the first two terms of the nonperturbative expansion
of WQCD(t) [for the choice I shall adopt f (t) = 1 − a1t −
a2t

2] and the small contribution of the unknown next two
nonperturbative terms has been neglected (note that the use of
the exponential kernel would introduce an infinite number of
such unknowns in the game).

The first term on the right-hand side of Eq. (11), which
represents the contribution of the physical continuum, consti-
tutes the main uncertainty of the calculation. The choice of
the so-far arbitrary function f (t) aims at reducing this term as
much as possible in order to allow its neglect. The commonly
used choice is f (t) = e−t/M2

where M2 is the Borel mass
parameter and it is hoped that the result is not too sensitive to
it. This is not the case in the problem at hand. I will choose
instead a simple polynomial

f (t) = p0(t) = 1 − a1t − a2t
2. (13)

The coefficients a1,2 are chosen in order to minimize f (t) on
the interval I : 2 � t � 3 GeV2 where the nucleon 1

2
+

and 1
2

−

resonances lie. Minimizing
∫
I
dtf (t)2 yields, for example,

a1 = 0.807 GeV−2, a2 = −0.160 GeV−4. (14)

With this choice the relative damping p0(t)/p0(m2
N ) does not

exceed 6% on the interval I . Then

1

2
λ2Fp

mp0
(
m2

N

) = eu

16π4

∫ R

0
dt t

(
m2

N − t
)
p0(t)

−m2
Nc1 + (

1 + a1m
2
N

)
c2, (15)

where the contribution of the integral over the resonance region
[the first term on the right-hand side of Eq. (11)] has been
neglected because of the damping polynomial. The choice of
R is determined by stability considerations, it should not be
too small as this would invalidate the OPE on the circle nor
should it be too large because p0(t) would start enhancing the
contribution of the continuum instead of suppressing it. It turns
out indeed that the integral on the right-hand side of Eq. (15)
is stable for 2 � R � 3 GeV2 and that it contributes little
compared to the nonperturbative terms shown in Eq. (9). The
result is essentially proportional to the 4-quark condensate.
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Numerically then

1
2λ2Fp

mf
(
m2

N

)
� 0.80〈0|qqqq|0〉. (16)

The coupling λ has been obtained by a similar method [6,7]

(2π )4λ2mNp0
(
m2

N

) = −B3I1(R) − B7 + a1B9 (17)

with

B3 = 4π2

(
1 + 3

2
as

)
〈0|qq|0〉,

B7 = −4

3
π4〈0|qq|0〉〈0|asḠG|0〉,

B9 = −(2π )6 136

81
as〈0|(qq)3|0〉,

I1(R) =
∫ R

0
dt tp0(t). (18)

Numerically

λ2p0
(
m2

N

) = 1.21 GeV6

32π4
. (19)

So that with

〈0|qqqq|0〉 = κ〈0|qq|0〉2 (20)

I finally get

Fp
m = 1.50κ. (21)

At this point it is interesting to compare my approach to
the use of the exponential kernel. One would have instead of
Eq. (15)

λ2Fp
me

− m2
N

M2 = eu

16π4

∫ R

0
dt t

(
m2

N − t
)
e
− t

M2 − m2
Nc1

+
(

1 − m2
N

M2

)
c2 (22)

and

(2π )4λ2e
− m2

N

M2 = −B3M
4E1(R/M2) − B7 + 1

M2
B9, (23)

where

E1 =
∫ R/M2

0
dx x e−x.

The disadvantage of the standard approach is that the result
is very sensitive to the value of the Borel mass parameter
M2. It actually varies by a factor of 2.8 when M2 varies
between 0.8 and 1.4 GeV2. The use of the polynomial kernel
has stabilized the calculation. The magnetic moment of the
neutron is obtained by the exchange u ↔ d with the result

Fn
m = −1.26κ. (24)

The method can likewise be applied to the calculation of the
proton to the axial-vector current to which I turn in the next
section.

III. COUPLING OF THE PROTON TO THE
AXIAL-VECTOR CURRENT

Following Belyaev and Kogan [4], I start with the polariza-
tion amplitude in an external axial-vector field

A(q2) = i

∫
dx eiqx〈0|T η(x)η(0)|0〉A. (25)

A(q2) also has double- and single-nucleon poles

A(t) = − λ̄2gA(
t − m2

N

)2 + bλ̄2(
t − m2

N

) + · · · , (26)

and in the deep Euclidean region

A
QCD(t) = t ln(−t) + c1

t
− 20

9
a2

qq

1

t2
+ c3

t3
+ · · · , (27)

where

c1 = 1
4 〈0|gsḠG|0〉 + 16

9 π2m2
1f

2
π ,

(28)
c3 = − 7

6m2
0a

2
qq,

with m2
1 = 1.5 GeV2, λ̄2 = 2(2π4)λ2, and a2

qq = 4π2〈q̄q〉2.
The contribution of the single pole has been estimated to be

quite small [3,4]. I shall neglect this contribution in order not to
eliminate it by multiplying by (t − m2

N ) as before because this
would introduce higher order unknown condensates whose
contribution could be large because the convergence of the
asymptotic series is not good enough.

The method used in the preceding section is repeated
and the same damping polynomial p0(t) is used which
gives

− λ̄2p
′
0

(
m2

N

)
gA =

∫ R

0
dt tp0(t) + c1 + a1

20

9
a2

qq − a2c3.

(29)

The final numerical result is

gA = 0.39 + 0.61κ. (30)

IV. RESULTS AND CONCLUSIONS

The results obtained for the magnetic moments and the
axial-vector coupling of the nucleon

Fp
m = 1.50κ,

(31)
Fn

p = −1.26.κ, gA = 0.39 + 0.61κ,

are very sensitive to the value of κ on which no consensus
exists.

Another physical quantity which is also very sensitive to
this parameter is the strong part of the proton-neutron mass
difference

δMnp = (md − mu)U = 2.60 ± 0.50 MeV. (32)

This quantity was evaluated in [6] with the same approach
used here with the result

U = 1.03κ − 0.57, (33)
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and the values taken for the quark masses are mu = 2.9 ±
0.2 and md = 5.3 ± 0.4 MeV [9]. The expression obtained in
[6] differs slightly from Eq. (32) because the condensate B9

appearing in Eq. (18) was taken with the wrong sign.
Of course our results are affected by the uncertainties of the

calculation. It is interesting, however, that a single value of κ
reproduces the experimental values of the nucleon magnetic
moments, the coupling to the axial-vector current, and the
neutron-proton mass difference. Indeed, taking κ = 1.6 in

Eqs. (20), (23), (29), and (32), then

Fp
m = 2.40, F n

m = −2.01,

gA = 1.36, δMnp = 2.6 MeV, (34)

which compare well with the experimental numbers

Fp
m = 2.71, F n

m = −1.91,

gA = 1.27, δMnp = (2.6 ± .5) MeV. (35)
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