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We present a formulation of the compositeness for baryonic resonances to discuss the meson-baryon molecular
structure inside the resonances. For this purpose, we derive a relation between the residue of the scattering
amplitude at the resonance pole position and the two-body wave function of the resonance in a sophisticated way,
and we define the compositeness as the norm of the two-body wave functions. As applications, we investigate the
compositeness of the �(1232), N (1535), and N (1650) resonances from precise πN scattering amplitudes in a
unitarized chiral framework with the interaction up to the next-to-leading order in chiral perturbation theory. The
πN compositeness for the �(1232) resonance is evaluated in the πN single-channel scattering, and we find that
the πN component inside �(1232) in the present framework is non-negligible, which supports the previous work.
On the other hand, the compositeness for the N (1535) and N (1650) resonances is evaluated in a coupled-channel
approach, resulting that the πN, ηN, K�, and K� components are negligible for these resonances.
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I. INTRODUCTION

Investigating the internal structure of hadrons is one of the
most important topics in hadron physics [1], highly motivated
by our expectation that there can exist exotic hadrons,
which are not composed of a three-quark (qqq) system for
baryons or of a quark-antiquark (qq̄) one for mesons. Namely,
while traditional quark models have succeeded in describing
baryons and mesons with qqq and qq̄, respectively, we may
consider some exotic configurations for hadron structures, e.g.,
tetraquarks and pentaquarks, as long as they are color singlet
states. Indeed, there are several candidates of exotic hadrons,
which cannot be classified into the states predicted by the
quark models. For instance, �(1405) has been considered as
an exotic hadron rather than a compact uds state because of its
anomalously light mass; because the K̄N (I = 0) interaction is
strongly attractive, �(1405) may be a K̄N molecular state [2].
Until now, great efforts have been continuously made in both
experimental and theoretical sides to clarify the structure
of exotic hadron candidates and to discover genuine exotic
hadrons. In this context, it is encouraging that there have been
experimental signals of exotic hadrons in the heavy quark
sector: charged charmoniumlike states discovered by Belle [3]
and charmonium pentaquarks by LHCb [4]. Moreover, it is
interesting that an evidence of �(1405) as a K̄N molecular
state has come from lattice QCD simulations [5].

Among exotic configurations of hadrons, hadronic molec-
ular states are of special interest, because they are composed
of two or more asymptotic states of QCD, i.e., color singlet
states, and hence one can define the structure of these
hadrons in hadronic degrees of freedom without complicated
treatment of QCD. Actually, because hadrons are color singlet
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states, their masses and interactions between them do not
depend on the renormalization scheme of QCD, in contrast
to the quark-gluon dynamics. This viewpoint of the study on
composites of asymptotic states originates in the old work
on the field renormalization constant intensively discussed in
the 1960s [6–9]. One of the most prominent results in this
approach is that the deuteron is dominated by the loosely bound
proton-neutron component [10]. Then the structure of hadrons
from the field renormalization constant and from the so-called
compositeness was studied in, e.g., Refs. [11–25]. In particular,
the compositeness is explicitly defined as contributions from
two-body wave functions to the normalization of the total
wave function for the resonance [13,22,26,27] and can be
extracted from the pole properties of the scattering amplitude
for two asymptotic states. Because the total wave function
is normalized to be unity, we can discuss the composite
fraction of hadrons by comparing the compositeness with
unity. Here we should note that, in general, the compositeness
as well as the wave function is not observable and hence
a model-dependent quantity. However, for states lying near
the two-body threshold, we can express the compositeness
with observables such as the scattering length and effective
range, as studied in Refs. [10,11,15,19,20,25]. Besides, in a
certain model the compositeness has been utilized to study the
internal structure of hadronic resonances from experimental
observables as well, such as the K̄N component inside
�(1405) [28] and the KK̄ components inside the scalar
mesons f0(980) and a0(980) [29].

Because the compositeness can be extracted from the
scattering amplitude, it is a good subject to apply the com-
positeness to the nucleon resonances, which we abbreviate as
N∗, and to discuss the meson-baryon compositeness for the N∗
resonances. This is because, at present, precise πN scattering
amplitudes are available from many research groups, e.g.,
ANL-Osaka [30], Jülich [31], and Dubna-Mainz-Taipei [32] in
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the so-called dynamical approaches and Bonn-Gatchina [33]
and GWU [34] in the on-shell K-matrix approaches. In
principle, we can extract the πN and other meson-baryon
compositeness from the precise πN scattering amplitudes via
properties of the resonance poles.

In this paper we focus on the �(1232), N (1535), and
N (1650) resonances because there are several implications that
these hadrons may have certain fractions of the meson-baryon
components. For �(1232), there are several suggestions that
the effect of the meson cloud seems to be large, for instance,
in the M1 transition form factor for γ ∗N → �(1232) at
Q2 = 0 [35]. The πN compositeness for �(1232) has been
already studied in a simple phenomenological model [17],
implying large contribution of the πN component to the
internal structure of �(1232). For N (1535) and N (1650), there
are several studies that they can be dynamically generated
from meson-baryon degrees of freedom without introducing
explicit resonance poles in the so-called chiral unitary ap-
proach [36–43]. In this approach, the πN and its coupled-
channel amplitude is obtained based on the combination
of chiral perturbation theory and the unitarization of the
scattering amplitude [36–45]. The results in the chiral unitary
approach might suggest that N (1535) and N (1650) are meson-
baryon molecular states. Of special interest is the relation
among N (1535), N (1650), and other dynamically generated
resonances in the chiral unitary approach such as �(1405)
and �(1690). Namely, it is suggested in Ref. [46] that, in a
flavor SU(3) symmetric world in the chiral unitary approach,
N (1535) and N (1650) degenerate, together with the one of the
two-�(1405) pole, �(1690), and so on, into two degenerated
octets as dynamically generated states. Because both �(1405)
and �(1690) in the chiral unitary approach in the physical
world are respectively found to be indeed the K̄N [22] and
K̄� [47] molecular states in terms of the compositeness, the
degeneracy in the flavor SU(3) symmetric world implies that
both N (1535) and N (1650) may be meson-baryon molecular
states as well. However, the compositeness for N (1535) was
studied in the chiral unitary approach with the simplest
interaction, i.e., the Weinberg-Tomozawa term, in Ref. [22],
and the result indicated the large component originating
from contributions other than the pseudoscalar meson-baryon
dynamics considered for N (1535).

Motivated by these observations, in the present study,
we evaluate the compositeness for the �(1232), N (1535),
and N (1650) resonances and N(940) from the precise πN
scattering amplitudes in the chiral unitary approach, taking into
account the interaction up to the next-to-leading order from
chiral perturbation theory and including an explicit � term
for �(1232). For �(1232), we discuss its πN compositeness
in the πN single-channel scattering, while we treat N (1535)
and N (1650) in a πN -ηN -K�-K� coupled-channel problem
without introducing explicit bare states. The loop function in
our approach is evaluated with the dimensional regularization.
We fit the model parameters to the solution of the partial-
wave analysis for the πN scattering amplitude and calculate
the meson-baryon compositeness for �(1232), N (1535), and
N (1650) from the πN scattering amplitude. A part of the study
on �(1232) was already reported in Ref. [48]. In this paper, we
show the details of the formulation, results, and discussions.

This paper is organized as follows. In Sec. II we formulate
the compositeness for baryonic resonances to discuss the
meson-baryon molecular structure inside the resonances. In the
formulation we consider the case of a relativistic scattering of
arbitrary spin particles. Next, in Sec. III we show our numerical
calculations on the compositeness for the �(1232), N (1535),
and N (1650) resonances in the chiral unitary approach with
the interaction up to the next-to-leading order in chiral
perturbation theory. Section IV is devoted to the summary
of this study and outlook.

II. COMPOSITENESS

First of all, we formulate the compositeness, which has
been recently developed in the hadron physics so as to
discuss the hadronic molecular components inside hadrons.
The compositeness is defined as contributions from two-body
wave functions to the normalization of the total wave function
|	〉 for the resonance state and corresponds to unity minus
the field renormalization constant intensively discussed in the
1960s [6–9]. Although the compositeness is not observable and
hence a model-dependent quantity, it will be an important piece
of information on the internal structure of the resonance state.

In this section we first show how to extract the com-
positeness from the residue of the two-body to two-body
scattering amplitude at the resonance pole in the nonrelativistic
framework in Sec. II A. Next we extend our discussions to the
relativistic case in Sec. II B. In both Sec. II A and Sec. II B
we do not specify the form of the interaction so as to give
the general formulas of the compositeness in terms of the
residue of the scattering amplitude at the resonance pole
position, and in Sec. II C we consider the formulation with
the separable interaction, which is employed in our numerical
calculations in Sec. III. Then we give several comments on
the interpretation of the compositeness for resonance states
in Sec. II D. In the following we take the rest frame of the
center-of-mass motion, namely two scattering particles have
equal and opposite momentum, and hence the resonance state
is at rest with zero momentum.

A. Scattering amplitude and wave function
in a nonrelativistic case

We consider a two-body to two-body coupled-channel
scattering in a nonrelativistic condition governed by the
interaction operator V̂ for the two-body systems, with which
we have only the two-body states in the practical model
space. For simplicity, we assume that the interaction is a
central force and neglect the spin of the scattering particles.
Moreover, for the later applications we allow the interaction to
depend intrinsically on the energy of the system E, which
corresponds to the eigenenergy of the full Hamiltonian.1

1If there are missing (or implicit) channels which are implemented
in the interaction, such missing channels, regardless of one-body bare
states or more than one-body scattering states of higher thresholds,
can be origin of the intrinsic energy dependence of the interaction.
See Ref. [22] for the details.
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The scattering amplitude can be formally obtained with the
Lippmann-Schwinger equation in an operator form,

T̂ (E) = V̂ (E) + V̂ (E)
1

E − Ĥ0
T̂ (E)

= V̂ (E) + V̂ (E)
1

E − Ĥ
V̂ (E), (1)

with the T -matrix operator T̂ , the free Hamiltonian Ĥ0, and
the full Hamiltonian Ĥ ≡ Ĥ0 + V̂ (E).

First, to evaluate the scattering amplitude from the
Lippmann-Schwinger equation (1), we have to introduce the
scattering states with which we calculate the matrix element of
the T -matrix operator. We represent the j th-channel two-body
scattering state with relative momentum q as |qj 〉, which is an
eigenstate of the free Hamiltonian Ĥ0,

Ĥ0|qj 〉 = Ej (q)|qj 〉, 〈qj |Ĥ0 = Ej (q)〈qj |, (2)

where q ≡ |q| is the magnitude of the momentum q and the
eigenenergy Ej (q) contains the threshold energy,

Ej (q) ≡ mj + Mj + q2

2μj

, μj ≡ mjMj

mj + Mj

, (3)

with the masses of the j th-channel particles mj and Mj . We
fix the normalization of the scattering states as

〈q ′
k|qj 〉 = (2π )3δjkδ(q ′ − q). (4)

Now we can express scattering amplitude of the k(q) →
j (q ′) scattering, where q(′) is the relative momenta in the initial
(final) state, as

〈q ′
j |T̂ (E)|qk〉 ≡ Tjk(E; q ′, q), (5)

which is obtained from the interaction

〈q ′
j |V̂ (E)|qk〉 ≡ Vjk(E; q ′, q). (6)

In this study we assume the time-reversal invariance of
the scattering process. This constrains the interaction and
amplitude, with an appropriate choice of phases of the states,
as

Vjk(E; q ′, q) = Vkj (E; q, q ′), (7)

Tjk(E; q ′, q) = Tkj (E; q, q ′). (8)

The scattering amplitude Tjk(E; q ′, q) is a solution of the
Lippmann-Schwinger equation in the following form:

Tjk(E; q ′, q)

= Vjk(E; q ′, q) +
∑

l

∫
d3k

(2π )3

Vjl(E; q ′, k)Tlk(E; k, q)

E − El(k)
.

(9)

In the actual scattering, the system in the initial and final
states should be on mass shell and the energy should be
determined as E = Ej (q ′) = Ek(q). We call this scattering
amplitude the on-shell amplitude. However, in the intermediate
state the energy El(k) takes different values from E. Moreover,
we can mathematically perform the analytic continuation of
the scattering amplitude by taking the value of the energy
E different from Ej (q ′) = Ek(q) as an off-shell amplitude.

This will be essential to extract the wave function from the
scattering amplitude at the resonance pole position in the
complex energy plane.

Next, it is useful to decompose the scattering amplitude into
partial wave amplitudes,

Tjk(E; q ′, q) =
∞∑

L=0

(2L + 1)TL,jk(E; q ′, q)PL(q̂ ′ · q̂), (10)

and in a similar manner for the interaction V , where PL is
the Legendre polynomials and q̂(′) is the unit vector for the
direction of q(′): q̂(′) ≡ q(′)/q(′). Each partial-wave amplitude
can be extracted as

TL,jk(E; q ′, q) = 1

2

∫ 1

−1
d(q̂ ′ · q̂)PL(q̂ ′ · q̂)Tjk(E; q ′, q).

(11)
Because the Legendre polynomials satisfy the relation∫

d�kPL(q̂ ′ · k̂)PL′(k̂ · q̂) = 4π

2L + 1
δLL′PL(q̂ ′ · q̂) (12)

for the integral with respect to the solid angle of a vector k,
�k, we can rewrite the Lippmann-Schwinger equation (9) as

TL,jk(E; q ′, q)

= VL,jk(E; q ′, q) +
∑

l

∫ ∞

0

dk

2π2
k2

× VL,jl(E; q ′, k)TL,lk(E; k, q)

E − El(k)
. (13)

We note that in our formulation the on-shell scattering
amplitude in each partial wave satisfies the optical theorem
from the unitarity of the S matrix in the normalization

Im T on-shell
L,jj (E) = −

∑
k

μkqk

2π

∣∣T on-shell
L,jk (E)

∣∣2
, (14)

where qk ≡ √
2μk(E − mk − Mk) is the on-shell relative

momentum in the kth channel and the sum runs over the open
channels.

Let us now suppose that there is a resonance state |ψLM〉
in the partial wave L with its azimuthal component M .
Here, to ensure a finite normalization of the resonance wave
function |ψLM〉, we employ the Gamow vector, which was
first introduced to describe unstable nuclei [49–52]. The
resonance state |ψLM〉 as the Gamow vector is a solution of
the Schrödinger equation,

Ĥ |ψLM〉 = [Ĥ0 + V̂ (Epole)]|ψLM〉 = Epole|ψLM〉, (15)

with the eigenenergy Epole. We note that the resonance
eigenenergy is, in general, complex, E∗

pole 
= Epole; ReEpole

and −2 ImEpole are the mass and width of the resonance
state, respectively. Then, to establish the normalization of the
resonance state as the Gamow vector, we take 〈ψ∗

LM | instead of
〈ψLM | for the bra vector of the resonance. In this notation we
can normalize the resonance wave function in the following
manner:

〈ψ∗
LM ′ |ψLM〉 = δM ′M. (16)
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The Schrödinger equation for the resonance bra state is
expressed with the same eigenenergy as

〈ψ∗
LM |Ĥ = 〈ψ∗

LM |[Ĥ0 + V̂ (Epole)] = 〈ψ∗
LM |Epole. (17)

Here we summarize the two-body component of the resonance
wave function in momentum space. Namely, because the
interaction is assumed to be a central force, for the L-wave
resonance, the wave function in momentum space can be
written as a product of the radial part Rj (q) in j th channel
and the spherical harmonics YLM (q̂) as

〈qj |ψLM〉 = Rj (q)YLM (q̂). (18)

We fix the normalization of the spherical harmonics YLM (q̂)
as ∫

d�qYLM (q̂)Y ∗
L′M ′(q̂) = 4πδLL′δMM ′ . (19)

From the bra state 〈ψ∗
LM |, the two-body wave function can be

evaluated as

〈ψ∗
LM |qj 〉 = Rj (q)Y ∗

LM (q̂). (20)

Here we emphasize that, while we take the complex conjugate
for the spherical harmonics, we do not take it for the radial part.
This is because, while the spherical part can be calculated
and normalized in a usual sense, the radial part should be
treated so as to remove the divergence of the wave function at
q → ∞ [49–52] when we calculate the norm. From the above
wave function, we can calculate the norm with respect to the
j th-channel two-body wave function, Xj , in the following
manner:

Xj ≡
∫

d3q

(2π )3
〈ψ∗

LM |qj 〉〈qj |ψLM〉 =
∫ ∞

0

dq

2π2
q2[Rj (q)]2.

(21)

This quantity is referred to as the compositeness. In this
construction, the compositeness Xj is given by the complex
number squared of the radial part Rj (q) rather than by
the absolute value squared, which is essential to normalize
the resonance wave function. Therefore, in general, the
compositeness becomes complex for resonance states. We also
note that the sum of the norm Xj should be unity if there is
no missing channels, which would be an eigenstate of the
free Hamiltonian, to describe the resonance state. However, in
actual calculations we may have contributions from missing
channels, which can be implemented as the energy dependence
of the interaction. As we discuss when we introduce the
scattering amplitude and its residue at the resonance pole
position, we do not make the sum of the compositeness Xj

coincide with unity by hand. Instead, the value of the norm
is automatically fixed when we calculate the residue of the
scattering amplitude. Here we representatively denote the
missing channels as |ψ0〉, which represents not only one-body
bare states but also more than one-body scattering states. In
the present notation we can decompose unity in terms of the
eigenstates of the free Hamiltonian:

1l = |ψ0〉〈ψ0| +
∑

j

∫
d3q

(2π )3
|qj 〉〈qj |. (22)

Therefore, the normalization of the resonance wave function
|ψLM〉 is expressed as

〈ψ∗
LM |ψLM〉 = Z +

∑
j

Xj = 1, (23)

where we have introduced the missing-channel contributions
Z defined as

Z ≡ 〈ψ∗
LM |ψ0〉〈ψ0|ψLM〉. (24)

Note that the quantity Z, which has been referred to as the
elementariness,2 becomes complex for resonance states as
well. The explicit form of the elementariness Z will be given
in Sec. II C in our model.

We now establish the way to extract the compositeness
from the off-shell scattering amplitude obtained by the analytic
continuation for the energy. The key is the fact that the reso-
nance wave function appears as the residue at the resonance
pole of the scattering amplitude. Namely, near the resonance
pole, the off-shell scattering amplitude is dominated by the
resonance pole term in the expansion by the eigenstates of the
full Hamiltonian, and hence we have [see the last expression
in Eq. (1)]

T̂ (E) ≈
L∑

M=−L

V̂ (Epole)|ψLM〉 1

E − Epole
〈ψ∗

LM |V̂ (Epole),

(25)
where we have summed up the possible azimuthal component
M . Calculating the matrix element of this T -matrix operator,
we obtain

Tjk(E; q ′, q)

≈
L∑

M=−L

〈q ′
j |V̂ (Epole)|ψLM〉〈ψ∗

LM |V̂ (Epole)|qk〉
E − Epole

. (26)

Then we need to evaluate the matrix elements in the numerator,
〈q ′

j |V̂ (Epole)|ψLM〉 and 〈ψ∗
LM |V̂ (Epole)|qk〉. We can evaluate

the former one by using the Schrödinger equation as

〈qj |V̂ (Epole)|ψLM〉 = 〈qj |(Ĥ − Ĥ0)|ψLM〉
= [Epole − Ej (q)]〈qj |ψLM〉, (27)

and from Eq. (18) we obtain

〈qj |V̂ (Epole)|ψLM〉 = γj (q)YLM (q̂), (28)

with

γj (q) ≡ [Epole − Ej (q)]Rj (q). (29)

In a similar manner we can calculate the latter matrix element
as

〈ψ∗
LM |V̂ (Epole)|qj 〉 = γj (q)Y ∗

LM (q̂). (30)

2Although Z is called elementariness, it contains contributions not
only from elementary one-body states but also from more than one-
body scattering states.
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By using the above matrix elements, we can rewrite the
scattering amplitude near the resonance pole as

Tjk(E; q ′, q) ≈ γj (q ′)γk(q)

E − Epole

L∑
M=−L

YLM (q̂ ′)Y ∗
LM (q̂)

= (2L + 1)
γj (q ′)γk(q)

E − Epole
PL(q̂ ′ · q̂), (31)

where we have used the formula for the spherical harmonics
and Legendre polynomials:

L∑
M=−L

YLM (q̂ ′)Y ∗
LM (q̂) = (2L + 1)PL(q̂ ′ · q̂). (32)

The expression in Eq. (31) indicates that the partial wave
amplitude in L wave contains the resonance pole, as we
expected:

TL,jk(E; q ′, q) = γj (q ′)γk(q)

E − Epole
+ (regular at E = Epole).

(33)
Furthermore, the residue of the partial-wave amplitude con-
tains information on the resonance wave function via the
expression in Eq. (29). Actually, we can calculate the j th-
channel compositeness, Xj , by using the residue γj (q) as

Xj =
∫ ∞

0

dq

2π2
q2[Rj (q)]2

=
∫ ∞

0

dq

2π2
q2

[
γj (q)

Epole − Ej (q)

]2

. (34)

This is the formula to evaluate the j th-channel compositeness
Xj from the residue of the partial-wave amplitude TL at
the resonance pole. An important point is that the residue
γj (q) is obtained from the Lippmann-Schwinger equation
without introducing any extra factor to scale the value of the
compositeness Xj . In this sense, the value of the norm in
Eq. (21) is automatically fixed when we calculate the residue
of the scattering amplitude. Indeed, it was proved in Ref. [52]
that the wave function from the residue of the scattering
amplitude is correctly normalized to be unity for a general
energy-independent interaction.3

Here we note that the compositeness Xj is not observable
and, hence, in general, a model-dependent quantity. This can
be understood with the property of the residue γj (q). Namely,
while the on-shell scattering amplitude for open channels is
observable, the off-shell amplitude with the energy analytically
continued to the resonance pole position is not observable.
Therefore, to calculate the residue γj (q), in general, one needs
some model or assumptions for the analytic continuation. In
other words, we have to fix the functional form when we
evaluate the off-shell scattering amplitude. This is reflected
as the model dependence of the residue γj and hence the
compositeness Xj . However, in certain cases we can express

3An analysis on the relation between the residue of the scattering
amplitude and the wave function will be presented in detail else-
where [53].

the compositeness only with the observable quantities. A
special case is that the pole exists very close to the on-shell
energies, in which we can directly relate the compositeness
with threshold parameters such as the scattering length and
effective range [10,11,15,19,20,25].

Finally, we comment on the semirelativistic case, in which
the eigenenergy of the free Hamiltonian (3) is replaced with

Ej (q) ≡
√

q2 + m2
j +

√
q2 + M2

j . (35)

Even in this case we can follow the same discussion, and we
obtain the same formula for the compositeness (34) but with
the semirelativistic eigenenergy Ej (q) in Eq. (35).

B. Scattering amplitude and wave function in a relativistic case

We extend our discussions to the relativistic case of the
two-body to two-body scattering k(pμ, qμ) → j (p′μ, q ′μ),
where j and k are channel indices and pμ, qμ, p′μ, and q ′μ
are the momenta of particles whose masses are Mk, mk, Mj ,
and mj , respectively. We first consider a scattering of two
spinless particles, and then we treat a two-body scattering of
arbitrary spins by using the partial-wave amplitude. We take
the center-of-mass frame, where the total energy-momentum
of the system becomes P μ = pμ + qμ = p′μ + q ′μ = (w, 0),
with the center-of-mass energy w. The conventions used in
this study are summarized in Appendix A.

In general, the scattering amplitude of two spinless particles
is expressed as a function of the Mandelstam variable s ≡ w2

and momenta qμ and q ′μ. The scattering amplitude is a solution
of the Lippmann-Schwinger equation in a relativistic form:

Tjk(s; q ′μ, qμ)

= Vjk(s; q ′μ, qμ) + i
∑

l

∫
d4k

(2π )4

× Vjl(s; q ′μ, kμ)Tlk(s; kμ, qμ)(
kμkμ − m2

j

)[
(P − k)μ(P − k)μ − M2

j

] . (36)

Here we allow that the interaction kernel Vjk(s; q ′μ, qμ) may
contain, in addition to the tree-level parts, contributions from
t- and u-channel loops in a usual manner of the quantum field
theory. For the on-shell amplitude s is related to the momenta
qμ and q ′μ, while the off-shell amplitude can be obtained with
the analytic continuation to the complex values of s.

From the Lippmann-Schwinger equation (36), we construct
an analog to the scattering equation in the nonrelativistic case,
which will be essential to relate the scattering amplitude with
the wave function clearly. To this end, we assume an on-shell
condition to the energy q(′)0 inside Vjk(s; q ′μ, qμ) by making
it a function of the Mandelstam variable s as

q0 → ωk(s) ≡ s + m2
k − M2

k

2
√

s
,

q ′0 → ω′
j (s) ≡ s + m2

j − M2
j

2
√

s
.

(37)
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In this assumption, we can treat the interaction kernel as in the
nonrelativistic form

Vjk(s; q ′μ, qμ) → Vjk(s; q ′, q), (38)

and, hence, after performing the k0 integral, the Lippmann-
Schwinger equation (36) becomes

Tjk(s, q ′, q) = Vjk(s, q ′, q) +
∑

l

∫
d3k

(2π )3

√
sl(k)

2ωl(k)�l(k)

× Vjl(s, q ′, k)Tlk(s, k, q)

s − sl(k)
, (39)

with

ωj (q) ≡
√

q2 + m2
j , �j (q) ≡

√
q2 + M2

j , (40)

sj (q) ≡ [ωj (q) + �j (q)]2. (41)

Now we can perform the partial-wave decomposition in a
similar manner as in the nonrelativistic case. In particular,
in the present formulation the partial-wave amplitude TL, jk ,
extracted in the same way as in Eq. (11), is the solution of the
Lippmann-Schwinger equation

TL, jk(s; q ′, q) = VL, jk(s; q ′, q) +
∑

l

∫ ∞

0

dk

2π2

k2√sl(k)

2ωl(k)�l(k)

× VL, jl(s, q ′, k)TL, lk(s, k, q)

s − sl(k)
(42)

and satisfies the optical theorem

Im T on-shell
L, jj (s) = −

∑
k

qk(s)

8π
√

s

∣∣T on-shell
L,jk (s)

∣∣2
, (43)

where qk(s) is the kth-channel center-of-mass momentum in
the relativistic form

qk(s) ≡ λ1/2
(
s,m2

k,M
2
k

)
2
√

s
, (44)

with the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy −
2yz − 2zx, and the sum runs over the open channels.

Of special interest is the expression of the Lippmann-
Schwinger equation in Eq. (39), with which we can apply
the relativistic formulation of the wave function developed in
Refs. [22,54,55]. In this formulation, the two-body equation
for the resonance state |	LM〉, in the partial wave L with its
azimuthal component M , is expressed in an extended form of
the Schrödinger equation as [22]

[K̂ + V̂(spole)]|	LM〉 = spole|	LM〉,
〈	∗

LM |[K̂ + V̂(spole)] = spole〈	∗
LM |,

(45)

where K̂ and V̂ are the kinetic energy and interaction operators,
respectively, and spole is the resonance pole position with
respect to the Mandelstam variable s. The kinetic operator
K̂ corresponds to the free Hamiltonian in the nonrelativistic
framework and has eigenstates of the j th-channel two-body
covariant scattering state with the relative momentum q,|qj 〉co,
with which eigenvalues of the kinetic operator are

K̂|qj 〉co = sj (q)|qj 〉co, co〈qj |K̂ = sj (q) co〈qj |. (46)

In this study we take the same normalization of the covariant
scattering state as in Ref. [22]:

co〈q ′
k|qj 〉co = 2ωj (q)�j (q)√

sj (q)
(2π )3δjkδ(q ′ − q). (47)

The factor 2ωj (q)�j (q)/
√

sj (q) guarantees that the measure
of the integral in the expression of the compositeness is Lorentz
invariant, as we see later. The wave function in momentum
space is expressed as

co〈qj |	LM〉 = Rj (q)YLM (q̂),

〈	∗
LM |qj 〉co = Rj (q)Y ∗

LM (q̂).
(48)

With this scattering state, we can calculate the interaction
kernel Vjk in the manner

co〈q ′
j |V̂(s)|qk〉co = Vjk(s; q ′, q), (49)

and, similarly, the scattering amplitude is calculated as

co〈q ′
j |T̂ (s)|qk〉co = Tjk(s; q ′, q). (50)

Now the scattering equation (39) is expressed as an equation
of operators, as in Eq. (1) in the nonrelativistic case:

T̂ (s) = V̂(s) + V̂(s)
1

s − K̂
T̂ (s)

= V̂(s) + V̂(s)
1

s − K̂ − V̂(s)
V̂(s). (51)

Actually, we can easily see that this operator equation becomes
the Lippmann-Schwinger equation (39) by using the normal-
ization (47). In this sense, thanks to the on-shell condition of
the energy (37), Eqs. (51) and (45) become analogs to the
Lippmann-Schwinger equation and the Schrödinger equation
in the nonrelativistic case, respectively.

In this formulation, we can take the same strategy to
calculate the relativistic wave function as in the nonrelativistic
case. Near the resonance pole, the scattering amplitude is
dominated by the resonance pole term in the expansion by
the eigenstates of K̂ + V̂ as

T̂ (s) ≈
L∑

M=−L

V̂(spole)|	LM〉 1

s − spole
〈	∗

LM |V̂(spole), (52)

and hence the partial-wave amplitude near the resonance pole
position is expressed as

TL,jk(s; q ′, q) = γj (q ′)γk(q)

s − spole
+ (regular at s = spole), (53)

where we define the residue as

co〈qj |V̂(spole)|	LM〉 = γj (q)YLM (q̂),

〈	∗
LM |V̂(spole)|qj 〉co = γj (q)Y ∗

LM (q̂),
(54)

with

γj (q) ≡ [spole − sj (q)]Rj (q). (55)

Then we can calculate the norm of the j th-channel two-body
state, as the compositeness Xj , from the residue of the
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scattering amplitude at the resonance pole:

Xj =
∫

d3q

(2π )3

√
sj (q)

2ωj (q)�j (q)
〈	∗

LM |qj 〉co co〈qj |	LM〉

=
∫

d3q

(2π )3

√
sj (q)

2ωj (q)�j (q)

[
γj (q)

spole − sj (q)

]2

. (56)

This is the formula to evaluate the j th-channel compositeness
Xj from the residue of the partial-wave amplitude TL at the
resonance pole for a relativistic scattering of two spinless
particles.

Finally, let us consider a two-body relativistic scattering of
arbitrary spins. The partial-wave amplitude in this condition
can be specified by the orbital angular momentum L and a
certain index α, which represents the quantum number of the
scattering, such as isospin. The optical theorem for the partial-
wave amplitude is chosen to be the same as that in Eq. (43),

ImT on-shell
αL, jj (w) = −

∑
k

qk(s)

8πw

∣∣T on-shell
αL,jk (w)

∣∣2
, (57)

where w is the center-of-mass energy, s ≡ w2, and the
sum runs over the open channels. In general, the off-shell
amplitude TαL, jk is a function of the center-of-mass energy w
and momenta qμ and q ′μ, but to relate the scattering amplitude
with the wave function clearly, we assume the on-shell
condition for the energy q(′)0 so that it is a function of the
center-of-mass energy w as in Eq. (37). Then, the partial-wave
amplitude can be expressed near the resonance pole position as

TαL,jk(w; q ′, q) = γ ′
j (q ′)γ ′

k(q)

w − wpole
+ (regular at w = wpole),

(58)

where wpole ≡ √
spole is the pole position in terms of the

center-of-mass energy w. Now we extend the expression of the
compositeness Xj in the last line in Eq. (56) to the scattering
of arbitrary spin particles. Namely, in this study we define
the compositeness for a two-body system with arbitrary spin
particles by using the residue of the partial-wave amplitude as

Xj ≡ 2wpole

∫
d3q

(2π )3

√
sj (q)

2ωj (q)�j (q)

[
γ ′

j (q)

spole − sj (q)

]2

. (59)

This is the formula to evaluate the j th-channel compositeness
Xj from the resonance pole of the partial-wave amplitude
TαL for a relativistic scattering of arbitrary spin particles.
We note that this formula of the compositeness is valid even
for baryonic resonances described with explicit Dirac γ
matrices. In the following we use this expression to evaluate
the compositeness of the N∗ resonances.

C. Compositeness with separable interaction

Up to now we have considered the nonrelativistic and
relativistic systems without specifying any explicit models for
the interaction. In the following we consider the interaction
of the separable type, i.e., the interaction V (w; q ′, q) which
can be factorized into the q-dependent part and q ′-dependent
one. The separable interaction is employed in the description
of the N∗ resonances in the chiral unitary approach in

Sec. III. We here concentrate on the scattering of the πN
and other coupled channels in a relativistic framework, and
hence the partial-wave amplitude is specified by isospin I ,
orbital angular momentum L, and total angular momentum
J = L ± 1/2, as T ±

IL. To fix the interaction, we first note that
the radial wave function Rj (q) in L wave behaves as ∼qL for
the small q region:

Rj (q) = O(qL) for small q. (60)

Therefore, without loss of generality we can express the
residue of the partial-wave amplitude γ ′

j (q) as

γ ′
j (q) = gjq

Lfj (q), (61)

where a constant gj is the coupling constant of the resonance
to the j th-channel two-body state and a function fj (q) satisfies
fj (0) = 1 and fj (q) → 0 for q → ∞ so as to tame the
ultraviolet divergence of the integrals. Then it is interesting
that we can obtain the residue in Eq. (61) exactly with the
separable interaction of the form

V ±
IL,jk(w; q ′, q) = V ′±

IL,jk(w)q ′ LqLfj (q ′)fk(q), (62)

where V ′±
IL,jk depends only on the center-of-mass energy w.

This form of the interaction was proposed in Refs. [13,17] so
as to evaluate the compositeness for higher partial-wave states
in a proper way. With this interaction, the full amplitude in L
wave can be obtained as

T ±
IL,jk(w; q ′, q) = T ′±

IL,jk(w)q ′ LqLfj (q ′)fk(q), (63)

where T ′±
IL,jk(w) is a solution of the Lippmann-Schwinger

equation in an algebraic form:

T ′±
IL,jk(w) = V ′±

IL,jk(w)+
∑

l

V ′±
IL,j l(w)GL,l(w)T ′±

IL,lk(w).

(64)

In this expression, GL,j is the loop function of the two-body
state in j th channel, and in this study we take the expression

GL,j (w) ≡
∫

d3q

(2π )3

√
sj (q)

2ωj (q)�j (q)

q2L[fj (q)]2

s − sj (q)
, (65)

in accordance with the discussion in Sec. II B. We note that,
in this construction, we have correct behavior of the on-shell
amplitude near the threshold:

T ±
IL,jk(w)on-shell ∝ q ′ LqL. (66)

An important point in this approach is that the scattering
amplitude T ′±

IL,jk , as well as the interaction V ′±
IL,jk , depends

only on the energy w. Owing to this fact, the residue of T ′±
IL,jk

at the resonance pole position does not depend on the relative
momentum q and hence a constant:

T ′±
IL,jk(w) = gjgk

w − wpole
+ (regular at w = wpole). (67)

One can easily confirm that the constant of the residue gj

coincides with the prefactor in Eq. (61). Now, with the
full amplitude T ±

IL,jk in Eq. (63), we can straightforwardly
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calculate the compositeness (59) in the present approach as

Xj = 2wpoleg
2
j

∫
d3q

(2π )3

√
sj (q)

2ωj (q)�j (q)

[
qLfj (q)

spole − sj (q)

]2

= −g2
j

[
dGL,j

dw

]
w=wpole

, (68)

where we have replaced the integral part in the middle of
the equation with the derivative of the loop function in the
last. Furthermore, in the present approach we can express the
elementariness Z as

Z = −
∑
j,k

gkgj

[
GL,j

dV ′±
IL,jk

dw
GL,k

]
w=wpole

. (69)

Actually, with this expression we can show the normalization
of the total wave function for the resonance state,

〈	∗
LM |	LM〉
=

∑
j

Xj + Z

= −
∑
j,k

gkgj

[
δjk

dGL,j

dw
+ GL,j

dV ′±
IL,jk

dw
GL,k

]
w=wpole

= 1, (70)

where the condition of the correct normalization as unity is
guaranteed by a generalized Ward identity proven in Ref. [56].
The elementariness Z measures the contributions from missing
channels which are effectively taken into account in the
two-body interaction in the practical model space, including
both one-body bare states and more than one-body scattering
states, on the assumption that the energy dependence of the
interaction originates from channels which do not appear as
explicit degrees of freedom.

Finally, we note that in our numerical calculations we
employ the dimensional regularization to calculate the integral
of the loop function, which is achieved by setting fj (q) = 1
and modifying the integration variable as d4k → μ4−d

reg ddk,
with the regularization scale μreg. The problems concerned
with the dimensional regularization are discussed in the next
section.

D. Interpretation of compositeness for resonances

Before going to the numerical results of the compositeness
for N∗ resonances, we here give how to interpret and treat
complex values of the compositeness for resonance states,
especially in the relation to the probabilistic interpretation.
In this section we consider a single-channel problem for
simplicity. The extension to the general coupled-channel case
is given at the end.

As we have mentioned, the compositeness X and ele-
mentariness Z are, in general, complex for resonance states,
which is inevitable when the correct normalization of the
resonance wave function is required. This fact indicates that
we cannot interpret them as probabilities because their values
are not real and not bounded. In this line, several ways to
make the compositeness real values have been proposed. For

instance, it has been suggested to use 1 − |Z| [57], |X| [13,24],
Re(X) [17], and (1 − |Z| + |X|)/2 [25] as the “probability” of
the compositeness. All of them return to the same non-negative
value 1 − Z = X for a stable bound state. However, for a
resonance state these values, except for the last one, are not
bounded in the range [0, 1], so the values 1 − |Z|,|X|, and
Re(X) cannot be treated as probability in a strict sense.

In contrast to these real values, to interpret the compos-
iteness and elementariness, we propose to use simple but
reasonable values defined as

X̃ ≡ |X|
1 + U

, Z̃ ≡ |Z|
1 + U

, (71)

with

U ≡ |X| + |Z| − 1. (72)

Obviously, both X̃ and Z̃ are real, bounded in the range [0, 1],
and automatically satisfy the sum rule:

X̃ + Z̃ = 1. (73)

We then require that we can interpret X̃ and Z̃ from the
complex compositeness and elementariness as the “probabil-
ity” if and only if U is much smaller than unity, U � 1.
This is essentially an expression of the condition pointed
out in Ref. [22], in which they proposed that reasonable
interpretation can be obtained if |Im(Z)|,|Im(X)| � 1 and
0 � Re(Z),Re(X) � 1, where X and Z have similarity with
those of the stable bound states. In other words, we can have a
resonance wave function which is similar to the wave function
of the stable bound state. Here we note that, when U � 1 is
satisfied, X̃ and Z̃ in Eq. (71) take very similar values to the
quantities proposed in Ref. [25]:

X̃KH ≡ 1 − |Z| + |X|
2

, Z̃KH ≡ 1 − |X| + |Z|
2

. (74)

Actually, a straightforward calculation provides

X̃ − X̃KH = |X|
1 + U

− 1 − |Z| + |X|
2

= (|Z| − |X|)U
2(1 + U )

,

(75)

which should be much smaller than unity for U � 1. A similar
result for Z̃ − Z̃KH is obtained by exchanging |X| with |Z|.
We also mention that, with the condition U � 1, the quantities
1 − |Z|, |X|, and Re(X) will take values similar to X̃.

Finally, an important property is that we can straightfor-
wardly extend X̃ and Z̃ to the general coupled-channel case.
This can be done as

X̃j ≡ |Xj |
1 + U

, Z̃ ≡ |Z|
1 + U

, (76)

with

U ≡
∑

j

|Xj | + |Z| − 1. (77)

Again X̃j and Z̃ are real, bounded in the range [0, 1], and
automatically satisfy the sum rule:∑

j

X̃j + Z̃ = 1. (78)
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In the following we use these real values as well as the original
compositeness Xj and elementariness Z when we discuss the
internal structure of N∗ resonances.

III. NUMERICAL RESULTS

Let us now consider the �(1232), N (1535), and N (1650)
resonances and evaluate their meson-baryon compositeness
from the residue of the scattering amplitude at the resonance
pole position by using the formula developed in Sec. II C. We
employ the chiral unitary approach to calculate the scattering
amplitude. The chiral unitary approach is most successful
in description of the �(1405) resonance [58–64] and is
applied to the πN scattering and several N∗ resonances as
well [36–45]. In this study, the interaction kernel is taken
from chiral perturbation theory up to the next-to-leading order,
and we construct separable interactions to evaluate the πN
scattering amplitude. The loop function is evaluated with the
dimensional regularization. The model parameters are fitted so
that the partial-wave amplitudes reproduce the solution of the
partial-wave analysis for the πN scattering amplitude obtained
in Ref. [34], to which we refer as WI 08. Throughout the
numerical calculations we use isospin symmetric masses for
mesons and baryons.

A. The �(1232) resonance

First we consider the �(1232) resonance and calculate
its πN compositeness. In this study we construct the πN
single-channel scattering amplitude in s and p waves by using
the unitarization of the chiral interaction up to the next-to-
leading order plus the s- and u-channel �(1232) exchanges.
In the analysis we also consider the πN compositeness for the
ground-state nucleon N (940).

Because both N (940) and �(1232) exist in p-wave πN
state with the orbital angular momentum L = 1, we have to
employ the loop function with L = 1. As we will see, there is
ambiguity in calculating the πN compositeness with the L = 1
loop function evaluated with the dimensional regularization.
We discuss this ambiguity as well.

1. Scattering amplitude

Let us consider the πN scattering amplitude in isospin I ,
orbital angular momentum L, and total angular momentum
J = L ± 1/2, which is denoted by T ±

IL(w; q ′, q) as a function
of the center-of-mass energy w and relative momentum in the
initial (final) state q(′). An important property of the scattering
amplitude T ±

IL is that, for each isospin and angular momentum,
it should satisfy the optical theorem from the unitarity of the
scattering matrix. Namely, below the inelastic threshold, the
on-shell amplitude should satisfy

Im T ±
IL(w)on-shell

= −ρπN (s)

2
|T ±

IL(w)on-shell|2θ (w − mπ − MN ), (79)

where s ≡ w2,θ (x) is the Heaviside step function, mπ and MN

are the pion and nucleon masses, respectively, and ρπN (s) is

the phase space defined as

ρπN (s) ≡ qπN (s)

4π
√

s
, qπN (s) ≡ λ1/2

(
s,m2

π ,M2
N

)
2
√

s
, (80)

with the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy −
2yz − 2zx. The optical theorem (79) can be equivalently
rewritten in the following form:

Im[T ±
IL(w)on-shell]−1 = ρπN (s)

2
θ (w − mπ − MN ). (81)

The chiral unitary approach is a model to construct the
scattering amplitude which satisfies the optical theorem (79)
with the interaction taken from chiral perturbation theory.
To formulate the chiral unitary approach, we first fix the
interaction kernel for the scattering equation. In this study
we employ chiral perturbation theory up to O(p2) for the
πN interaction kernel V ±

IL. The interaction kernel consists of
the Weinberg-Tomozawa term VWT, s- and u-channel N (940)
exchanges Vs+u, next-to-leading order contact term V2, and s-
and u-channel �(1232) exchanges V� (see Fig. 1). They are
projected to the partial-wave components as

V ±
IL(w; |q ′|, |q|) = [VWT + Vs+u + V2 + V�]±IL. (82)

The explicit expression of each term is given in Appendix B.
The interaction kernel has six model parameters altogether: the
low-energy constants c1, c2, c3, and c4, the bare � mass M�,
and the πN� bare coupling constant gπN�. Then, according to
the discussion in Sec. II C, we factorize the relative momenta of
the order of the orbital angular momentum |q ′|L|q|L, which is
essential to evaluate the compositeness for higher partial-wave
states [13,17], as

V ±
IL(w; |q ′|, |q|) = |q ′|L|q|LV ′±

IL(w), (83)

where we have applied the on-shell condition to V ′±
IL so that it

depends only on the center-of-mass energy w, by replacing the

(a) (b)

(c)

(d)

FIG. 1. Feynman diagrams for the interaction kernel: (a)
Weinberg-Tomozawa term, (b) next-to-leading order term, (c) s- and
u-channel N (940) exchange terms, and (d) s- and u-channel �(1232)
exchange terms. The solid, dashed, and double lines represent
baryons, mesons, and �(1232), respectively. The dots and square
represent the O(p1) and O(p2) vertices from chiral perturbation
theory, respectively.
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pion momentum qμ in V ′±
IL with the corresponding on-shell

values:

q0 → ω(w) ≡ s + m2
π − M2

N

2w
, |q| → qπN (s). (84)

With this interaction kernel, the full scattering amplitude can
be obtained as

T ±
IL(w; |q ′|, |q|) = |q ′|L|q|LT ′±

IL(w), (85)

where T ′±
IL(w) is a solution of the Lippmann-Schwinger

equation in an algebraic form but without the factor of the
external momenta |q ′|L|q|L:

T ′±
IL(w) = V ′±

IL + V ′±
ILGLT ′±

IL = 1

1/V ′±
IL(w) − GL(w)

.

(86)

Here GL is the loop function containing the contribution from
the internal momentum |q|2L, and in this study we take the
expression

GL(w) = i

∫
d4q

(2π )4

|q|2L(
q2 − m2

π

)[
(P − q)2 − M2

N

] , (87)

with P μ = (w, 0).
Next let us focus on the loop function GL. In this study we

evaluate the loop function with the subtraction scheme, rather
than a cutoff, and the dimensional regularization. Because
the loop function contains the internal momentum |q|2L, the
integral in Eq. (87) diverges logarithmically for L = 0 and
it becomes worse for L > 0. Therefore, to make the integral
finite, we need to subtract the divergences L + 1 times in
the subtraction scheme (see Appendix C for the details).
For instance, the L = 0 loop function is evaluated with a
subtraction constant a as

GL=0(w; a)

≡ 1

16π2

{
a + s + m2

π − M2
N

2s
ln

(
m2

π

M2
N

)

−λ1/2
(
s,m2

π ,M2
N

)
s

artanh

[
λ1/2

(
s,m2

π ,M2
N

)
m2

π + M2
N − s

]}
, (88)

where the regularization scale is fixed as μreg = MN , as in
Appendix C. When we calculate the L = 1 loop function for
�(1232) in the P33 amplitude and for N (940) in P11, we need
two subtraction constants. We now eliminate one of the two
subtraction constants by requiring that the nucleon pole does
not shift in the unitarization of the πN scattering amplitude in
P11, which constrains the L = 1 loop function as

GL=1(MN ) = 0. (89)

Physically, this means that we do not perform the renor-
malization of the nucleon mass, but the wave function
renormalization of the nucleon is allowed to take place because
dGL=1/dw(MN ) may not be zero. As derived in Appendix C,
the condition (89) brings the loop function in the following

expression:

GL=1(w) = GπN, L=1(w; Ã), (90)

GπN, L=1(w; Ã) = s − M2
N

4
Ã + sGπN (w)

4

− m2
π + M2

N

2
GπN (w) +

(
m2

π − M2
N

)2

4

×
[
GπN (w) − GπN (0)

s
+ GπN (0)

M2
N

]
.

(91)

Here Ã is the remaining subtraction constant, which becomes
a model parameter, and GπN (w) is the L = 0 loop function
with the condition GπN (MN ) = 0:

GπN (w) = GL=0(w; 0) − GL=0(MN ; 0). (92)

One can easily check that the loop function GπN, L=1 satisfies
GπN, L=1(MN ) = 0. Besides, we note that the S11 and S31

amplitudes are not important in the study on �(1232).
Therefore, to calculate the S11 and S31 amplitudes, we also
require the L = 0 loop function to be zero at w = MN , for
simplicity:

GL=0(w) = GπN (w). (93)

This condition is achieved also by the natural renormalization
scheme [65], which can exclude explicit pole contributions
from the loop functions.

Now we have the formulation to calculate the scattering
amplitude for �(1232) in the chiral unitary approach. In the
present formulation, we have seven model parameters. They
are fixed so as to reproduce the solution of the πN partial-wave
analysis WI 08 [34]. In the fitting procedure, we introduce a
normalized scattering amplitude,

L2I 2J (w) = −ρπN (s)qπN (s)2L

2
T ′±

IL(w)on-shell, (94)

which satisfies the optical theorem

ImL2I 2J (w) = |L2I 2J (w)|2θ (w − mπ − MN ), (95)

below the inelastic threshold for the πN state. We fit six
πN amplitudes—S11(w), S31(w), P11(w), P31(w), P13(w),
and P33(w)—to the WI 08 solution up to 1.35 GeV in
intervals of 4 MeV, in which only �(1232) appears as the
N∗ resonance.4 We note that the WI 08 solution does not
provide errors for the scattering amplitude. For the calculation
of the χ2 value, in this study we introduce a common error
0.01 for both the real and the imaginary parts of the scattering
amplitude in every quantum number. From the best fit to the
WI 08 solution, we obtain the model parameters listed in the
second column of Table I, to which we refer as the “Naive”

4The present energy range is even below the first excitation in P11,
i.e., the Roper resonance. Nevertheless, we can, in principle, calculate
the compositeness for the Roper resonance by introducing scattering
states of higher thresholds relevant to the Roper resonance and by
fitting higher energy regions as well.
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TABLE I. Fitted parameters for the πN amplitudes S11, S31,

P11, P31, P13, and P33. We also show the χ 2 value divided by the
number of degrees of freedom, χ 2/Nd.o.f..

Naive Constrained

c1 (GeV−1) −0.111 −0.047
c2 (GeV−1) 0.725 0.810
c3 (GeV−1) −1.797 −1.784
c4 (GeV−1) 0.089 0.512
gπN� 1.808 1.507
M� (MeV) 1296.0 1320.6
Ã −3.61 × 10−3 −4.82 × 10−3

χ 2/Nd.o.f. 486.3/809 1239.9/809

parameters. We mention that the low-energy constants found
in this fitting are, in general, not identical to the ones from
tree-level chiral perturbation theory, because we have fit them
to the scattering amplitude including the �(1232) resonance
region rather than fit them to the masses of baryons nor to
low-energy phenomena around the πN threshold. We also
show the P33 amplitude in the theoretical calculation and the
WI 08 solution in Fig. 2, which shows a good reproduction of
the P33 amplitude by the parameter set Naive.

2. Compositeness

Now that we have determined the scattering amplitude,
let us evaluate the πN compositeness for �(1232) and
N (940) from their pole positions and residues. In the present
formulation, the scattering amplitude has the resonance pole
in the expression

T ′±
IL(w) = g2

w − wpole
+ (regular at w = wpole), (96)

where g is the coupling constant of the resonance to the
πN state and wpole is the pole position in the complex w
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FIG. 2. Scattering amplitude P33 with parameter sets Naive and
Constrained fitted to the WI 08 solution [34]. Two theoretical curves
are very similar. The number of the plotted data points is 1/2 of the
total in the fits for a better visualization.

plane. We note that g and wpole contains information on the
structure of the resonance, and this is formulated in terms of
the compositeness as developed in Sec. II C,

XπN = −g2 dGL

dw
(w = wpole), (97)

which measures the amount of the two-body composite
fraction inside the resonance. In addition, we can calculate
the elementariness as well:

Z = −g2

[
G2

L

dV ′±
IL

dw

]
w=wpole

. (98)

The elementariness Z measures the contributions from missing
channels which are effectively taken into account in the πN
interaction in the practical model space, on the assumption
that the energy dependence of the interaction originates from
channels which do not appear as explicit degrees of freedom.
It is important that we have the normalization of the total wave
function as

XπN + Z = 1. (99)

However, in general, both the compositeness XπN and the
elementariness Z are complex for the resonance states, which
are difficult to interpret. Therefore, we introduce quantities
which are real, bounded in the range [0, 1], and automatically
satisfy the sum rule,

X̃πN ≡ |XπN |
1 + U

, Z̃ ≡ |Z|
1 + U

, (100)

with

U ≡ |XπN | + |Z| − 1. (101)

Obviously, we have the sum rule for X̃πN and Z̃:

X̃πN + Z̃ = 1. (102)

We can interpret X̃πN and Z̃ from the complex compositeness
and elementariness as the “probability” if and only if U is
much smaller than unity, U � 1.

Now we calculate the pole positions, coupling constants,
compositeness, and elementariness in the parameter set Naive
and list them in the second and third columns of Table II.
First, the �(1232) pole position in the parameter set Naive is
very similar to that reported by Particle Data Group: wpole =
(1210 ± 1) − (50 ± 1)i MeV [1]. The πN compositeness is

TABLE II. Properties of �(1232) and N (940). We do not
calculate U, X̃πN , and Z̃ for N (940) because it is a stable state.

Naive Constrained

�(1232) N (940) �(1232) N (940)

wpole (MeV) 1209.8 − 47.6i 938.9 1206.9 − 49.6i 938.9
g (MeV−1/2) 0.383 − 0.053i 0.560 0.395 − 0.061i 0.516
XπN 0.69 + 0.39i −0.18 0.87 + 0.35i 0.00
Z 0.31 − 0.39i 1.18 0.13 − 0.35i 1.00
U 0.30 – 0.31 –
X̃πN 0.61 – 0.71 –
Z̃ 0.39 – 0.29 –
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FIG. 3. Loop function GπN, L=1 around the energy from the
nucleon mass MN to the πN threshold. The imaginary part of the
loop function takes the same value in both of the parameter sets
Naive and Constrained.

evaluated as XπN = 0.69 + 0.39i, which implies that the
�(1232) resonance contains a significant πN component.
Thus, our result in the refined model reconfirms the calcu-
lation in Ref. [17]. We note that the imaginary part of the
compositeness is non-negligible as well, but the value of
U = 0.30 is less than one-third. This implies that we may
interpret X̃πN and Z̃ as the “probability” to find the πN
composite and missing-channel contributions, respectively.
From the values of X̃πN and Z̃, we may conclude that the
�(1232) resonance in the present refined model contains a
significant πN component.

On the other hand, for N (940), the wave function renor-
malization takes place owing to dGL=1/dw(MN ) 
= 0, and
its πN compositeness becomes finite in the parameter set
Naive. However, its value is real but negative. This result is
unphysical, because we cannot interpret it as a probability
although N (940) is a stable state. The origin of the negative
compositeness is the fact that the derivative of the L = 1 loop
function, dGL=1/dw, becomes positive at the nucleon pole
w = MN , which can be seen in Fig. 3 (solid line). As a result,
the compositeness becomes negative even when the coupling
constant is real: g = 0.560 MeV−1/2.

Physically, the derivative of the loop function, dGL/dw,
should not be positive below the πN threshold. We can see
this by looking into the expression of the loop function GL

(see Appendix C),

GL(w) ≡ −
∫ ∞

sth

ds ′

2π

ρπN (s ′)qπN (s ′)2L

s ′ − s − i0
, (103)

with sth ≡ (mπ + MN )2. When differentiating the loop func-
tion with respect to w, the integrand is positive definite
regardless of the value of s ′(>sth). Therefore, the condition
that the derivative of the loop function becomes negative
(positive) at the nucleon mass is (un-)physical. However, in
actual calculations, the positive value for the derivative of the
loop function can happen to appear according to the value of
the subtraction constant Ã.

Based on this discussion, to resolve the problem that the
derivative of the loop function becomes positive, in addition to
GL=1(MN ) = 0 we further constrain the subtraction constant
so that the derivative of the L = 1 loop function should be
nonpositive at the nucleon pole: dGL=1/dw(MN ) � 0. With
this additional constraint, we obtain the best fit of the scattering
amplitude to the WI 08 solution as the parameter set “Con-
strained,” whose values are listed in the third column of Table I.
This gives a slightly worse χ2 value but we cannot see any clear
discrepancy from curves in Fig. 2 (dashed line). Properties of
�(1232) and N (940) in the parameter set Constrained are
listed in the fourth and fifth columns of Table II. The values of
the coupling constants and compositeness are very similar to
the parameter set Naive, except for the πN compositeness for
N (940), which now becomes non-negative. The result in the
present model indicates that the N (940) state is, as expected,
not described in the πN molecular picture.

Finally, we note that there is ambiguity in calculating the
πN compositeness XπN for p-wave resonances from the loop
function with the subtraction scheme and the dimensional
regularization (91). Namely, as discussed in Ref. [65], we
can consider a shift of the subtraction constant Ã, which can
be compensated by the corresponding shift of the interaction
V so as not to change the full amplitude T . However, this
shift of the subtraction constant can change the value of
dGL=1/dw and hence that of XπN , because the subtraction
constant survives when we differentiate GπN, L=1(w) [see the
structure in Eq. (91)]. Nevertheless, if we have a constraint
dGL=1/dw(MN ) � 0, such a shift of the subtraction constant
is also constrained and dGL=1/dw cannot be close to zero
around the �(1232) energy region. This can be seen from lines
in Fig. 3. Namely, if the subtraction constant Ã could increase
arbitrarily only with the constraint GL=1(MN ) = 0, the real
part of the loop function in w � MN could shift upward in
Fig. 3 and eventually become flat around w = 1.2 GeV, with
which the πN compositeness for �(1232) would be negligible
owing to the negligible value of dGL=1/dw(wpole). However,
in such a case the derivative at w = MN , dGL=1/dw(MN ),
should be largely positive and hence it should be excluded.
Therefore, in the present formulation, we cannot arbitrarily
shift the value of the πN compositeness for �(1232) without
changing the scattering amplitude. In particular, in the present
calculation Ã takes its maximal value under the constraint
dGL=1/dw(w = MN ) � 0, as seen from dGL=1/dw(w =
MN ) = 0 in Fig. 3. As a consequence, the present calculation
would give a minimal value of |XπN | for �(1232) in our
approach from the viewpoint of the shift of the subtraction
constant. In the same manner, N (940) could have a certain
positive value of the πN compositeness by the shift of the
subtraction constant. We note that such ambiguity will not
take place when we use a usual cutoff scheme for the loop
function rather than the dimensional regularization. In this
condition, the derivative of the loop function at the nucleon
mass will be definitely negative and nonzero, and hence XπN

for the nucleon will be positive and nonzero, say, 0.1.
In summary, from the precise πN scattering amplitude we

have found that, in the real part, the πN compositeness is
larger than the elementariness for the �(1232) resonance. Its
imaginary part is non-negligible, but the value of U is less than
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one-third. Therefore, we may conclude that the πN component
in the �(1232) resonance is large. The large real part of the πN
compositeness and its non-negligible imaginary part might be
the origin of the large meson cloud effect observed in, e.g., the
M1 transition form factor of the γ ∗N → �(1232) process in
the small momentum transfer region [35]. We mention that we
have had two problems on the πN compositeness for the p-
wave states; one is the negative πN compositeness for N (940)
in the naive fitting, and the other is ambiguity owing to the shift
of the subtraction constant. Both originate from the value of
the subtraction constant used in the analysis, and we have
discussed the problems from the viewpoint of the shift of
the subtraction constant and constraint on it at the energy of
the nucleon mass. As a result, we have shown that in our
approach the value of |XπN | for �(1232) cannot be small.

B. The N(1535) and N(1650) resonances

Next we consider the N (1535) and N (1650) resonances,
both of which are S11 states in the πN scattering, and
calculate their meson-baryon compositeness. In this study
we describe these resonances in an s-wave πN -ηN -K�-K�
coupled-channel scattering in the chiral unitary approach. Here
we do not introduce explicit pole terms for N (1535) and
N (1650), in contrast to the case of �(1232). Actually, it is
a good starting point to examine the picture of dominant
meson-baryon components for them, because they can be
discussed with meson-baryon dynamics in s wave. We regard
that missing contributions are implemented into the energy
dependence of the interaction, not as explicit channels coupling
to meson-baryon states. Nevertheless, the essential part of the
discussion about the elementariness is not changed, as we have
done in the previous section.

1. Scattering amplitude

First we construct the interaction kernel in the chiral unitary
approach. In this study we take into account the Weinberg-
Tomozawa term [Fig. 1(a)] and the next-to-leading order term
[Fig. 1(b)] for the interaction kernel, as done in Ref. [41].
From the Lagrangian of chiral perturbation theory, we obtain
the interaction before the s-wave projection,

Vjk = AWT /R + AM + A14(q · q ′) + A57[/q, /q
′]

+ A811[/q ′(q · P ) + /q(q ′ · P )], (104)

where j,k = πN, ηN, K�, and K� are the channel indices,
qμ and q ′μ are the meson momenta in the initial and final
states, respectively, /q ≡ γ μqμ with the Dirac γ matrices γ μ,
Rμ ≡ qμ + q ′μ, and AWT, AM, A14, A57, and A811 are the
coefficients of the meson-baryon couplings determined by
flavor SU(3) symmetry together with the low-energy constants,
meson decay constants, and meson masses. The expression
of the coefficients AWT, AM, A14, A57, and A811 as well as
the pertinent Lagrangian of chiral perturbation theory can be
found in Ref. [41]. We have 14 low-energy constants in the
coefficients, b1 to b11, b0, bD , and bF , and we treat them as
the model parameters. The meson decay constants are chosen
at their physical values: fπ = 92.4 MeV, fK = 1.2fπ , and

fη = 1.3fπ . The interaction V is projected to the s wave as

V +
I=1/2 L=0, jk(w) = [ūjVjkuk]s-wave, (105)

where w is the center-of-mass energy, uj is the Dirac spinor for
the j th-channel baryon, whose normalization is summarized
in Appendix A, and ūj ≡ u

†
j γ

0. The s-wave projection of each
term can be performed as5

[ūj /Ruk]s-wave = NjNk(2w − Mj − Mk), (106)

[ūj uk]s-wave = NjNk, (107)

[ūj (q · q ′)uk]s-wave = NjNkωj (w)ωk(w), (108)

[ūj [/q, /q
′]uk]s-wave

= NjNk[2ωj (w)ωk(w) − 2(w − Mj )(w − Mk)], (109)

[ūj [/q ′(q · P ) + /q(q ′ · P )]uk]s-wave

= NjNkw[(w − Mj )ωk(w) + (w − Mk)ωj (w)], (110)

where Nj is the normalization factor for the Dirac spinor,

Nj ≡ √
Ej (w) + Mj, Ej (w) ≡ s + M2

j − m2
j

2w
, (111)

and ωj (w) is the energy of the j th-channel meson,

ωj (w) ≡ s + m2
j − M2

j

2w
. (112)

Here s ≡ w2 and mj and Mj are the masses of meson and
baryon in j th channel, respectively. We note that the con-
structed interaction kernel V +

I=1/2 L=0, jk , which is abbreviated
as Vjk in the following, is a function only of the center-of-mass
energy w; because L = 0, we do not need to factorize the
relative momenta |q ′|L|q|L in contrast to the p-wave scattering
in the previous section.

By using this interaction kernel, the full scattering ampli-
tude Tjk is a solution of the Lippmann-Schwinger equation in
an algebraic form

Tjk(w) = Vjk(w) +
∑

l

Vjl(w)Gl(w)Tlk(w), (113)

with the j th-channel loop function Gj . Here we take a
covariant expression for the loop function

Gj (w) = i

∫
d4q

(2π )4

1(
q2 − m2

j

)[
(P − q)2 − M2

j

] , (114)

with P μ = (w, 0), and calculate the integral with the dimen-
sional regularization. Its expression is shown in Eq. (C6) in
Appendix C. In this study, to fix the subtraction constant
in the loop function, we require the natural renormalization
scheme [65]. According to the discussion in Ref. [65], we
introduce a matching energy scale, at which the full scattering
amplitude T coincides with the chiral interaction V for the
consistency of the low-energy theorem with respect to the
spontaneous breaking of chiral symmetry. We fix the matching

5We note that the term ū(q · q ′)u has a higher-order s-wave part
proportional to |q|2|q ′|2, which is neglected in this study.
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TABLE III. Fitted parameters for the πN amplitude S11. The χ 2

value divided by the number of degrees of freedom is χ2/Nd.o.f. =
94.6/167.

b1 (GeV−1) 0.469 b8 (GeV−1) 0.523
b2 (GeV−1) −0.048 b9 (GeV−1) −1.246
b3 (GeV−1) 1.244 b10 (GeV−1) 0.574
b4 (GeV−1) −1.507 b11 (GeV−1) −0.845
b5 (GeV−1) −1.091 b0 (GeV−1) −5.513
b6 (GeV−1) −0.722 bD (GeV−1) 1.708
b7 (GeV−1) 3.009 bF (GeV−1) 2.516

energy as the lowest mass of the “target” baryons in the
scattering [65], i.e., the nucleon mass MN ,

Gj (w = MN ) = 0, (115)

for every j . With this condition, the loop function Gj becomes
physical, i.e., negative in the region MN < w � mj + Mj ,
which can exclude explicit pole contributions from the loop
functions [65] and fix the loop function without any model
parameter.

Now we can evaluate the scattering amplitude in chiral
unitary approach with 14 model parameters in the interaction
kernel. In the present calculation, the model parameters are
fixed so as to reproduce the S11 solution of the πN partial-wave
analysis WI 08 [34] up to w � 1.8 GeV. As in the previous
section, we introduce a normalized scattering amplitude,

S11(w) = −ρπN (s)

2
TπN→πN (w)on-shell, (116)

which satisfies the optical theorem (95) below the inelastic
threshold for the πN state. As we have already mentioned,
the WI 08 solution does not provide errors for the scattering
amplitude. For the calculation of the χ2 value, we introduce
errors 0.01 for w � 1.35 GeV and 0.02 for w > 1.35 GeV
to the data, which are motivated by the expectation of the
three-body effects above the ππN threshold [37]. From the
best fit, we obtain the model parameters listed in Table III
with a good value of χ2. We also show the S11 amplitude in
the theoretical calculation and the WI 08 solution in Fig. 4,
which shows a good reproduction of the S11 amplitude up to
w = 1.8 GeV.

2. Compositeness

From the S11 scattering amplitude, we can search for the
N∗ poles in the complex energy plane. As a result, we find
two poles located at wpole = 1496.4 − 58.7i MeV between the
ηN and the K� thresholds and wpole = 1660.7 − 70.0i MeV
between the K� and the K� thresholds for the N (1535) and
N (1650) resonances, respectively. These pole positions are
consistent with the values of Particle Data Group: wpole =
(1510 ± 20) − (85 ± 40)i MeV for N (1535) and wpole =
(1655 ± 15) − (67.5 ± 17.5)i MeV for N (1650) [1]. In the
following we evaluate the compositeness of the N (1535)
and N (1650) resonances by using this scattering amplitude.
Here we note that, because both resonances are in the s-wave
πN -ηN -K�-K� coupled-channel scattering, we do not have
the problems concerned with the subtraction constant in
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FIG. 4. Scattering amplitude S11 with parameters fitted to the WI
08 solution [34]. The number of the plotted data points is 1/5 of the
total in the fits for a better visualization. The vertical dotted lines
indicate the ηN, K�, and K� thresholds, respectively.

the loop function, in contrast to the case of �(1232) and
N (940) in the previous section. Namely, even if we shift the
subtraction constant of the L = 0 loop function, it does not
change the value of dGL=0/dw and that of the compositeness,
because the subtraction constant is eliminated when we
perform the derivative of the L = 0 loop function. In other
words, the integral in dGL=0/dw converges.

According to the scheme developed in Sec. II C, we extract
the compositeness from the scattering amplitude. From the
residue gjgk of the scattering amplitude at the resonance pole
position wpole,

Tjk(w) = gjgk

w − wpole
+ (regular at w = wpole), (117)

we evaluate the compositeness as the norm of the two-body
wave function,

Xj = −g2
j

dGj

dw
(w = wpole), (118)

and the elementariness as well,

Z = −
∑
j,k

gkgj

[
Gj

dVjk

dw
Gk

]
w=wpole

, (119)

which measures the contributions from missing channels on
the assumption that the energy dependence of the interaction
originates from missing channels. The normalization of the
total wave function is achieved as∑

j

Xj + Z = 1. (120)

From the compositeness and elementariness, both of which
are complex for resonances in general, we calculate quantities
which are real, bounded in the range [0, 1], and automatically
satisfy the sum rule,

X̃j ≡ |Xj |
1 + U

, Z̃ ≡ |Z|
1 + U

, (121)
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TABLE IV. Properties of N (1535) and N (1650).

N (1535) N (1650)

wpole (MeV) 1496.4 − 58.7i 1660.7 − 70.0i

gπN (MeV1/2) 47.1 − 7.3i 49.8 − 23.1i

gηN (MeV1/2) 68.9 − 42.4i −19.0 + 11.1i

gK� (MeV1/2) 85.0 + 14.4i −29.9 + 37.1i

gK� (MeV1/2) −31.4 + 17.5i −73.8 + 6.0i

XπN −0.02 + 0.03i 0.00 + 0.04i

XηN 0.04 + 0.37i 0.00 + 0.01i

XK� 0.14 + 0.00i 0.08 + 0.05i

XK� 0.01 − 0.02i 0.09 − 0.12i

Z 0.84 − 0.38i 0.84 + 0.01i

U 0.48 0.13
X̃πN 0.03 0.04
X̃ηN 0.25 0.01
X̃K� 0.09 0.08
X̃K� 0.01 0.13
Z̃ 0.62 0.74

with

U ≡
∑

j

|Xj | + |Z| − 1. (122)

Obviously, we have the sum rule for X̃j and Z̃:∑
j

X̃j + Z̃ = 1. (123)

We can interpret X̃j and Z̃ as the “probability” if and only if
U is much smaller than unity, U � 1.

The numerical results of the coupling constants, compos-
iteness, and elementariness are listed in Table IV both for the
N (1535) and N (1650) resonances.

For the N (1535) resonance, its coupling constants show an
ordering similar to that in Ref. [41]; in particular, |gK�| is
the largest and |gηN | comes next, which is consistent with the
result in Ref. [41]. However, the values of the compositeness in
the K� and ηN channels are not comparable to unity, and the
elementariness Z dominates the sum rule (120). Therefore, our
result implies that N (1535) has a large component originating
from contributions other than the pseudoscalar meson-baryon
dynamics considered. This conclusion was already drawn in
Ref. [22] with the simplest interaction, i.e., the Weinberg-
Tomozawa term, and we confirm this with our refined model
for the precise S11 amplitude. The result of the compositeness
means that the missing-channel contribution Z dominates the
sum rule even if we do not take into account a bare-state
contribution explicitly. The missing channel can contribute
to the appearance of the resonance through the energy
dependence of the interaction and the low-energy constants.
In other words, in the present framework, information on
the N (1535) resonance is encoded in the energy dependence
of the chiral interaction and the low-energy constants in it.
However, in the present model space, we cannot conclude
what the missing channel is; we expect that this will be
genuine one-body state, but other channels such as vector
meson-baryon and meson-meson-baryon systems could be

the origin.6 We also note that the value of U is not small
compared to unity, owing to the non-negligible imaginary
part of X̃ηN and Z̃. Therefore, modified quantities X̃j and Z̃
cannot be interpreted as probabilities to find the composite
and missing fractions, respectively. In particular, although
X̃ηN is one-fourth, we cannot conclude a non-negligible ηN
component for N (1535).

Next, for the N (1650) resonance, |gK�| is the largest
among the absolute values of the coupling constants, as in
Refs. [41]. However, the ordering of the coupling constants
is not consistent. We expect that this is mainly because the
accuracy of the fitting. Actually, our fitting can be more
accurate, as seen in the better reproduction of the N (1650) pole
position reported by Particle Data Group. As for the component
of N (1650), we can see that the elementariness Z dominates
the sum rule (120). In addition, the value of U for N (1650)
is much smaller than unity. Therefore, we can safely interpret
the modified quantities X̃j and Z̃ as probabilities. The result
listed in Table IV indicates that Z̃ is dominant and hence the
N (1650) resonance is indeed dominated by contributions other
than the pseudoscalar meson-baryon dynamics considered.

Finally, it is interesting to compare the structure of N (1535)
and N (1650) with that of �(1405) and �(1690), all of which
are considered to be dynamically generated in the chiral unitary
approach. The compositeness of �(1405) was evaluated in
the chiral unitary approach in Ref. [22] with the leading plus
next-to-leading order chiral interaction [66,67], concluding
that the higher pole of �(1405) is indeed dominated by the K̄N
composite state. In contrast to �(1405), the compositeness of
N (1535) and N (1650) is negligible or not large, although we
describe N (1535) and N (1650) in the meson-baryon degrees
of freedom, as in the �(1405) case. This difference of the
structure is expected to originate from the different thresholds
and model parameters (low-energy constants and subtraction
constants), both of which should degenerate in the SU(3) sym-
metric world. In particular, when we shift the system from the
SU(3) symmetric world to the physical one, the situation in the
S = 0 sector would change most drastically; the πN threshold
becomes the lowest one and the other channels such as
ρN, π�, and genuine qqq states would contribute to the πN
scattering. In this study these are reflected to the low-energy
constants in the next-to-leading order as the missing channels.
Actually, while the chiral unitary approach can reproduce
the phenomena around the K̄N threshold for �(1405) even
with the simplest interaction, i.e., the Weinberg-Tomozawa
interaction [66,67], the πN scattering amplitude cannot be
reproduced well in the chiral unitary approach around the N∗
region only with the Weinberg-Tomozawa interaction [38].
Significant contributions in the next-to-leading order can
introduce missing channels through the low-energy constants,
and hence the compositeness (elementariness) is small (large)
for N (1535) and N (1650). Besides, we also mention the
fate of the dynamically generated resonances in S = 0 and

6If we can reproduce well the S11 amplitude with the two
bare pole terms corresponding to N (1535) and N (1650) and
energy-independent meson-baryon interaction, we can conclude that
N (1535) and N (1650) originate from one-body states, respectively.
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S = −2 channels in the chiral unitary approach. Interestingly,
the Clebsch-Gordan coefficients for the Weinberg-Tomozawa
interaction term are the same for S = 0 (πN , ηN,K�,K�)
and S = −2 (π�,η�,K̄�,K̄�) channels. On the one hand, in
the S = −2 channel, it was suggested in Ref. [47] that �(1690)
can be dynamically generated near the K̄� threshold with a
dominant K̄� compositeness in s wave in the chiral unitary
approach, consistently with the experimental observations.
On the other hand, such a dynamically generated N∗ state
would exist if the Weinberg-Tomozawa interaction were
dominant in the S = 0 chiral unitary approach, but, in fact,
no hadronic molecular N∗ state appears in S = 0 owing to
the significant contributions from the next-to-leading-order
terms. Nevertheless, we think that, although the internal
structure of N (1535), �(1405), and �(1690) is different,
our result does not mean that they are not members of the
same flavor SU(3) multiplet. Namely, when we consider
the SU(3) multiplets, we measure the masses of hadrons from
the vacuum, that is, from zero. On the other hand, when we
consider the internal structure in terms of the compositeness,
we measure the masses from the thresholds. As a consequence,
the breaking effect of flavor SU(3) symmetry is non-negligible
in terms of the compositeness, because the meson-baryon
thresholds are different for each state.

In summary, we have evaluated the compositeness of
the N (1535) and N (1650) resonances from the precise S11

scattering amplitude. The results indicate that both of them
are dominated by components other than the pseudoscalar
meson-baryon dynamics considered. An important finding
is that the missing-channel contribution Z dominates the
sum rule even if we do not take into account a bare-state
contribution explicitly. The missing channel can contribute
to the appearance of the resonance through the energy
dependence of the interaction. Finally, we note that we do not
have problems concerned with the subtraction constant in the
loop function, in contrast to the case of �(1232) and N (940) in
the previous subsection, because N (1535) and N (1650) are in
the s-wave πN -ηN -K�-K� coupled-channel scattering and,
hence, dGL=0/dw converges.

IV. SUMMARY AND OUTLOOK

In this study we have presented a formulation of the
compositeness for baryonic resonances to discuss the meson-
baryon molecular structure inside the resonances. For this
purpose, we have shown that the residue of the scattering
amplitude at the resonance pole position contains the wave
function of the resonance with respect to the two-body channel,
in both the nonrelativistic and the relativistic formulations.
Then we have defined the compositeness for the resonance
state as a norm of the two-body wave function extracted from
the residue of the scattering amplitude. An important point to
be noted is that the value of compositeness, i.e., the norm of
the two-body wave function, is automatically fixed when we
calculate the residue of the scattering amplitude, without nor-
malizing the wave function by hand. We have also defined the
missing-channel contribution, which we call elementariness,
as unity minus the sum of the compositeness, which measures
the contributions from missing channels on the assumption

that the energy dependence of the interaction originates from
missing channels. In addition, from the compositeness and
elementariness, we have introduced quantities which are real,
bounded in the range [0, 1], and automatically satisfy the sum
rule. These quantities can be interpreted as probabilities in a
certain class of resonances.

The formulated compositeness and elementariness were ap-
plied to the �(1232), N (1535), and N (1650) resonances and
N (940) in the chiral unitary approach, because there are several
implications that these resonances may have certain fractions
of the meson-baryon components. In the present model, we
have determined the separable interaction of the pseudoscalar
meson-octet baryon from chiral perturbation theory up to the
next-to-leading order. The �(1232) resonance and N (940)
were described in the πN single-channel scattering, while
the N (1535) and N (1650) resonances were in the s-wave
πN -ηN -K�-K� coupled-channel scattering. In both cases,
the loop function was evaluated with the subtraction scheme
and the dimensional regularization. In particular, we have to
introduce two subtraction constants for �(1232) and N (940)
to calculate their compositeness in a proper way. The model
parameters were fixed so that the πN scattering amplitude
precisely reproduces the solution of the partial-wave analysis.

As a result for �(1232), we have found that the real part
of the πN compositeness is larger than the elementariness.
The imaginary part of the πN compositeness for �(1232)
is non-negligible, but the sum of the absolute values of the
compositeness and elementariness is close to unity. Therefore,
we may conclude that the πN component in �(1232) is
significant. We have also had two problems on the πN
compositeness for the p-wave states; one is the negative πN
compositeness for N (940) in the naive fitting, and the other
is ambiguity owing to the shift of the subtraction constant.
Both originate from the value of the subtraction constant used
in the analysis, and we have discussed the problems from the
viewpoint of the shift of the subtraction constant and constraint
on it at the energy of the nucleon mass. As a consequence, we
have shown that in our approach the absolute value of the πN
compositeness for �(1232) cannot be small.

For N (1535) and N (1650), on the other hand, we have
found that both of them are dominated by components other
than the pseudoscalar meson-baryon dynamics considered.
An important finding was that, even if we do not take into
account a bare pole term for the resonance explicitly, a missing
channel can contribute to the appearance of the resonance
through the energy dependence of the interaction and the
low-energy constants. Because both resonances are in the
s-wave πN -ηN -K�-K� coupled-channel scattering, we do
not have problems concerned with the subtraction constant
in the loop function, in contrast to the case of �(1232) and
N (940).

Finally, we mention that the large absolute value of the πN
compositeness for the �(1232) resonance would lead to the
large meson cloud effect observed in, e.g., the M1 transition
form factor of the γ ∗N → �(1232) process in the small
momentum transfer region. However, our result relies on the
separable interaction in the form of Eq. (83), which might be
an oversimplified interaction in describing the πN scattering
amplitude, especially in the �(1232) resonance region. In this
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sense, it would be better to evaluate the compositeness for
�(1232) in solving the integral equation for the scattering
amplitude, such as in the dynamical approaches, so as to
conclude the πN structure of �(1232) more clearly.
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APPENDIX A: CONVENTIONS

In this Appendix we summarize our conventions of meson-
baryon scatterings used in this paper.

Throughout this paper we employ the metric in four-
dimensional Minkowski space defined as gμν = gμν =
diag(1,−1,−1,−1) and the Einstein summation convention
is used for the Lorentz index μ. The Dirac matrices γ μ

(μ = 0,1,2,3) satisfies the anticommutation relation:

{γ μ,γ ν} = 2gμν. (A1)

The Dirac spinor u( p, s), where p is three-momentum of the
field and s represents its spin, is introduced as the positive
energy solution of the Dirac equation for baryons. In this paper
the Dirac spinor is normalized as

u( p, s ′)u( p, s) = 2Mδss ′ , (A2)

where u ≡ u†γ 0 and M is the mass of the Dirac field.
To describe the meson-baryon scatterings, we introduce

meson and baryon one-particle states. The meson states |k, j 〉
are normalized as

〈k′, j ′|k, j 〉 = 2ωj (k)(2π )3δ3(k′ − k)δjj ′ , (A3)

where k is the three-momentum of the meson, j indicates

the channel, and ωj (k) ≡
√
k2 + m2

j is the meson energy with

k ≡ |k|. The baryon states | p, s, j 〉, on the other hand, are
normalized as

〈 p′, s ′, j ′| p, s, j 〉 = 2Ej (p)(2π )3δ3( p′ − p)δss ′δjj ′ , (A4)

where p is the three-momentum of the baryon, s is its spin, and

Ej (p) ≡
√
p2 + M2

j . By using these states, we can compose
j th-channel meson-baryon two-body state in the center-of-
mass frame with the relative momentum q, which we simply
write as |j 〉:

|j 〉 ≡ |q, j 〉 ⊗ |−q, s, j 〉. (A5)

Then we can evaluate the scattering amplitudeTjk as the matrix
element of the T matrix with respect to the scattering states
|j 〉,

〈j |T̂ |k〉 = ūjTjkuk, (A6)

where uj is the Dirac spinor for the j th-channel baryon. Note
that we do not sum the channel components j and k. In this
Appendix, characters in the script style denote four-times-four
matrices that are sandwiched by the Dirac spinors, except for
Lagrangians.

The scattering amplitude ūjTjkuk can be decomposed into
the partial-wave amplitudes. For this purpose we write the
scattering amplitude in the center-of-mass frame as

〈j |T |k〉 = ūjTjkuk

= χ
†
j [gjk(w, x) − ihjk(w, x)(q̂j × q̂k) · σ ]χk, (A7)

where χj is the Pauli spinor for the j th-channel baryon, w ≡
ωj + Ej = ωk + Ek is the center-of-mass energy, x = cos θ
with the center-of-mass scattering angle θ , and q̂j is the unit
vector in the direction of the relative three-momentum in the
j th channel. In our notation we can calculate the differential
cross section of the meson-baryon scatterings in the center-of-
mass frame as

dσk→j

d�
= 1

64π2s

qj

qk

[|gjk(w, x)|2 + |hjk(w, x)|2 sin2 θ ],

(A8)
where s ≡ w2 and qj is the j -channel center-of-mass mo-
mentum. Then gjk and hjk are expressed in terms of the
partial–wave amplitudes T ±

L (w) as

gjk(w, x) =
∞∑

L=0

[(L + 1)T +
L (w) + LT −

L (w)]jkPL(x), (A9)

hjk(w, x) =
∞∑

L=1

[T +
L (w) − T −

L (w)]jkP
′
L(x), (A10)

with the Legendre polynomials PL(x) and P ′
L(x) ≡ dPL/dx.

In terms of T ±
L (w) the optical theorem can be expressed as

Im[T ±
L (w)]jj = − 1

8πw

∑
k

qk|[T ±
L (w)]jk|2, (A11)

where the sum runs over the open channels.
The partial-wave amplitude T ±

L (w) can be extracted from
the scattering amplitudes gjk and hjk by using the orthonormal
relation ∫ 1

−1
dxPL(x)PM (x) = 2

2L + 1
δLM, (A12)

and a relation∫ 1

−1
dxP ′

L(x)[PM±1(x) − xPM (x)] =
(

1

2L + 1
∓ 1

)
δLM.

(A13)

Actually, from these relations we can extract T ±
L as

T ±
L (w)jk = 1

2

∫ 1

−1
dx{gjkPL(x) − hjk[PL±1(x) − xPL(x)]}.

(A14)

It is useful to express the meson-baryon scattering ampli-
tude T as

T = A(s, t) + /R

2
B(s, t), (A15)
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where s and t are Mandelstam variables, /p ≡ γ μpμ, and Rμ ≡
qμ + q ′μ with q(′)μ being the meson momentum in the initial
(final) state. In particular, in the single-channel problem, from
A(s, t) and B(s, t) we can calculate the scattering amplitudes
g(w, x) and h(w, x) as

g = 1

2(E + M)

{
[4M(E + M) − t]A

+ [(w + M)t + 4(E + M)(wE − M2)]B
}
, (A16)

h = A − (w + M)B

E + M
|q|2, (A17)

where M and E are mass and energy of the baryon, respec-
tively.

Finally, we mention that the πN scattering amplitude used
in Sec. III, which we denote as L2I 2J with isospin I and
total angular momentum J = L ± 1/2, is expressed with the
scattering amplitude T ±

L in our convention as

L2I 2J (w) = − qπN

8πw
T ±

L (w). (A18)

Therefore, below the inelastic threshold the πN scattering
amplitude L2I 2J satisfies the optical theorem

Im L2I 2J = |L2I 2J |2 (A19)

for each partial wave.

APPENDIX B: π N INTERACTION KERNEL FROM
CHIRAL PERTURBATION THEORY

In this Appendix we show the expressions of the πN inter-
action kernel used in Sec. III A. In general, the πN scattering
has two isospin components, namely, I = 3/2 and I = 1/2,
respectively. The πN (I = 3/2) amplitude corresponds to the
π+p → π+p one:

TπN(I=3/2) = Tπ+p→π+p. (B1)

The πN (I = 1/2) amplitude can be written in terms of the
π−p → π−p and π+p → π+p amplitudes:

TπN(I=1/2) = 3
2Tπ−p→π−p − 1

2Tπ+p→π+p. (B2)

By using crossing symmetry, we can convert the π+p → π+p
amplitude into π−p → π−p one in terms of A and B in
Eq. (A15):

Aπ−p→π−p(s, t) = Aπ+p→π+p(u, t), (B3)

Bπ−p→π−p(s, t) = −Bπ+p→π+p(u, t). (B4)

Therefore, in the following we consider only the π+p → π+p
amplitude.

In this study we employ chiral perturbation theory up
to O(p2) for the π+p → π+p interaction kernel V . The
interaction kernel consists of the Weinberg-Tomozawa term
VWT,u-channel N (940) exchange Vs+u, next-to-leading order
contact term V2, and s- and u-channel �(1232) exchanges V�:

V = VWT + Vs+u + V2 + V�. (B5)

The interaction kernel V in the isospin basis is projected to
the partial-wave amplitude V ±

IL(w) in the same way as T →
T ±

IL(w) shown in Appendix A. This partial-wave amplitude

corresponds to the interaction kernel in Eq. (82) and then is
unitarized as in Sec. III A.

The leading-order [O(p1)] pion-nucleon Lagrangian can be
expressed as

L(1)
πN = N̄ (i /D − M)N + g

2
N̄ /uγ5N. (B6)

In the expression, N = (p, n)t is the nucleon fields, M and
g are the nucleon mass and the nucleon axial charge in the
chiral limit, respectively, and Dμ ≡ ∂μ + �μ is the covariant
derivative with �μ = [u†, ∂μu]/2, where u is the square root
of U in the nonlinear representation,

u(x) ≡
√

U (x) = exp

[
i
�π (x) · �τ

2f

]

= 1 + i
�π (x) · �τ

2f
− �π (x)2

8f 2
+ O[(�π · �τ )3], (B7)

with the pion decay constant f in the chiral limit and �τ being
the Pauli matrices acting in isospin space. The pion fields �π
are expressed as

�π (x) · �τ =
(

π0(x)
√

2π+(x)√
2π−(x) −π0(x)

)
, (B8)

and we further define uμ as

uμ ≡ iu†∂μUu† = −∂μ �π (x) · �τ
f

+ O[(�π · �τ )3]. (B9)

By using them we obtain the leading-order πN interaction as

VWT = /R

2

1

2f 2
π

, (B10)

Vs+u = −g2
A

f 2
π

MN + /R

2

[
− g2

A

2f 2
π

u + 3M2
N

u − M2
N

]
, (B11)

where we have replaced f,M , and g with their physical values
fπ, MN , and gA, respectively. In this study we fix fπ =
92.4 MeV, MN = 938.92 MeV, and gA = 1.267. Therefore,
the leading-order term does not have model parameters.

The next-to-leading-order [O(p2)] pion-nucleon La-
grangian can be expressed, after neglecting irrelevant terms
for the πN scattering, as

L(2)
πN = c1〈χ+〉N̄N − c2

4M2
〈uμuν〉[N̄DμDνN + (H.c.)]

+ c3

2
〈uμuμ〉N̄N − c4

4
N̄γ μγ ν[uμ, uν]N + · · · ,

(B12)

where 〈A〉 denotes the trace of the 2 × 2 matrix A in the flavor
space, and

χ+ ≡ u†χu† + uχ †u, (B13)

with χ = 2B0m̂ (m̂ = mu = md in the isospin symmetric
limit), which can be replaced with the squared pion mass:
χ ≈ m2

π . By using them we obtain the next-to-leading order
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πN interaction as

V2 = 4c1m
2
π

f 2
π

− c2

8f 2
π M2

N

[(s − u)2 − t2] − c3
(
2m2

π − t
)

f 2
π

− c4

2f 2
π

(s − u) + /R

2

2c4MN

f 2
π

. (B14)

The mass of pion is fixed as mπ = 138.04 MeV. The low-
energy constants c1, c2, c3, and c4 are model parameters to be
fixed so that we reproduce the scattering amplitude obtained
in the partial-wave analysis.

The s- and u-channel �(1232) exchange term, V�, is
calculated with the Lagrangian [68],

LπN� = gπN�

mπ

�̄μ �T †(gμν − γμγν)N∂ν �π + (H.c.), (B15)

with the bare πN� coupling constant gπN� and the 1/2 →
3/2 isospin transition operator �T , which satisfies

TbT
†
a = δba − 1

3τbτa. (B16)

The spin- 3
2 propagator with the momentum P μ is

− i
/P + M�

P 2 − M2
�

(
gμν − 1

3
γμγν − 2PμPν

3M2
�

+ Pμγν − Pνγμ

3M�

)
,

(B17)

with the bare � mass M�. Then the interactionV� is expressed
as

V� = A�(s, t) + 1

3
A�(u, t) + /R

2

[
B�(s, t) − 1

3
B�(u, t)

]
,

(B18)

with

A�(s, t) = − g2
πN�

6M2
�m2

π (s − M2
�)

{
3M2

�(M� + MN )
(
2M2

N − 2s − t + 2m2
π

) + 2M�

[
M2

N

(
m2

π − 2s
) + 2s2 − m2

πs − m4
π

]
−MN

[
M4

N − 2M2
N

(
m2

π − s
) − 3s2 + 2m2

πs + m4
π

]}
, (B19)

B�(s, t) = − g2
πN�

6M2
�m2

π (s − M2
�)

{
12M3

�MN + 3M2
�

(
4M2

N − t
) + 2M�MN

(
M2

N − m2
π − 5s

)
−M4

N + 2M2
N

(
m2

π − 3s
) − (

m2
π − s

)2}
. (B20)

In this interaction kernel, both the bare πN� coupling constant
gπN� and � mass M� are model parameters.

As one can see, we have six model parameters altogether in
the interaction kernel V: the low-energy constants c1, c2, c3,
and c4, the � bare mass M�, and the πN� bare coupling
constant gπN�. They, together with the subtraction constant of
the loop function, are fixed so as to reproduce the scattering
amplitude obtained in the partial-wave analysis, as explained
in Sec. III A.

APPENDIX C: THE LOOP FUNCTION

In this Appendix we summarize formulas of the loop
function with the angular momentum L,GL(w),

GL(w) = i

∫
d4q

(2π )4

|q|2L

(q2 − m2)[(P − q)2 − M2]
, (C1)

where P μ = (w, 0) and m and M are the meson and baryon
masses, respectively. By calculating the integrals with respect
to q0 and the solid angle of q and changing the integral variable

from |q| to s ′ = [
√

q2 + m2 +
√

q2 + M2]
2
, we can rewrite

the loop function as

GL(w) = −
∫ ∞

sth

ds ′

2π
ρ(s ′)

q(s ′)2L

s ′ − s
, (C2)

where s ≡ w2,sth is the threshold of the system, sth ≡ (m +
M)2, and

ρ(s) ≡ q(s)

4π
√

s
, q(s) ≡ λ1/2(s,m2,M2)

2
√

s
, (C3)

with the Källen function λ(x, y, z). The integral in Eq. (C2)
diverges logarithmically for L = 0 and worse for L > 0. How-
ever, we can “subtract” these divergences without changing
analytic properties of the loop function. Namely, using an
identity

1

s ′ − s
= s − s0

(s ′ − s)(s ′ − s0)
+ 1

s ′ − s0
, (C4)

we can reduce the order of the divergence; the first term in
the right-hand side of the identity (C4) reduces the order of
s ′ of the integrand in Eq. (C2) by one, and the second term
becomes a constant with respect to s after the integral. Iterating
the substitution of this identity L + 1 times, we can derive the
following expression of the loop function:

GL(w) = −
L∑

m=0

ãm(s0)(s − s0)m − (s − s0)L+1

×
∫ ∞

sth

ds ′

2π
ρ(s ′)

q(s ′)2L

(s ′ − s)(s ′ − s0)L+1
. (C5)

Now this integral converges. In the expression, ãm (m = 0,
1, . . ., L) is the subtraction constant at a certain scale s0. An
important point is that the loop function in Eq. (C5) has the
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same analytic properties, i.e., the same dependence on w as
that in Eq. (C2).

Next we consider two special cases, L = 0 and 1, which
are relevant to our study in Sec. III. First the L = 0 case is
well studied in various references. Utilizing the dimensional
regularization for the loop function in Eq. (C1) with L = 0,
we obtain the same structure as Eq. (C5) up to a constant

G0(w) = 1

16π2

{
a(μreg) + ln

(
M2

μ2
reg

)

+ s + m2 − M2

2s
ln

(
m2

M2

)
− λ1/2(s,m2,M2)

s

× artanh

[
λ1/2(s,m2,M2)

m2 + M2 − s

]}
, (C6)

where a(μreg) is the subtraction constant at the regularization
scale μreg. Because the loop function and scattering amplitude
should be finally scale independent, any change of the scale
μreg is absorbed by a change of the subtraction constant
a(μreg) such that a(μ′

reg) − a(μreg) = log(μ′ 2
reg/μ

2
reg). For later

convenience, here and in the following we fix the regularization
scale as μreg = M and write the loop function with μreg = M
as G(w; a),

G(w; a)

≡ 1

16π2

{
a + s + m2 − M2

2s
ln

(
m2

M2

)

− λ1/2(s,m2,M2)

s
artanh

[
λ1/2(s,m2,M2)

m2 + M2 − s

]}
, (C7)

where a is the subtraction constant at μreg = M . Second, for
the L = 1 case, we have to take into account another q(s ′)2

factor in the integral. To this end we express q(s)2 as

q(s)2 = λ(s,m2,M2)

4s
= s

4
− m2 + M2

2
+ (m2 − M2)2

4s
.

(C8)
From this expression we can decompose GL=1(w) as

G1(w) =
3∑

n=1

Hn(w), (C9)

H1(w) = −1

4

∫ ∞

sth

ds ′

2π
ρ(s ′)

s ′

s ′ − s
, (C10)

H2(w) = m2 + M2

2

∫ ∞

sth

ds ′

2π
ρ(s ′)

1

s ′ − s
, (C11)

H3(w) = − (m2 − M2)2

4

∫ ∞

sth

ds ′

2π
ρ(s ′)

1

s ′(s ′ − s)
. (C12)

To make them converge, we need two, one, and no subtractions
for H1, H2, and H3, respectively. The first term H1 is
calculated, with two subtraction constants b̃1 and a1, as

H1(w) = −1

4

∫ ∞

sth

ds ′

2π
ρ(s ′)

(
1 + s

s ′ − s

)

= −b̃1 + s

4
G(w; a1), (C13)

where a constant b̃1 has been introduced so as to “renormalize”
an infinite constant

b̃1 ≡ 1

4

∫ ∞

sth

ds ′

2π
ρ(s ′), (C14)

and the other integral corresponds to the L = 0 loop function
G(w; a1), defined in Eq. (C7), with a subtraction constant a1.
Next, the second term H2 is calculated in a similar manner to
the L = 0 loop function as

H2(w) = −m2 + M2

2
G(w; a2), (C15)

where a subtraction constant a2 has been introduced. Finally,
the third term H3 is calculated as

H3(w) = − (m2 − M2)2

4

∫ ∞

sth

ds ′

2π
ρ(s ′)

1

s

(
1

s ′ − s
− 1

s ′

)

= (m2 − M2)2

4s
[G(w; 0) − G(0; 0)], (C16)

where we have not introduced any subtraction constant because
the integral in H3 does not diverge. As a consequence, we
obtain the L = 1 loop function G1(w) as

G1(w) = − b̃1 + s

4
G(w; a1) − m2 + M2

2
G(w; a2)

+ (m2 − M2)2

4s
[G(w; 0) − G(0; 0)]. (C17)

In this expression, we have three subtraction constants b̃1, a1,
and a2, but one can easily see that b̃1 and a2 are not
independent. Hence, we have two independent subtraction
constants for G1(w).

In Sec. III A we require that the P11 unitarized partial wave
of the πN scattering keeps the nucleon pole at the same
position as in the interaction kernel, i.e., the physical nucleon
mass MN . This can be achieved with the condition that the loop
function with the partial wave L = 1 vanishes at w = MN .
Thus, we require

GπN, L=1(MN ) = 0. (C18)

Then, with the condition (C18), we can eliminate one of the two
independent subtraction constants in Eq. (C17). As a result,
without loss of generality we can express the loop function
GπN, L=1 as

GπN, L=1(w; Ã)

= s − M2
N

4
Ã + sGπN (w)

4
− m2

π + M2
N

2
GπN (w)

+
(
m2

π − M2
N

)2

4

[
GπN (w) − GπN (0)

s
+ GπN (0)

M2
N

]
,

(C19)
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where mπ is the pion mass and we have introduced the loop function GπN (w):

GπN (w) = G(w; 0) − G(MN ; 0)

= 1

16π2

{(
s + m2

π − M2
N

2s
− m2

π

2M2
N

)
ln

(
m2

π

M2
N

)
− λ1/2

(
s,m2

π ,M2
N

)
s

artanh

[
λ1/2

(
s,m2

π ,M2
N

)
m2

π + M2
N − s

]

+ λ1/2
(
M2

N,m2
π ,M2

N

)
s

artanh

[
λ1/2

(
M2

N,m2
π ,M2

N

)
m2

π

]}
. (C20)

which satisfies GπN (MN ) = 0. We note that GπN, L=1 contains one parameter Ã as the remaining subtraction constant.
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