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We study the compositeness of near-threshold quasibound states in the framework of effective field theory.
From the viewpoint of the low-energy universality, we revisit the model-independent relations between the
structure of the bound state and the observables in the weak binding limit. The effective field theory enables us to
generalize the weak-binding relation of the stable bound states to unstable quasibound states with decay modes.
We present the interpretation of the complex values of the compositeness for the unstable states. Combining the
model-independent relation and the threshold observables extracted from the experimental data, we show that
�(1405) is dominated by the K̄N molecular structure and that a0(980) is dominated by the non-K̄K component.
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I. INTRODUCTION

The quest for the composite nature of particles is a
major subject in physics. Historically, the identification of the
fundamental constituents of elementary particles has been a
central issue in particle physics [1–5]. Aside from the high
energy frontier, the exploration of the composite structure
of the excitations in various systems is vastly discussed. In
nuclear physics, clustering of nucleons leads to the molecule-
like structure of nuclei [6]. In condensed matter physics, the
structure of quasiparticles is studied in the polaron-molecule
transition [7] as well as the molecules associated with the
Feshbach resonances in cold atoms [8].

Recently, the composite nature of hadrons in quantum chro-
modynamics (QCD) has received renewed interest. Hadrons
are the color singlet asymptotic states formed by quarks and
gluons in the nonperturbative regime of QCD. Triggered by
the observations of exotic hadrons [9–12], much attention is
paid to the hadronic molecular states, which are the composite
systems of hadrons bounded by the interhadron interactions.
For instance, the �(1405) resonance is considered to be the
K̄N molecule [13–16]. It should however be noted that the
hadronic molecules cannot be distinguished from the ordinary
hadrons by quantum numbers. A method to characterize the
composite structure of hadrons without relying upon specific
models is desired.

A remarkable achievement in this direction is the weak
binding relation for the stable bound state [17]. It is shown that
the compositeness X, the probability of finding the composite
structure in the wave function of the bound state, can be related
to the observables as

a0 = R

{
2X

1 + X
+ O

(
Rtyp

R

)}
, (1)

re = R

{
X − 1

X
+ O

(
Rtyp

R

)}
, (2)

where the radius R = 1/
√

2μB is determined by the binding
energy B with the reduced mass μ. The relations assert that the
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scattering length a0 and the effective range re are determined
by the radius R and the compositeness X, if the radius R is
much larger than the typical length scale of the interaction Rtyp.
Thus, the compositeness of the weakly bound state is reflected
in the observable quantities in a model-independent manner.
As an application, the deuteron is shown to be a loosely bound
state of two nucleons, rather than the compact six-quark state
[17]. It should be emphasized that this conclusion is drawn by
a few observables (B, a0, and re), without explicitly knowing
the wave function of the deuteron.

Although these relations are general, the applicability is
limited to the stable bound states, while possible candidates
for the hadronic molecular states are the unstable particles with
finite decay width. For the application to hadronic molecules,
it is indispensable to generalize the relation to unstable states.
There have been several studies of the compositeness of the
unstable particles [18–26], but the direct generalization of
the model-independent relations (1) and (2) has not been
obtained.

In this work, we derive the weak-binding relation based
on the low-energy effective field theory (EFT), which is a
universal approach to extract the long-wavelength dynamics
[27–35]. The EFT formulation provides much clear derivation
of the weak binding relation in comparison with the original
work [17]. Moreover, the use of the EFT formulation is
essential to generalize the relation to the unstable quasibound
states. Carefully examining the interpretation of the complex-
valued compositeness, we use the generalized relation to study
the structure of the candidates of the hadronic molecular
states.

II. MODEL-INDEPENDENT RELATIONS FOR STABLE
BOUND STATES

We consider the single-channel s-wave scattering of two
distinguishable particles with a shallow bound state. As long as
the energy of the system is sufficiently small, the microscopic
details of the fundamental interaction are irrelevant, and
the system can be described by the effective nonrelativistic
quantum field theory with local interactions [33,34]. Inspired
by the EFT for the low-energy nuclear force [36], we utilize
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the Hamiltonian H = Hfree + Hint:

Hfree =
∫

d r
[

1

2M
∇ψ† · ∇ψ + 1

2m
∇φ† · ∇φ

+ 1

2M0
∇B

†
0 · ∇B0 + ν0B

†
0B0

]
, (3)

Hint =
∫

d r[g0(B†
0φψ + ψ†φ†B0) + v0ψ

†φ†φψ] (4)

with � = 1. We introduce the momentum scale cutoff �,
below which the EFT description is accurate. The cutoff
value should be related with the typical length scale of the
fundamental interaction as Rtyp ∼ 1/�. For a given scale �,
the bare parameters g0, v0, and ν0 are related to the low-energy
observables.1

Let us consider the scattering of the two-body ψφ system.
Because of the phase symmetry of the interaction Hamiltonian,
the eigenstate of the two-body problem can be expressed by the
linear combination of the eigenstates of the free Hamiltonian:

|�〉 = c|B0〉 +
∫

d p
(2π )3

χ ( p)| p〉, (5)

where the bare state and the scattering states are defined by
|B0〉 = B̃

†
0(0)/

√V|0〉 and | p〉 = ψ̃†( p)φ̃†(− p)/
√V|0〉 with

the creation operators ψ̃†( p), the vacuum |0〉, and V =
(2π )3δ3(0). With Eq. (5), the two-body problem can be exactly
solved.

The eigenvector of the bound state |B〉 with the binding
energy B is obtained by solving the Schrödinger equation
H |B〉 = −B|B〉. The elementariness Z and the compositeness
X of the bound state are defined as

Z ≡ |〈B0|B〉|2, X ≡
∫

d p
(2π )3

|〈 p|B〉|2. (6)

It follows from the normalization of the bound state |B〉 and
the completeness relation that [24]

Z + X = 1, Z,X ∈ [0,1]. (7)

This ensures the probabilistic interpretation; Z (X) is the
probability of finding the bare state |B0〉 (the scattering state
| p〉) in the physical bound state |B〉. The forward scattering
amplitude of the ψφ system f (E) is obtained by solving the
Lippmann-Schwinger equation as

f (E) = − μ

2π

1

[v(E)]−1 − G(E)
(8)

with μ = Mm/(M + m) and

v(E) = v0 + g2
0

E − ν0
, (9)

G(E) = 1

2π2

∫ �

0
dp

p2

E − p2/(2μ) + i0+ . (10)

1In fact, this EFT is renormalizable, i.e., there is a sensible limit
� → ∞ with the observables being fixed. Here we keep the cutoff
finite, because the compositeness is in general a renormalization-
dependent quantity. The scale dependence disappears in the weak-
binding limit, as will be discussed later.

As shown in Ref. [25], the compositeness X of this type of
amplitude can be written as

X = {1 + G2(−B)v′(−B)[G′(−B)]−1}−1, (11)

where v′(E) = dv(E)/dE and G′(E) = dG(E)/dE.
We are now ready to derive the weak-binding relation (1).

When the binding energy is small, the radius R = 1/
√

2μB
becomes large. We expand the scattering length a0 = −f (E =
0) in powers of 1/R. With the help of Eq. (11) and the
bound state condition v(−B)G(−B) = 1, the coefficient of
the leading order term O(R) can be expressed solely by X
[25]. The correction to the leading order term depends on the
cutoff scale � ∼ 1/Rtyp. In other words, the correction terms
are suppressed by Rtyp/R compared with the leading order
term. The sufficient condition for the 1/R expansion of a0 is
the validity of the effective range expansion at the bound state
pole, from which Eq. (2) follows.

The correction term of O(Rtyp/R) represents the model-
dependent contribution to a0 and re which reflects the short-
range behavior of the interaction. At the same time, because
Rtyp ∼ 1/�, the correction term controls the renormalization
scale dependence of Z and X. If the binding energy is so
small (R is so large) that the correction term is neglected, the
compositeness X can be determined by the observables with
no dependence on the scale �. In this limit, the compositeness
X is invariant under the field redefinitions and determined only
by observables. Equations (1) and (2) are thus mentioned as
“model-independent” relations.

It is instructive to recall the scaling limit Rtyp → 0 with
the scattering length being kept fixed [33]. In this limit, all
the two-body observables scale with a0. For a0 > 0, there
exist a shallow bound state with the radius R = a0, which
indicates X = 1. Thus, the bound state in the scaling limit
is always dominated by the composite structure [37,38]. In
the EFT description, g0 → 0 corresponds to the scaling limit,
where Eq. (11) indicates X = 1. The relation (1) shows that
the leading violation of the scaling a0 = R is expressed by X.

We emphasize that the EFT used here is not a model, but
a universal description of the low-energy phenomena. The
separable nature of the interaction, which was assumed in
Ref. [25], is a consequence of the contact interaction of the
EFT.

III. MODEL-INDEPENDENT RELATIONS FOR UNSTABLE
QUASIBOUND STATES

To generalize the result to the quasibound state, we
introduce additional scattering channel ψ ′φ′ into which the
bound state decays. We consider the Hamiltonian H = Hfree +
H ′

free + Hint + H ′
int with

H ′
free =

∫
d r

[
1

2M ′ ∇ψ ′† · ∇ψ ′ − νψψ ′†ψ ′

+ 1

2m′ ∇φ′† · ∇φ′ − νφφ′†φ′
]
, (12)

H ′
int =

∫
d r[g′

0(B†
0φ

′ψ ′ + ψ ′†φ′†B0) + v′
0ψ

′†φ′†φ′ψ ′

+ vt
0(ψ†φ†φ′ψ ′ + ψ ′†φ′†φψ )] (13)
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with ν ′
0 = νψ + νφ > 0. The eigenstate of the two-body

problem is written as

|�〉 = c|B0〉 +
∫

d p
(2π )3

[χ ( p)| p〉 + χ ′( p)| p′〉], (14)

where | p′〉 = ψ̃ ′†( p)φ̃′†(− p)/
√V|0〉 denotes the scattering

state of the ψ ′φ′ system.
The compositeness of the unstable particles should be de-

fined with caution [24]. The quasibound state is the eigenstate
of the Hamiltonian with a complex eigenvalue

H |QB〉 = EQB |QB〉, EQB ∈ C. (15)

The imaginary part of the eigenenergy represents the decay
width of the quasibound state. The normalization should be
given by introducing the Gamow vector |QB〉 = |QB〉∗ as
〈QB|QB〉 = 1 [39]. This leads to

Z = 〈B0|QB〉2, X(′)=
∫

d p
(2π )3

〈 p(′)|QB〉2, (16)

Z+X+X′ = 1, Z,X,X′ ∈ C. (17)

Thus, the compositeness and elementariness are in general
complex. This is the property inherent in the unstable states.

The forward scattering amplitude and the compositeness of
the ψφ channel are given by Eqs. (8) and (11) with replacing
−B by EQB and using

v(E) = v0 + g2
0

E − ν0
+

(
vt

0 + g0g
′
0

E−ν0

)2

[Ḡ(E)]−1 −
(
v′

0 + g′2
0

E−ν0

) , (18)

Ḡ(E) = 1

2π2

∫ �

0
dp

p2

E − p2/(2μ′) + ν ′
0 + i0+ , (19)

where μ′ = M ′m′/(M ′ + m′). We define the “radius” of the
quasibound state by the analytic continuation of that of the
bound state

R = 1/
√−2μEQB ∈ C. (20)

Expanding the scattering length of the ψφ channel a0 in powers
of 1/|R|, we obtain the following relation:

a0 = R

{
2X

1 + X
+ O

(∣∣∣∣Rtyp

R

∣∣∣∣
)

+
√

μ′3

μ3
O

(∣∣∣∣ l

R

∣∣∣∣
3)}

. (21)

The first two terms are obtained from the expansion of
G(E) in the same way with the bound state case. The last
term comes from the expansion of the additional contribution
Ḡ(E) in [v(E)]−1. Because the effective range expansion is
assumed to be valid at E = EQB , the expansion of Ḡ(E)
should start from the linear term in EQB , namely, O(R−2),
which involves the new length scale l ≡ 1/

√
2μν ′

0 associated
with the energy difference of the thresholds. The relation for
the effective range is obtained similarly. We emphasize that
Eq. (21) for the unstable states cannot be obtained in the
derivation of Ref. [17] which uses the eigenstate expansion
of the full Hamiltonian.

In this way, we find that the leading term for the quasibound
state with large |R| has the same form with the bound state
relation, but for complex-valued a0, R, and X. The O(|l/R|3)

term can be neglected if the threshold energy of the decaying
channel is sufficiently apart from the two-body channel of
interest. The same argument can be applied to the case with
Re EQB > 0, as long as |R| is large. We note that the model-
independent relation determines only X and 1 − X = Z + X′.
It is not possible to separate Z and X′ in a model-independent
manner. In the following, we replace Z + X′ → Z and discuss
the interpretation of complex Z and X with Z + X = 1.

IV. INTERPRETATION OF COMPLEX Z AND X

The interpretation of the complex norm of unstable particles
is a longstanding problem. In general, complex Z and X
cannot be interpreted as probabilities, because the values are
not bounded. Strictly speaking, only the real and bounded
quantities can be regarded as probabilities. As pointed out in
Ref. [25], however, reasonable interpretation can be given if
Z and X have similarity with those of the bound states, i.e.,
|Im Z|,|Im X|  1 and 0 � Re Z,Re X � 1. In other words,
if the violation of the condition (7) is small, we can make
a reasonable interpretation. For a quantitative discussion, we
note the triangular inequality:

|Z| + |X| �|Z + X| = 1, (22)

where the equality holds if and only if Eq. (7) is satisfied. We
thus define

U ≡ |Z| + |X| − 1 (23)

which quantifies the deviation from the bound state limit,
Eq. (7). Because the solid interpretation is possible for the
bound state, the quantity U is understood as the uncertainty of
the interpretation of the complex X. A similar discussion can
be found in Ref. [40].

Next, we define real and bounded quantities X̃ and Z̃ from
complex X and Z. Our aim is to interpret X̃ as the probability
of finding the composite component, when U is small. For the
probabilistic interpretation, X̃ and Z̃ should satisfy

Z̃ + X̃ = 1, Z̃,X̃ ∈ [0,1]. (24)

In addition, X̃ (Z̃) should reduce to X (Z) in the bound state
limit, which has a clear meaning of the probability. All these
conditions can be satisfied by defining

Z̃ ≡1 − |X| + |Z|
2

, X̃ ≡ 1 − |Z| + |X|
2

. (25)

Hence, we regard Z̃ (X̃) as the elementariness (composite-
ness), provided that the uncertainty U is small.2

In this way, we establish the framework to quantitatively
interpret the structure of unstable particles. However, we may
in general encounter the case with relatively large U , because
there is no restriction for the values of the complex X and Z.
If the uncertainty U is not small, we need to adopt alternative
method to clarify the structure. A useful quantity is the

2Reference [40] (Ref. [41]) suggests to consider |X| − U = 1 − |Z|
(Re X) as the probability of compositeness, but this quantity can be
negative. In contrast, our definition of X̃ is positive definite.
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ratio |re/a0|. As discussed in Ref. [22], when the elementary
component is large, the effective range re increases. The ratio
behaves as |re/a0| = 0,1.5,∞ for X = 1,0.5,0, respectively.
Thus, the ratio should be small when the quasibound state
is dominated by the composite structure. This criterion is
essentially the same with the pole counting argument [42,43],
as discussed in Refs. [18,22,37]. We however note that this
type of analysis gives only a qualitative statement.

V. OTHER APPROACHES FOR COMPOSITENESS

There have been several studies on the compositeness
of hadron resonances [18–26]. In the pioneering study of
Refs. [18,19], the compositeness is expressed by the integra-
tion of the spectral density. In more recent works [20,21,24–
26], the compositeness is given by the product of the residue
of the amplitude and the derivative of loop function, which is
essentially equivalent to Eq. (11). In the case of bound states,
the weak-binding formula (1) is derived from this expression in
Ref. [25]. The use of EFT in the context of the compositeness
can be found in Ref. [23].

Our main result (21) is a direct generalization of the formula
(1) of Ref. [17]. We show that the EFT description can be used
not only for the description of the scattering amplitude, but
also for the definition of the compositeness. In addition, the
decay channels are explicitly introduced in EFT to describe
the unstable eigenstates. In this way, the compositeness of the
unstable state is expressed in terms of the observable quantities
(a0 and EQB) in the weak binding limit.

VI. APPLICATIONS TO EXOTIC HADRONS

We have shown that the compositeness X of the quasibound
state can be model-independently evaluated by Eq. (21) when
the correction terms are small and the eigenenergy EQB and the
scattering length a0 are given. Now we apply this framework
for the structure of near-threshold exotic hadrons. We utilize
empirical determinations of EQB and a0 by several existing
data analyses. For a given set of EQB and a0, we estimate the
correction terms and the uncertainty of the interpretation U .
Different input values of EQB and a0 induce the systematic
uncertainty of the results, which is rooted in the precision of
the empirical determination.

The �(1405) resonance is a negative parity excited baryon
which lies close to the K̄N threshold and decays into the π

channel. The threshold parameters of �(1405) have recently
been determined by the detailed studies of the experimental
data around the K̄N threshold with the chiral effective theories
[44–48] in which the eigenenergies are found in the region
|R| � 1.5 fm. The correction terms are found to be small,
|Rtyp/R| � 0.17 and |l/R|3 � 0.14, where the K̄N interaction
range is estimated by the ρ meson exchange. From the central
values of EQB and a0 in these analyses, we determine the
K̄N compositeness as summarized in Table I.3 We find that

3The scattering lengths of Refs. [45,47] are obtained from the
isospin averaged amplitude. Others are evaluated at the K−p

threshold by a0 = (aK−p + aK̄0n)/2.

TABLE I. Properties and results for �(1405). Shown are the
eigenenergy EQB , K̄N (I = 0) scattering length a0, the K̄N com-
positeness XK̄N and X̃K̄N , uncertainty of the interpretation U , and
the ratio of the effective range to the scattering length |re/a0|. The
scattering length is defined as a0 = −f (E = 0).

Ref. EQB (MeV) a0 (fm) XK̄N X̃K̄N U |re/a0|
[45] −10 − i26 1.39 − i0.85 1.2 + i0.1 1.0 0.5 0.2
[46] − 4 − i 8 1.81 − i0.92 0.6 + i0.1 0.6 0.0 0.7
[47] −13 − i20 1.30 − i0.85 0.9 − i0.2 0.9 0.1 0.2
[48] 2 − i10 1.21 − i1.47 0.6 + i0.0 0.6 0.0 0.7
[48] − 3 − i12 1.52 − i1.85 1.0 + i0.5 0.8 0.6 0.4

X̃ is close to unity in all cases, indicating the K̄N composite
structure of �(1405). Although some results are associated
with U ∼ 0.6, the ratio |re/a0| < 1.5 is consistent with the
K̄N composite dominance.

Near the K̄K threshold, there are two scalar mesons,
a0(980) and f0(980) with the isospin I = 1 and I = 0,
respectively. The decay channel of a0(980) [f0(980)] is πη
(ππ ). As summarized in Ref. [49], recent experimental
data around the K̄K threshold has been analyzed by Flatte
parametrization [50–60], from which EQB and a0 can be
determined. Except for Ref. [50], the obtained eigenenergies
satisfy |R| � 1.5 fm. Estimating Rtyp by the ρ exchange,
we find |Rtyp/R| � 0.17 and |l/R|3 � 0.04 for both mesons
(with Ref. [50], we obtain |Rtyp/R| ∼ 0.25 and |l/R|3 ∼
0.13). The evaluated K̄K compositeness are summarized in
Table II (Table III) for a0(980) [f0(980)], where we find that
the uncertainty U is small for all cases. The results of a0(980)
show that X̃ is small and |re/a0| is much larger than 1.5, except
for Ref. [53]. Given the large uncertainty of the parameters
in Ref. [53] (see Ref. [49]), we conclude that the structure of
a0(980) is dominated by the non-K̄K component. On the other
hand, the results of f0(980) are scattered and not conclusive,
as a consequence of the uncertainties of the Flatte parameters.
We emphasize that the true values of the Flatte parameters
must be unique. The large deviation of the results in Table III
originates in the large uncertainty of the determination of the
Flatte parameters in Refs. [55–60]. The small values of U in
Table III indicates that, if the values of the Flatte parameters are
determined unambiguously, then the complex compositeness
of f0(980) can be interpreted with very little uncertainty.

TABLE II. Properties and results for a0(980). Shown are the
eigenenergy EQB , K̄K(I = 1) scattering length a0, the K̄K com-
positeness XK̄K and X̃K̄K , uncertainty of the interpretation U , and
the ratio of the effective range to the scattering length |re/a0|.

Ref. EQB (MeV) a0 (fm) XK̄K X̃K̄K U |re/a0|
[50] 31 − i70 −0.03 − i0.53 0.2 − i0.2 0.3 0.1 4.8
[51] 3 − i25 0.17 − i0.77 0.2 − i0.2 0.2 0.1 6.5
[52] 9 − i36 0.05 − i0.63 0.2 − i0.2 0.2 0.1 7.2
[53] 14 − i 5 −0.13 − i2.19 0.8 − i0.4 0.7 0.3 0.5
[54] 15 − i29 −0.13 − i0.52 0.1 − i0.2 0.1 0.1 13
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TABLE III. Properties and results for f0(980). Shown are the
eigenenergy EQB , K̄K(I = 0) scattering length a0, the K̄K compos-
iteness XK̄K and X̃K̄K , uncertainty of the interpretation U , and the
ratio of the effective range to the scattering length |re/a0|.

Ref. EQB (MeV) a0 (fm) XK̄K X̃K̄K U |re/a0|
[55] 19 − i30 0.02 − i0.95 0.3 − i0.3 0.4 0.2 2.6
[56] − 6 − i10 0.84 − i0.85 0.3 − i0.1 0.3 0.0 5.4
[57] − 8 − i28 0.64 − i0.83 0.4 − i0.2 0.4 0.1 2.1
[58] 10 − i18 0.51 − i1.58 0.7 − i0.3 0.6 0.1 0.7
[59] −10 − i29 0.49 − i0.67 0.3 − i0.1 0.3 0.0 4.0
[60] 10 − i 7 0.52 − i2.41 0.9 − i0.2 0.9 0.1 0.2

The K̄N compositeness of �(1405) and the K̄K com-
positeness of the scalar mesons have been evaluated in
Refs. [25,49] with explicit model calculations, which are in
good agreement with the present model-independent results.
The K̄N composite dominance of �(1405) is supported
by the recent lattice QCD calculation [15] and the realistic
K̄N potential [16]. The derivation of the model-independent
relation (21) enables us to draw this conclusion only from the

experimentally observable quantities, the eigenenergy and the
scattering length.

We have demonstrated that the generalization of the model-
independent weak-binding relation to quasibound states is a
powerful tool for unveiling the structure of exotic hadrons.
Once the scattering length and the eigenenergy are determined,
the same method can be applied to the exotic hadrons in
the heavy sector [9,10]. To this end, it is important to
determine the threshold parameters, for instance, by the Flatte
parametrization or by the lattice QCD technique. We also note
that the isospin breaking effect may become important near
the threshold. The generalization of the present work for this
case is in progress [61].
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