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We have recently highlighted the presence of a periodically oscillating 10% modulation in the BABAR
Collaboration data on the proton timelike form factors, expressing the deviations from the pointlike behavior of
the proton-antiproton electromagnetic current in the reaction e+ + e− → p̄ + p. Here we deepen our previous
data analysis and confirm that in the case of several standard parametrizations it is possible to write the form
factor in the form F0 + Fosc, where F0 is a parametrization expressing the long-range trend of the form factor
(for q2 ranging from the p̄p threshold to 36 GeV2), and Fosc is a function of the form exp(−Bp) cos(Cp), where
p is the relative momentum of the final p̄p pair. Error bars allow for a clean identification of the main features of
this modulation for q2 < 10 GeV2. Assuming this oscillatory modulation to be an effect of final-state interactions
between the forming proton and the antiproton, we propose a phenomenological model based on a double-layer
imaginary optical potential. This potential is flux absorbing when the distance between the proton and antiproton
centers of mass is �1.7–1.8 fm and flux generating when it is �1.7–1.8 fm. The main features of the oscillations
may be reproduced with some freedom in the potential parameters, but the transition between the two layers must
be sudden (0–0.2 fm) to get the correct oscillation period. The flux-absorbing part of the p̄p interaction is well
known in the phenomenology of small-energy antiproton interactions and is due to the annihilation of p̄p pairs
into multimeson states. We interpret the flux-creating part of the potential as due to the creation of a 1/q-ranged
state when the virtual photon decays into a set of current quarks and antiquarks. This short-lived compact state
may be expressed as a sum of several hadronic states including the ones with large mass Qn � q, that may exist
for a time t ∼ 1/(Qn − q). The decay of these large-mass states leads to an intermediate-stage regeneration of
the p̄p channel.

DOI: 10.1103/PhysRevC.93.035201

I. INTRODUCTION

Both the annihilation reactions

e+ + e− → p̄ + p, (1)

p̄ + p → e+ + e− (2)

have been used to extract the electromagnetic form factors
(FFs) of the proton in the timelike (TL) region (for a recent
review, see Ref. [1] and references therein). Assuming that
the interaction occurs through one-photon exchange, the
annihilation cross section is expressed in terms of the FF
moduli squared, as FFs are of complex nature in the explored
kinematical region [2].

The collected statistics has not permitted the individual
determination of the electric (GE) and magnetic (GM ) FFs
due to the available limited luminosity. The cross section σ
of the reactions (1) and (2) allows us to extract the squared
modulus of an effective form factor Fp that is in practice
equivalent to the assumption GE = GM (strictly valid only at
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threshold) [3]:

|Fp|2 = 3βq2σ

2πα2
(
2 + 1

τ

) , (3)

where α = e2/(4π ), β = √
1 − 1/τ , τ = q2/(4M2), q2 is

the squared invariant mass of the colliding pair, and M
is the proton mass. The effect of the Coulomb singularity
of the cross section at the p̄p threshold is removed by the β
factor: β → 0 for q → 2M , so that βσ is finite and the
effective form factor is expected to be finite at the threshold.

The reactions (1) and (2) test close-distance components
of the wave function of the p̄p system that are supposed to
be suppressed because of p̄p annihilation. Data on the p̄-
nucleon and p̄-nucleus annihilation process at low energies
(see Refs. [4–16], and the related theoretical analyses [17–19])
show that a proton and an antinucleon overlap little. When
their surfaces touch, or even come within a distance of 1 fm,
they annihilate into other hadron states. Elastic scattering is
present, but either of diffractive origin (for p � 100 MeV) or
of refractive repulsive hard-core nature (near threshold). In all
cases, the wave function of the p̄p relative motion is estimated
to be strongly suppressed at distances less than 1 fm. On the
other side, reactions (1) and (2) involve a virtual photon with
center of mass (c.m.) energy

√
s � 2M ≈ 2 GeV. This means
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that the space-time regions where the virtual photon is formed
(or decays) have size �r � 0.1 fm. So, the virtual photon tests
the short-distance components of the p̄p system, and TL FF
complement, in this respect, the information acquired from
other annihilation experiments.

Until recently, uncertainties and discontinuities between
data coming from different measurements have prevented
from appreciating the continuity features of TL FF data
over a large q2 range. The recent results from the BABAR
Collaboration [20,21] cover a q2 range going from near the
threshold to 36 GeV2, with more than 30 data points only in
the region q2 < 10 GeV2.

Specific features of the effective FF related to final-
state interactions between p̄ and p appear when expressing
|Fp(q2)|2 in terms of the 3-momentum of the relative motion of
the two hadrons. This has been illustrated in a recent work [22],
where we have highlighted periodic features in a modulation
of the order of 10%, superimposed on the long-range trend
of the effective FF. The precision of the available data does
not forbid the interpretation where the oscillation pattern is
attributed to independent resonant structures, as in Ref. [23].
However, the underlying assumption of the present work is
that the oscillations are expressions of a unique interference
mechanism, affecting all the q2 range where the oscillations are
visible. Of course, the two points of view may coexist within
a model where two or more resonance poles are the result of
a global underlying mechanism, as in Ref. [24], or within
a duality framework. As observed in our final discussion,
the proposed phenomenological interpretation may be framed
within several models, including multiple-pole ones.

In the present work we first scrutinize these oscillations
by expanding the data analysis of Ref. [22]. We use four
different parametrizations from the literature for the so-called
background term (the effective form factor as it appears if one
neglects the small oscillating modulation). For each choice of
the background, we fit the residual modulation, visible in the
difference between the data and the background fit. We analyze
the uncertainty on the periodical character of the oscillations
and on their possible long-range scaling behavior (Sec. II).

Next, we present a phenomenological model for the
rescattering origin of the oscillations, within a distorted-wave
impulse approximation (DWIA) scheme where the outgoing
(or incoming) hadron waves are distorted by an optical
potential (Sec. III). In the absence of distorting potentials,
the background form of the TL FF is recovered (Sec. IV).
This analysis shows that it is possible to reproduce most
of the features of the observed oscillations this way, but
important constraints must be satisfied by the rescattering
potential (Sec. V). Conclusions summarize the main finding of
the paper.

II. ANALYSIS OF THE DATA

The effective proton FF extracted from BABAR data on
e+ + e− → p̄ + p(γ ) [20,21] is reported in Fig. 1 (black
circles) as a function of q2, that is equivalent to the total
energy squared s in the TL region. As can be noticed in the
insert that highlights the near-threshold region, 4M2 � q2 �
10 GeV2, the data show irregularities. These irregularities

]2 [GeV2q
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FIG. 1. Data on the TL proton generalized FF as a function of q2,
from Refs. [20,21], together with the fits from Eqs. (6) (black solid
line), (7) (blue dash-dotted line), (8) (red dashed line), and (9) (green
long-dashed line). The insert magnifies the near-threshold region.
Because of their large error bars, the points over 16 GeV2 do not
affect fit parameters, so that the four fits best reproduce the data in
the insert, apart for the oscillations that are the focus of this work.

acquire a peculiar structure when q2 is replaced by the relative
momentum of the p̄p system in the rest frame of one of the
hadrons [22].

We introduce a function of the form

F (p) ≡ F0(p) + Fosc(p), (4)

with the following definitions:

(1) The 3-momentum

p(q2) ≡
√

E2 − M2, E ≡ q2/(2M) − M (5)

is the momentum of one of the two hadrons in the frame
where the other one is at rest.

(2) F0(p) (regular background term) is a function express-
ing the regular behavior of the FF over a long q2 range.

(3) Fosc(p) describes the deviation of the TL FF from
the long-range regular background appearing in the
region 0 � p � 3 GeV and corresponding to M � q �
3 GeV, with q =

√
q2.

Different forms available from the literature can be used
for the background term. As measured by the BABAR
Collaboration, F0[p(q)] is slightly steeper than expected on
the ground of the corresponding fits of the spacelike (SL)
FF (dipolelike shape) and of the power law corresponding
to quark-counting rules [25,26]. The recent data are best
reproduced by the function FR proposed in Ref. [27] that we
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TABLE I. Background fit functions from Eqs. (6)–(9) (see Fig. 1), and parameters A, B, C, D (with the related χ2 per number of degrees
of freedom, n.d.f.) for Eq. (10) fitting in each case the difference between the data and the corresponding background function.

Ref. Background function A±�A B±�B C±�C D±�D χ 2/n.d.f.
[GeV]−1 [GeV]−1

[27] |FR| = A
(1+q2/m2

a )[1−q2/0.71]2 0.05 ± 0.01 0.7 ± 0.2 5.5 ± 0.2 0.0 ± 0.3 1.4

A = 7.7 GeV−4, m2
a = 14.8 GeV2

[28] |FS | = A
(q2)2 log2(q2/
2)

0.05 ± 0.01 0.7 ± 0.2 5.5 ± 0.2 0.1 ± 0.3 1.3

A = 40 GeV−4, 
 = .45 GeV2

[31] |FSC | = A
(q2)2[log2(q2/
2)+π2]

0.05 ± 0.01 0.6 ± 0.2 5.8 ± 0.2 0.1 ± 0.3 4.0

A = 72 GeV−4, 
 = 0.52 GeV2

[24] |FT P | = A
(1−q2/m2

1)(2−q2/m2
2)

0.1 ± 0.01 1.0 ± 0.2 5.3 ± 0.2 0.2 ± 0.3 1.0

A = 1.56, m2
1,2 = 1.5,0.77 GeV2

will use as a reference:

|FR|(q2)| = A(
1 + q2/m2

a

)
[1 − q2/0.71]2

,

A = 7.7 GeV−4, m2
a = 14.8 GeV2. (6)

Other parametrizations have been proposed. The world
data prior to BABAR results were well reproduced in the
experimental papers [28] according to the function

|FS(q2)| = A
(q2)2 log2(q2/
2)

, (7)

where q2 is expressed in GeV2, A = 40 GeV−4, and 
 =
0.45 GeV2.

The functional form of Eq. (7) is driven by the extension to
the TL region of the dipole behavior. The dipole model of the
SL FFs, more precisely their (q2)2 dependence, is empirically
well known since the first elastic scattering experiments [29]
and agrees with most of the nucleon models developed
during past century, as, for example, the constituent quark
model of Ref. [30]. It is also consistent with PQCD large-q2

predictions [26].
Based on Ref. [31], in order to avoid ghost poles in the

strong coupling constant αs , the following modification was
suggested [32]:

|FSC(q2)| = A
(q2)2[log2(q2/
2) + π2]

. (8)

In this case the best-fit parameters are A = 72 GeV−4 and

 = 0.52 GeV2.

In Ref. [24] a form was suggested with two poles of
dynamical origin (induced by a dressed electromagnetic
current):

|FT P (q2)| = A(
1 − q2/m2

1

)(
2 − q2/m2

2

) . (9)

The best-fit parameters are A = 1.56, m2
1 = 1.5 GeV2, and

m2
2 = 0.77 GeV2. The parametrizations with the best-fit

parameters are illustrated in Fig. 1 and summarized in
Table I. The best-fit functions are then subtracted from the

data, leaving a regular oscillatory behavior, Fig. 2. It has
magnitude ∼10% of the regular term, and is well visible
over the data uncertainties for p > 3 GeV. We have fitted the
difference between the BABAR Collaboration data and the
regular background term F0(p) with the 4-parameter function

Fosc(p) ≡ A exp(−Bp) cos(Cp + D). (10)

Let us focus on the case F0 = FR , Eq. (6). The corresponding
difference data are plotted in the lower panel of Fig. 2(a).
The relative errors in the parameters C and B show that the
oscillation period is better defined than the damping coefficient
exp(−Bp). Two and a half oscillations are clearly visible over
the reaction threshold, while for p > 2.8 GeV the vertical error
bars overcome the oscillation amplitude A exp(−Bp).

The parameter D defines the position of the first oscillation
maximum that occurs at p = 0 within the error �DP/(2π ),
where P is the oscillation period. Estimating the oscillation
period P = 1.13 GeV, the first oscillation maximum occurs
at p = 0 within an error of 0.05 GeV. Five peaks (maxima
and minima) are visible and the periodicity hypothesis, that
is implicit in the cos(Cp + D) term, implies that they are
regularly spaced by a half-period of 1.13/2 GeV. Examining
Fig. 2(a) (lower panel) we find the following:

1st maximum: p = 0 ± 0.05 GeV (from the fit error),
1st minimum: estimated at 0.57 GeV, visible inside the
range 0.5–0.6 GeV,
2nd maximum: estimated at 1.13 visible at 1.1 GeV with
negligible uncertainty,
2nd minimum: estimated at 1.7 GeV, visible inside the
range 1.7–1.8 GeV,
3rd maximum: estimated at 2.26 GeV, visible inside the
range 2.2–2.3 GeV,
3rd minimum: estimated at 2.83 GeV, visible inside the
range 2.6–2.9 GeV.

The largest uncertainty in the position of the peak is found
in the last case. Excluding this one, in the other cases the
relative discrepancy lies within (0.1 GeV / 0.57 GeV) ≈ 15%.
This justifies the presence of the periodic term cos(Cp + D)
in the fit. Such analysis may be repeated for the other cases in
Fig. 2, with similar results.
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FIG. 2. Referring to Eqs. (4) and (5), we report the background
fits F0(p) of the BABAR data, according to the four parametrizations
(a) F0 = FR from Ref. [27] [Eq. (6), see text or Table I], (b) F0 = FS

from Ref. [28] [Eq. (7)], (c) F0 = FSC from Ref. [31] [Eq. (8)],
(d) F0 = FT P from Ref. [24] [Eq. (9)], and the corresponding fits
Fosc(p) of the differences between the data and each parametrization.
In all the four cases Fosc has the damped oscillation form of
Eq. (10), with the best-fit parameters reported in Table I. For
each insert, (top) the data of BABAR are plotted, together with
the parametrization F0(p) (blue, dashed line) and the complete fit
FR(p) = F0(p) + Fosc(p) (solid black line); (bottom) the difference
of the data and the parametrization is shown, together with the fit
Fosc(p) (solid red line).

Concerning the amplitudes of the half-oscillations, each
of them is about 1/

√
2 of the previous one, so that each

maximum of Fosc(p) is about 1/2 of the previous maximum.
This motivates the use of exp(−Bp) in the fit, although
in this case the error on this 1/

√
2 rule is too large to

exclude good fits with other analytic shapes. In particular,
one possibility is that the oscillation amplitude is proportional
to the background term, so that the overall fit would assume
the form F0(p)[1 + ε cos(Cp)] with constant ε ≈ 0.1. For
increasing momenta within the visible range, the damping of
the oscillation and of the regular background term are similar:
Fosc(p)/F (p) ≈ constant, both decreasing by 1/e in about
1.4–1.5 GeV.

Since increasing relative errors hide the possible presence
of the oscillations for p > 3 GeV, we cannot know whether
the oscillations are relevant at larger p or not. Assuming that

they are, the point of view supported in our previous work [22]
and in the following is that we are facing an interference effect
between a small number of amplitudes, effectively competing
in the visible momentum range. These amplitudes must be few,
not forming a regular continuum; otherwise they would give
rise to a diffraction pattern, rather than an oscillation pattern.

Note that the oscillatory behavior is present already in other
invariant functions of q2, but not periodic. The relevant point
is that Fosc(p) is periodic with respect to p, not with respect
to q2 or q. Since p is a variable that is uniquely associated
with the relative motion of the hadron, we associate periodicity
with interactions between the forming hadrons after the virtual
photon has been converted into quarks and antiquarks, Eq. (1),
or before quarks and antiquarks annihilate into a virtual photon,
Eq. (2). In both cases we call these interactions rescattering.

III. OPTICAL MODEL

We assume that rescattering is a relatively small perturba-
tion, and that in absence of rescattering the effective FF would
coincide exactly with F0(p). We also assume that it is possible
to neglect the dependence of the rescattering mechanism
on q2.

Let �r be the space variable that is Fourier conjugated to �p: r
is the distance between the centers of mass of the two forming
hadrons, in the frame where one is at rest. The observed
behavior is modeled via a two-stage process where

(i) in the e+e− → p̄p bare process a p̄p pair is formed
at a distance r with space distribution amplitude M0(r),
and
(ii) rescattering takes place between the newly formed
hadrons (p and p̄) according to an optical potential that
is function of their distance r .

To introduce rescattering we use the distorted wave impulse
approximation (DWIA) formalism, following the scheme
employed in Ref. [33]. The starting point is the Fourier
transform

F0(p) ≡
∫

d3�r exp(i �p · �r)M0(r), (11)

where we interpret exp(i �p · �r) as the plane wave final state
of the p̄p pair in their center of mass and M0(r) as a matrix
element describing the earlier stage of the process. Neglecting
rescattering, a detailed model for the formation process would
lead to a matrix element of the form

F0(p) = 〈ψf (x1, . . . ,xn)ψf (�r)|T
× (r,x1, . . . ,xn,xe+e− )|ψi(xe+e− )〉

≡
∫

d3�r ψf (�r) M0(r), (12)

where the hard operator T is sandwiched between the initial
state ψi , that is function of the 4-vector xe+e− expressing the
relative coordinates of the e+e− pair, and the final states ψf

that depend on the internal coordinates x1,x2, . . . ,xn of the two
hadrons as well as on their relative position �r . The result of
integrating over all variables but r is M0(q2,r), that in general
depends on q2 since this is a parameter of ψi and ψf . We
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assume that this dependence may be neglected in the range
0 < p < 3 GeV where the oscillations are distinguishable
from the background.

Plane wave impulse approximation (PWIA) corresponds to
the absence of rescattering:

ψf (�r) = exp(i �p · �r). (13)

In the distorted DWIA formalism exp(i �p · �r) is substituted by
a wave including the effects of p̄p rescattering. We choose a
simple factorized distortion D(�r)

ψf (�r) = D(�r) exp(i �p · �r), (14)

where D(�r) is calculated as a Glauber-like eikonal factor:

D(x,y,z) = exp

(
−ib

∫ ∞

z

ρ(x,y,z′)dz′
)

, (15)

where ẑ// �p and b is a complex number, whose meaning is as
follows:

(i) Pure real b: elastic rescattering potential that may be
attractive or repulsive depending on the relative sign of
Re(b) and pz.

(ii) Pure imaginary b: imaginary potential causing flux
absorption or flux creation in rescattering.

Strictly speaking the product bρ(�r) is not a potential.
V (r) ≡ 2bpρ(�r) is a true optical potential appearing in a
linearized form of the Schrodinger equation, but for simplicity
we name potential the product bρ(�r).

The key function is the real function ρ(r), describing
the space distribution of the strength and the sign of the
rescattering potential (ρ may be negative). We have tested three
families of space densities ρ(r) for the rescattering potential:

(1) Compact rescattering densities: they are decreasing
functions of r , as for example Woods-Saxon densities.
This class includes imaginary-dominated potentials
that are typical of the theory of p̄p low-energy
interactions.

(2) Hollow rescattering densities: they are very small or
vanishing at small r , large in a subrange of 0.2–2 fm,
and tend to zero for larger r .

(3) Double-layer rescattering densities: these are the com-
bination of two potentials of class 2 with opposite sign.
So we may have a region ra < r < rb with a repulsive
potential and a region rc < r < rd with an attractive
potential, or we may have two regions, characterized
by an absorbing and a generating imaginary potential.

All the potentials considered here act in a range that is
typical of strong interactions. Electrostatic potentials have not
been considered, since the short-range scheme used here is not
suitable for analyzing phase shifts that develop at distances �
1 fm.

Summarizing, we calculate F (p) as

F (p) = 1

(2π )3

∫
d3�r ei �p·�rD(�r)M0(r), (16)

M0(r) ≡
∫

d3 �p e−i �p·�rF0(p), (17)

r (fm)
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FIG. 3. The 3-dimensional Fourier transform M0(r) of F0(p),
defined in Eq. (11).

with D(�r) defined in Eq. (15). We observe that F (p) does not
depend on the orientation of �p because of the choice of con-
straining the z axis to the direction �p in the calculation of D(�r).

IV. MODEL RESULTS

After testing several configurations, the results are the
following:

A. Compact potentials

Spherical homogeneous potentials (constant up to a fixed
radius), Gaussian potentials, and Woods-Saxon potentials do
not give positive results. Neither real nor imaginary potentials
have produced periodic oscillation patterns. This is in contrast
with the case of the angular distributions of nuclear physics
(see, for example, Ref. [33], where evident periodic patterns
are obtained via pure imaginary Woods-Saxon densities).
However, in those applications the relevant variable is the
t-channel momentum exchanged in elastic scattering or rescat-
tering, while here it is the relative momentum of the colliding
particles, that is equivalent to an s-channel momentum.

B. Hollow potentials (not changing sign or phase
in the r range of interest)

We have tested simple double-step potentials (constant
between two r values, zero elsewhere), and shifted-Gaussian
potentials exp[−(r − r0)2/σ 2], with both real and imaginary
parts. Real hollow potentials produce periodical oscillations,
but the oscillation period is far too large (2 GeV or more).
In order to make it shorter, the peak value of the potential
has to be pushed to r > 2 fm. M0(r) decreases by 3–4 orders
of magnitude when r increases by 1 fm (see Fig. 3). So, at
distances >2 fmM(r) is very small, depriving of relevance
the effects of a real potential that is active in these regions.
Imaginary potentials of pure absorbing (or pure generating)
class have been found to be incompatible with our starting
requirement that rescattering is a small correction. For a hollow
imaginary potential to produce oscillations with relative
magnitude 10%, one needs a strong imaginary potential,
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FIG. 4. The three double-layer potentials used for the fits reported
in Figs. 5–7. Dashed curve: potential n.1 [Eq. (18)]. Continuous curve:
potential n.2 [Eq. (19)]. Dotted curve: potential n.3 [Eq. (20)]. These
potentials are used in Eq. (15) to calculate the final-state distortion
factor D(x,y,z) that leads to the fit F (p) through Eq. (16).

which leading effect is damping by orders of magnitude the
unperturbed term.

C. Double layer potentials (presenting two r ranges
where the potential phase is opposite)

Double-layer real potentials produce weaker oscillation
effects than single-layer (hollow) potentials. Our best results
have been obtained with double-layer imaginary potentials.
These have been able to produce periodic oscillations with a
period of 1 GeV or shorter, and of arbitrarily large amplitudes,
depending on the parameters. Such potentials present an inner
region where the p̄p flux is produced and an outer region
where the p̄p flux is absorbed. The physical origin of this
class of potentials is discussed in next section.

We report the results corresponding to the three different
double-layer potentials illustrated in Fig. 4. All of them are
purely imaginary (Re(b) ≡ 0). The former two potentials have
been calibrated to reproduce, as well as possible, BABAR
Collaboration data. The third one presents peculiar features
and nonoptimal parameters, and it is reported for comparison
discussion.

Potential n.1: Multiple-step function

Im(b)ρ(r) =: 0 for r < 1 fm and r > 2.4 fm;

− 4.8 for (1.2 < r < 1.7) fm;

3.5 for (1.7 < r < 2.4) fm. (18)

Potential n.2: Potential similar to the previous one, but regular:

Im(b)ρ(r) = B G(r − r0)T (r − r0)W (r − r0), (19)

where

(i) B = 7.8 is an overall strength coefficient.
(ii) G(r − r0) = exp[−(r − r0)2/0.52] is a Gaussian with

center in r0 = 1.8 fm, and width μ = 0.5 fm.
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FIG. 5. (a) Continuous curve: |F (p)|, obtained with the double-
layer rescattering potential n.1 (the multiple-step function in Fig. 4,
see text), compared to the BABAR data points (full circles). (b) Real
(solid line) and imaginary (dashed line) parts of the model F (p).

(iii) T (r − r0) = tanh[(r − r0)/0.05] is a so-called soft
sign function that is equal to −1 for r  r0 fm and
to +1 for r � r0 fm, and changes smoothly sign in a
range of 0.1 fm.

(iv) W (r − r0) = 1 + 0.05(r − r0) is a weight function
that (slightly) increases the strength of the external
absorbing peak over the internal generating one.

Potential n.3: Sum of a positive Gaussian in the inner region
and a negative one in the outer region:

Im(b)ρ(r) = A+G+(r − r+) − A−G−(r − r−), (20)

with G± ≡ exp(−[(r − r±)2/w2], r+ = 1.35 fm, r− = r+ +
w, and w = 0.26 fm, A+ = 10, A− = 8.4.

This potential is very different from the previous two: the
signs of the inner and outer parts are reversed (absorption
inside), the average radius is smaller, and the negative and
positive peaks are more distant. It is reported here to highlight
some effects of the parameters rather than for good-fit
purposes.

The results obtained with these potentials are presented
in Figs. 5–7. The fits with potentials 1 and 2 reproduce the
data satisfactorily well, given the simplicity of the model.
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FIG. 6. (a) Continuous curve: |F (p)|, obtained with the double-
layer rescattering potential n.2 (continuous curve in Fig. 4, see text),
compared to the BABAR data points (full circles). (b) Real (solid
line) and imaginary (dashed line) parts of the model F (p).
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FIG. 7. (a) Continuous curve: |F (p)|, obtained with the double-
layer rescattering potential n.3 (continuous dotted curve in Fig. 4,
see text), compared to the BABAR data points (full circles). (b) Real
(solid line) and imaginary (dashed line) parts of F (p).

In these two cases, the data are slightly overestimated near
the threshold. This may be attributed to the small-energy
limitations of the eikonal formalism chosen here to reproduce
the wave distortion. As observed in Ref. [33], the use of
this approximation within DWIA is good when several partial
waves are involved in rescattering, and definitely it does not
apply in a regime of S-wave dominance, corresponding to
p � 200 MeV for p̄p systems [17].

The example with potential n.3 shows that it is possible to
obtain similar qualitative results with opposite configurations:
absorbing potential in the outer region and generating potential
in the inner region, or vice versa. For our best fits we
have preferred the first option, because it corresponds to
the phenomenology of p̄p annihilation, dominated by flux
absorption when the proton and antiproton begin to overlap.

Potential n.3 allows for an easy analysis of the separate
role of the two potential layers, since one may independently
modify the peak strengths A+ and A−. Systematic attempts
show that it is possible to obtain periodic oscillations of pretty
large amplitude by increasing both A+ and A−, at the condition
that the relative effect of the absorbing and of the creating
parts of the potential is well balanced, that may be obtained by
acting on the ratio A+/A−. Apart for avoiding normalization
problems, an equilibrated balance between the two strengths
is one of the keys to get remarkable and periodic oscillations.

On the other side, this potential is not suitable for producing
arbitrarily short oscillation periods, because it lacks a decisive
feature of potentials n.1 and 2: their steep derivative at the point
where they change sign. To obtain this feature with potential
n.3, the distance between the two peaks must be smaller than
their width. In such conditions the two Gaussians overlap and
cancel reciprocally. We have been able to reduce the oscillation
period down to what is visible in Fig. 7, but not further. The
conclusion is that the period of the oscillations is related to
a sudden transition between the flux-feeding and the flux-
depleting regions.

Another important property shared by the three double-
layer potentials is to produce a systematic threshold enhance-
ment: p = 0 corresponds to an oscillation maximum, if the
effect of the flux-creating and flux-absorbing parts of the

potential are reasonably well balanced. This property is very
stable, it is not related to a special set of parameters, and it
does not depend on whether the absorbing part of the potential
is external (potentials n.1 and n.2) or internal (potential n.3).
So, the threshold enhancement is an intrinsic property of the
imaginary double-layer model.

For large r , potentials n.1 and n.2 act qualitatively as
the purely absorptive potentials used to fit p̄p LEAR Col-
laboration data [7,17–19]. To reproduce LEAR elastic and
annihilation data, phenomena taking place at small r have no
relevance, since the surface interaction at r ≈ 1–2 fm prevents
most of the initial p̄p channel wave function from entering the
r < 1 fm region. The so-called regeneration effect due to the
inner potential introduced above would have little effect on the
total elastic and inelastic cross sections, since it affects only a
very small component of the wave function.

On the other side, this small component which is nonzero
at small r is essential for the coupling of the proton-antiproton
pair with a virtual photon with virtuality q2 > 4M2. The
coupled regeneration-absorption mechanism introduced here
produces, for r < 2 fm, an alteration of regions where this
component of the p̄p wave function is enhanced or suppressed.
Let us discuss the conditions leading to observable effects.
The enhancement of the cross sections at small p, where the
the p̄p distorted wave function exp[i �p · �r]D(�r) approximately
reduces to D(�r) and the Fourier transform of Eq. (16) simplifies
to

∫
d3rD(�r)M0(r), suggests that the potential enhances the

wave function at small r where M0(r) is very large (see
Fig. 3). This effect is not specific to double-layer potentials:
For example, with a spherical real attracting potential does the
same. The presence of further oscillations at larger p, however,
suggests that double-layer imaginary potentials create regions
where the product D(�r)M0(r) alternatively becomes larger and
smaller, enough to resonate with the Fourier transform factor
exp(i �p · �r) for periodic p values far from the threshold (see
Fig. 3(b) of Ref. [22]). If two regions with a larger and a smaller
value of D(�r) are present at r+ and r− respectively, r+ − r−
must be small, or the steep r decrease of M0(r) will make the
modulation by D(r+) negligible with respect to D(r−). This
may explain the relevance of having a steep potential at the
change of sign.

V. HYPOTHESIS ON THE PHYSICAL ORIGIN OF INNER
CREATIVE–OUTER ABSORPTIVE POTENTIALS

An optical potential with an imaginary part may be justified
within several theoretical frameworks but in general, and
intuitively, its origin is related to the fact that a multichannel
process is inclusively projected onto one channel alone.

For the case of interest, this is illustrated in Fig. 8.
Figure 8(a) is the amplitude of γ ∗ → p̄p within a model
that does not include p̄p rescattering. This is supposed to
lead to the background regular component of the form factor,
without oscillations. Figure 8(b) considers the possibility that
p̄p annihilation into a multimeson state depletes the final
state produced by process (a). In our formalism this finds
an expression in the absorption component of the imaginary
potential. The most interesting additional diagram is shown in
Fig. 8(c). The same model that in Fig. 8(a) has been used to
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FIG. 8. Examples of diagrams entering the absorptive and cre-
ative parts of the potential. (a) So-called direct’ γ ∗ → p̄p. The
light-gray circle represents a model amplitude without contributions
by rescattering. It leads to the background regular term F0(p) or
equivalently, in r-coordinate representation, to M0(r) [see Eq. (11)].
(b) The γ ∗ → p̄p production is followed by an annihilation process
reducing the final p̄p outcome. This contributes to the absorptive
part of the optical potential. (c) The same model previously used to
calculate the direct production γ ∗ → p̄p is now used to calculate
γ ∗ → h̄h, where h is a hadron different from a proton. Rescattering
converts h̄h into p̄p, increasing the final output. The effect of this
diagram is taken into account by the creative part of the potential. Even
other diagrams, with intermediate hadronic states more complicated
than h̄h, may contribute.

calculate the amplitude of γ ∗ → p̄p, is used in Fig. 8(c) to
calculate the amplitude of γ ∗ → h̄h, where h is a hadron that
is different from p, for example, a neutron or a higher mass
baryon. Later rescattering converts this pair into a p̄p state. The
intermediate state is not necessarily a two-particle state. Any
multimeson state with the right quantum numbers may play
the role of an intermediate state that is later converted into p̄p.

According with the previous argument, the double-layer
optical potential used here is not in conflict with the existing
models for the TL FF but is rather an effective way to include
rescattering corrections to these models. Many models for the
hadron coupling to the virtual photon have been developed
and applied to the calculation of SL FFs. Some of them may
be analytically continued to the TL region. This is the case
for approaches based on vector meson dominance [34,35] and
dispersion relations [36,37]. Constituent quark models in light
front dynamics may be applied [38], as well as approaches
based on Anti de Sitter-QuantumChromoDynamics (ADS-
QCD) correspondence [24]. A phenomenological picture for
the full time evolution of the hadronization process has been
proposed in Ref. [39].

Practically all these models may be the starting point for
a calculation within the proposed DWIA-optical potential
scheme, following the prescription suggested in Fig. 8:

Step 1. The model is used to calculate the PWIA production
amplitude of the p̄p pair [Fig. 8(a)], and this leads the
background regular component of the effective form factor
and to its Fourier transform M0(r) in coordinate representation
[Eq. (11)].

Step 2. Final-state processes implying the annihilation of
the p̄p pair into mesons are added [Fig. 8(b)]. The relevant
amplitudes of this group may be effectively summarized
in a flux-absorbing optical potential that in coordinate
representation modifies the plane wave of the p̄p channel as
in Eqs. (14) and (15).

Step 3. The model is used for calculating the amplitude
for the production of other hadronic states h̄h that are later
converted into p̄p by rescattering [Fig. 8(c)]. The amplitudes
for the processes of this group may be effectively summarized
in a flux-creating optical potential distorting the plane wave of
the p̄p channel.

In principle processes as in Figs. 8(b) and 8(c) are possible
everywhere in a range of a few femtometers around the
initial virtual photon decay point. Why should the so-called
flux-enhancing diagrams like Fig. 8(c) dominate the small-r
regions?

While the explanation of the optical potential in terms of
multistep inelastic reactions is straightforward, for the answer
to this question we may only propose a hypothesis that relates
the presence of the creation part of the potential to those regions
where high-mass virtual intermediate states are more likely.

The amplitude for the transition from p̄p to a state made of
3–10 mesons is not different from the amplitude for the reverse
process, but phase space makes the probability of the former
process larger than the probability of the latter. So, the hadronic
states that may contribute to feeding the p̄p channel [Fig. 8(c)]
and not to further depleting it [Fig. 8(b)] are the states made
by one or two heavy hadrons like N∗N̄∗ states. Unless q �
2Mp, the hadrons composing these states are virtual, short-
lived, and slow, with few exceptions like a neutron-antineutron
intermediate state. So, they play a role for small r only, since
small r corresponds in the average to small times after the
photon conversion into the first q̄q pair.

On the other side, these high-mass states must be present
in the state that is initially produced by the decay of a virtual
photon with q � 2Mp according to the statement that this
state has space-time size of magnitude 1/q. According to the
perturbative QuantumChromoDynamics (PQCD) view [26],
in the SL case (elastic electron-proton scattering) the virtual
photon is absorbed by a fluctuation of the proton state
consisting of valence quarks grouped within a space-time
region of size 1/q. The fact that this fluctuation exists means
that in the TL case a corresponding fluctuation of the p̄p
state exists where the required number of valence quarks and
antiquarks is concentrated within a region of space-time size
1/q. Indeed, the Feynman diagrams describing the PQCD
kernel of the process are the same in SL and TL and in these
diagrams all the involved partons are connected by propagator
lines with off-shellness of magnitude q that obliges them to
be within a space-time distance 1/q.

If this 1/q-sized fluctuation takes place in a p̄p annihilation,
we may have the rare but possible event p̄p → e+e−. In the
reaction e+e− → p̄p, the path is opposite: The virtual photon
creates a 1/q-sized fluctuation of quarks and antiquarks that
may evolve into a p̄p pair but may also evolve into other
hadronic states (e.g., neutron-antineutron) since also these
states present 1/q-sized fluctuations of their parton content.

Any configuration of a color singlet state, like the 3 quark
+ 3 antiquark small-sized state produced by the decay of
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the virtual photon, may be written as a sum over physical
hadronic states with the same quantum numbers, since these
states form a complete basis for this system. However, a
state with a size of magnitude 1/q cannot be reproduced by
the sum of a small number of hadronic states since these
have a typical size 1 fm. What is needed is a set of several
states which interfere destructively at distances >1/q from
the virtual photon materialization point and constructively
at distances �1/q, so to build a wave packet of size 1/q.
Taking into account that 1/q is also the magnitude of the
lifetime of this fluctuation, we may estimate that the sum must
include hadronic states with a spread of magnitude q in their
center-of-mass energy. With a virtuality that can be of the same
magnitude as q, it is evident that many of these states cannot
propagate far from the virtual photon materialization point,
and this may support the dominance of the flux-enhancing
term of the optical potential at small r .

As observed, this picture behind the small-r dominance of
the flux-creation part of the potential is just an educated guess,
because of the difficulties in passing from qualitative ideas to
a detailed model.

VI. CONCLUSIONS

We have analyzed the modulation structure shown by the
precise data on the TL proton form factor, recently obtained
by the BABAR Collaboration. First, we have repeated the data
analysis already presented in our previous work [22] for the
case of four different form factor parametrizations available in
the literature. The difference between BABAR Collaboration
data and the form factor parametrization is well fitted by an
oscillating function of the form A exp(−Bp) cos(Cp), where
p is the momentum of the relative motion of the p̄p pair. The
periodicity of the cos(Cp) term is verified within 15% in a p
range from zero to 2.8 GeV.

The periodicity of this oscillating modulation as a function
of the relative momentum of the final hadrons has been
qualitatively explained in terms of rescattering between the
final products of the reaction e+e− → p̄p and reproduced
via an optical potential of peculiar (double spherical layer)
form.

An imaginary optical potential that is mainly flux gener-
ating in a region of small distances between the centers of
the forming (and still overlapping) proton and antiproton, and
mainly flux absorbing at larger distances, produces systematic
oscillations of the effective proton TL form factor, consistent
with the observed ones. At distances of ≈1–2 fm such a
potential behaves as the optical potentials ordinarily used
to reproduce p̄p annihilation data, that is, it damps the
p̄p flux by annihilating p̄ and p into multimeson states.
A possible explanation for the regeneration features of the
potential at smaller distances could be in terms of coupling
between the p̄p final channel and large-mass virtual states
(like baryon-antibaryon) temporarily produced by the virtual
photon. In order to reproduce the data, the transition from the
flux-generating to the flux-absorbing region must be sudden.
A soft transition produces oscillations with periods longer
than the observed one. With this double-layer structure, we
always find threshold enhancement of the form factors. So,
within this scheme threshold enhancement and oscillations
are expressions of the same phenomenon.

We have tested other simpler configurations of the potential
and also real potentials with a range typical of strong interac-
tions, but these do not seem to allow for oscillations with the
required period and strength. The proposed phenomenological
scheme is compatible with existing theoretical models for the
TL form factors, since it may be considered as a rescattering
correction that does not touch the core schemes of these
models.
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