
PHYSICAL REVIEW C 93, 034915 (2016)

Acceptance dependence of fluctuation measures near the QCD critical point
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We argue that a crucial determinant of the acceptance dependence of fluctuation measures in heavy-ion
collisions is the range of correlations in the momentum space, e.g., in rapidity, �ycorr. The value of �ycorr ∼ 1
for critical thermal fluctuations is determined by the thermal rapidity spread of the particles at freeze-out, and
has little to do with position space correlations, even near the critical point where the spatial correlation length
ξ becomes as large as 2–3 fm (this is in contrast to the magnitudes of the cumulants, which are sensitive to
ξ ). When the acceptance window is large, �y � �ycorr, the cumulants of a given particle multiplicity, κk , scale
linearly with �y, or mean multiplicity in acceptance, 〈N〉, and cumulant ratios are acceptance independent. In
the opposite regime, �y � �ycorr, the factorial cumulants, κ̂k , scale as (�y)k , or 〈N〉k . We demonstrate this
general behavior quantitatively in a model for critical point fluctuations, which also shows that the dependence
on transverse momentum acceptance is very significant. We conclude that the extension of rapidity coverage as
proposed by the STAR Collaboration should significantly increase the magnitude of the critical point fluctuation
signatures.

DOI: 10.1103/PhysRevC.93.034915

I. INTRODUCTION

Mapping the QCD phase diagram is one of the most
important goals of the heavy-ion collision experiments. A
prominent feature on this map of the thermodynamic states
of QCD is the critical point punctuating the first-order phase
transition between hadron matter and the quark-gluon plasma
phase. Although this scenario is suggested by many models of
QCD thermodynamics as well as some lattice calculations,
the precise location (in the temperature vs baryochemical
potential, T μB , plane) and even the existence of this point
is an open question, which so far has eluded attempts to
answer it using theoretical tools, such as first-principle lattice
simulations (for reviews, see, e.g., Refs. [1–9]).

The approach pursued by experiments to discover the
critical point is based on the analysis of the event-by-event
fluctuations [10–12]. In the thermodynamic limit the critical
point is a thermodynamic singularity, where the intensive
measures of fluctuations violate the central limit theorem and
diverge. In a realistic heavy-ion collision this divergence is cut
off by the interplay of finite-time, nonequilibrium effects and
the effect of the critical slowing down [11,13,14]. If, by varying
the collision energy

√
s, one can create fireballs with freeze-out

conditions close to the critical point, one expects to observe
nonmonotonic dependence of fluctuation measures on

√
s as

the critical point is approached and then passed. The search
for the critical point using such beam energy scan strategy
is underway at the Relativistic Heavy Ion Collider (RHIC) at
the Brookhaven National Laboratory (BNL) and at the Super
Proton Synchrotron (SPS) at CERN in Geneva [15–19].

In order to compare experimental measurements with
theoretical predictions, as well as the results of different
experiments to each other, it is essential to understand the
dependence of the fluctuation measures on the size of the
detector acceptance window, which varies among experiments,
or even different analyses of the same experiment. The goal of
this paper is to elucidate and quantify this dependence.

The focus of this work is on critical point signatures.
In particular, on the higher-order cumulants sensitive to the
thermodynamic conditions at freeze-out [20,21] and especially
to the critical fluctuations [22]. However, we begin with a more
general analysis of acceptance dependence, which we then
illustrate using the critical point fluctuations. The purpose of
this paper is to examine the physics behind this dependence
and demonstrate it in a simple, analytic, but quantitatively
realistic model. Our qualitative arguments and quantitative
results complement and extend analyses of the acceptance
dependence of the critical fluctuations in Refs. [1,23] to
higher-order cumulants, and also complement and contrast
the analyses of Refs. [24–31] of noncritical correlations (see
also reviews [12,32] for further references).

The type of questions we wish to answer are, for example,
what is the effect on critical point signatures of increasing the
transverse momentum range, say, from pT ∈ (0.4,0.8) GeV
to (0.4,1.2) GeV, as has been done in the recent analysis by
STAR [33]? Or, what is the effect of extending the rapidity
window from �y = 1 to �y = 1.5 for protons, which will
result from upgrading the inner sectors of the Time Projection
Chamber (iTPC) proposed [34] by the STAR experiment at
RHIC?

II. ACCEPTANCE DEPENDENCE OF CUMULANTS

Our main goal is to provide a transparent description of the
acceptance dependence of fluctuation measures, which can be
used to build quantitatively precise tools necessary to extract
physics from experimental data. To prevent the complexity of
the heavy-ion collision from obscuring the relevant features we
wish to highlight, we start with the simplest idealized Bjorken
model [35] of a boost invariant fireball and consider the depen-
dence of the fluctuation measures on the rapidity acceptance
window �y. This will allow us to gain understanding of the
main characteristics of the acceptance dependence, which we
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can then carry over to a more realistic model with transverse
expansion and pT acceptance dependence.

Let us denote the number, or multiplicity, of accepted
particles of a given species (e.g., protons or pions) by N .1

The mean over all events, 〈N〉, is then proportional to �y due
to the boost invariance:

〈N〉 ∼ �y. (1)

How do the cumulants of order k,κk[N ], of N vary with �y?
The answer crucially depends on the range of the correlations
in rapidity, which we denote by �ycorr.

Different contributions to the correlations (initial condi-
tions, HBT, thermal and hydro fluctuations, critical fluctua-
tions, etc.) are characterized by different �ycorr. In this paper
we shall focus on critical point fluctuations, but we begin with
a more general discussion of correlations and their effect on
acceptance dependence.

It is important to distinguish two qualitatively different
regimes: �y � �ycorr and �y � �ycorr. When �y � �ycorr,
all cumulants grow linearly with �y, because uncorrelated
contributions are additive, by construction, in a cumulant. It is
convenient and customary to remove this trivial volume depen-
dence by normalizing cumulants by their trivial, uncorrelated
(Poisson) value (〈N〉, for cumulants of N ), defining

ωk ≡ κk

〈N〉 . (2)

The contribution of physical (e.g., critical) correlations to this
quantity, (ωk − 1), saturates at a constant value for �y �
�ycorr.2

In the opposite regime, �y � �ycorr, since the cumulants
approach Poisson distribution values in the limit �y ∼ 〈N〉 →
0, we shall focus on the deviation of the cumulants from their
Poisson value, κk − 〈N〉. It is convenient to express κk − 〈N〉
as a linear combination of factorial cumulants, κ̂l , of equal or
lower orders

κk − 〈N〉 = κ̂k +
k−1∑
l=2

S(k,l)κ̂l , (3)

where S(n,m) are Stirling numbers of the second kind. The
most useful property of the factorial cumulants is that each κ̂k

measures the strength of the (connected) k-particle correlation,
and is therefore proportional to the number of correlated k-
plets, which scales roughly as Nk , i.e., (�y)k . This property
is known (see, e.g., Ref. [36] and references therein), but for
completeness and to provide a better intuitive understanding
we derive it for k � 4 in the Appendix.

1The acceptance dependence of the fluctuations of a particle number
as opposed to, e.g., net-proton or net-charge, is considerably more
transparent and allows us to focus on the most important features.

2Equation (2) is not the only natural way to normalize the cumulant.
Another widely used normalization is κk/κ2. Since, in practice, κ2 −
〈N〉 � 〈N〉, there is little difference between this normalization and
Eq. (2).

Because of the simple asymptotic behavior of the factorial
cumulants in both regimes of �y:

κ̂k ∼ �y ∼ 〈N〉 (�y � �ycorr) (4)

and

κ̂k ∼ (�y)k ∼ 〈N〉k (�y � �ycorr), (5)

it is more convenient to describe acceptance dependence in
terms of the factorial cumulants κ̂k .

In contrast, the behavior of the normal cumulants, κk , in
the regime �y � �ycorr is more complicated. According to
Eqs. (3) and (5), the limit �y → 0 is controlled by the lowest
cumulant, κ̂2, i.e.,

κk − 〈N〉 ∼ κ̂2 ∼ (�y)2 when �y → 0, (6)

or ωk − 1 ∼ �y.3 On the other hand, if or when the approx-
imate hierarchy |κ̂k| � |κ̂l| for k > l holds, as experimental
results [33] indicate at some energies (e.g., at

√
s = 7.7 GeV

|κ̂4| � |κ̂3|,|κ̂2| for �y ∼ 1), the scaling in the regime �y �
�ycorr, but not too small, could be dominated by the highest
cumulant in Eq. (3), and then

κk − 〈N〉 ∼ κ̂k ∼ (�y)k (�y not too small), (7)

or ωk − 1 ∼ (�y)k−1. The crossover between this behavior and
that in Eq. (6) could be a source of nonmonotonic acceptance
dependence of ωk in some cases.

III. CRITICAL POINT CORRELATIONS

In order to describe the acceptance dependence of the
fluctuation measures (the cumulants) more quantitatively we
need to input the physical information about the correlations.
We shall focus on critical point contributions to the fluctuations
and use the model described in Refs. [11,23] and, in application
to higher-order cumulants, in Refs. [22,37,38]. In this model
the multiplicity fluctuations at freeze-out near the critical point
receive a contribution due to the coupling of the critical mode
σ , a collective mode of fluctuations whose correlation length
ξ becomes large (and diverges at the critical point in the
theoretical limit of infinitely large system size and lifetime).

A. Range of correlations

What determines �ycorr? This depends on the physics
behind the correlations and, in the case we consider, the critical
point, it is the fluctuating collective mode. Consider the boost-
invariant scenario with the correlation length in co-moving
coordinates at freeze-out given by ξ (Fig. 1). This translates
into Bjorken rapidity correlation length �ηcorr ≈ ξ/τf . With ξ
ranging from 1 fm typically to about 2–3 fm near the critical
point [13] and with freeze-out Bjorken time τf ∼ 10 fm, one
estimates �ηcorr ∼ 0.1–0.3.

Detectors, however, do not measure the position space
(Bjorken) rapidity η, but the kinematic rapidity y of the parti-
cles. Within the spatial correlation volume �ηcorr at freeze-out,

3This helps explain the linear dependence of the normalized
cumulants as the acceptance � → 0 in Ref. [28]. We thank M.
Kitazawa for a discussion of this point.
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FIG. 1. Schematic illustration of the relation between the spatial
(Bjorken) rapidity η and kinematic rapidity y via the effect of the
thermal broadening (freeze-out smearing).

thermal distribution of particle rapidities yp in the co-moving
frame ranges roughly from −1 to 1 (Fig. 2). The observed
rapidity y = η + yp of the particles from each correlated
volume is then spread over an interval of order �ycorr ∼ 1
(Fig. 1). Such thermal broadening, or freeze-out smearing,
in the translation of hydrodynamic spatial correlations into
kinematic correlations has been discussed recently in, e.g.,
Refs. [39,40]. Because �ycorr � �ηcorr, the value of �ycorr

is not sensitive to ξ . This is in contrast to the magnitude of
ωk − 1 [22]; larger ξ means more correlated particles in the
same �ycorr and larger values of ωk − 1.

It is essential for this argument that, within the correlated
spatial volume, particles of all momenta in the thermal
distribution are correlated with each other, as they are in the
case of the critical point fluctuations we consider; see Eq. (14)
below.

B. Model of critical correlations

To make calculations simpler and the results more trans-
parent, we shall use the observation that even the maximal
correlation length ξ � 2–3 fm (limited in a heavy-ion collision
by finite-time and critical slowing down effects [13]) is still
considerably smaller than the typical size of the system.
A measure of that size is either the transverse radius or
the Bjorken proper time at freeze-out, R ∼ 7–10 fm. In the
idealized limit R � ξ we can consider the spatial correlation
as almost local and approximate it by a δ function in the inte-
grals involving slowly (in position space) varying distribution
functions f (x, p). The normalization of the δ function is fixed

FIG. 2. Thermal proton rapidity distribution (T = 160 MeV).

by matching the space integral of the correlator:∫
d3x〈σ (x)σ ( y)〉 = T ξ 2 ⇒ 〈σ (x)σ ( y)〉 → T ξ 2δ3(x − y).

(8)
A similar approach can be applied to the 3-point and 4-point
(connected) functions, which can be also approximated by δ
functions, normalized using the results of Ref. [22]:

〈σ (x)σ ( y)σ (z)〉 → −2λ̃3T
3/2ξ 9/2δ6(x, y,z), (9)

where δ6(x, y,z) ≡ δ3(x − y)δ3(x − z) and

〈σ (x)σ ( y)σ (z)σ (w)〉c → 6
(
2λ̃2

3 − λ̃4
)
T 2ξ 7δ9(x, y,z,w),

(10)
where δ9(x, y,z,w) ≡ δ3(x − y)δ3(x − z)δ3(x − w). The pa-
rameters λ̃3 and λ̃4 are dimensionless functions of T and μB

characterizing the non-Gaussianity of the fluctuations of σ and
described in more detail in Ref. [22]. We shall not be concerned
with the absolute magnitude of (the critical contribution to) the
cumulants in this paper. Therefore, the normalization factors,
such as λ̃3 and λ̃4, will not be essential in the following.

The contribution of the critical mode to the fluctuation of
the particle distribution function, fA, is given by [37]

(δfA)σ = −χA

γA

gσ (xA), (11)

where we introduced a shorthand for the set of phase-space
coordinates, e.g.,

fA ≡ f (xA, pA,sA) (12)

with the species index sA standing for any additional par-
ticle quantum numbers (spin, charge, etc.). We denoted the
derivative of the equilibrium distribution function, f

eq
A =

[exp(εA − μ)/T ) ± 1]−1, by

χA ≡ ∂f
eq
A

∂μ
= 1

T
f

eq
A

(
1 ± f

eq
A

)
, (13)

[plus (minus) for fermions (bosons)], where the coupling g
is defined as derivative of the effective mass of the particle
in a given background of the critical mode: g ≡ dm(σ )/dσ .
For protons this corresponds to effective σ -model coupling
gσ�̄�. We also denoted by γA = dεA/dm = m/εA the
relativistic γ factor of the particle with momentum pA.

Using Eq. (11) we can calculate correlators of these critical
fluctuations. For example, for the critical contribution, denoted
by 〈. . .〉σ , to the two-point correlator we find

〈δfAδfB〉σ = T ξ 2g2 χA

γA

χB

γB

δ3(xA − xB). (14)

Note that the correlation in Eq. (14) appears local in the
position space (on scales R � ξ ), but it is nonlocal in
the momentum space. This momentum space nonlocality is
essential for the argument in Sec. III A.

Introducing the shorthand notation∫
A

≡
∫

d3xA d3 pA

(2π )3

∑
sA

(15)

for the integration over the phase space, i.e., over xA, pA (as
well as the summation over spin and other quantum numbers)
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we can express the fluctuation of the particle number N in
terms of δf : δN = ∫

A
δfA. The critical contribution to the

quadratic cumulant of the fluctuations is then given by

κ2[N ]σ ≡ 〈(δN )2〉σ =
∫

A

∫
B

T ξ 2g2 χA

γA

χB

γB

δ3(xA − xB)

(16)
One of the spatial integrals (say, over xB) can be performed
using the δ-function. The result can be written as

κ2[N ]σ ≡ 〈(δN )2〉σ =
∫

d3x T ξ 2g2

(∫
d3 p

(2π )3

∑
s

χ

γ

)2

.

(17)
The dependence on the acceptance enters via the range of
the momentum integration in Eq. (17). This range is fixed
in the frame of the detector (laboratory frame), but translates
(by boost) into different ranges in the co-moving frame for
different points on the freeze-out surface.

Treating higher-order cumulants similarly we find

κ3[N ]σ ≡ 〈(δN )3〉σ

=
∫

d3x 2λ̃3T
3/2ξ 9/2g3

(∫
d3 p

(2π )3

∑
s

χ

γ

)3

, (18)

and

κ4[N ]σ ≡ 〈(δN )4〉σ − 3〈(δN)2〉2
σ

=
∫

d3x 6
(
2λ̃2

3 − λ̃3
)
T 2ξ 7g4

(∫
d3 p

(2π )3

∑
s

χ

γ

)4

.

(19)

Our model of the critical fluctuations is not precise nor
detailed enough to distinguish between factorial, κ̂k , and
normal cumulants κk − 〈N〉. However, it is clear from the
physical origin (k-particle correlation) and from the small
�y behavior of κk[N ]σ , that they describe contributions to
the factorial cumulants κ̂k . However, the model describes the
regime of sufficiently large correlation length ξ , when critical
contributions are proportional to higher powers of ξ for higher
cumulants, κ̂k ∼ ξ 5k/2−3 [22], thus leading to the approximate
hierarchy |κ̂4| � |κ̂3| � |κ̂2|.

If such hierarchy does not hold in the data (in particular,
when κ̂4 is close to zero because it changes sign [37], or when
�y is very small), one should then directly compare κk[N ]σ
to experimentally measured factorial cumulants, κ̂k , instead of
κk − 〈N〉.

C. Transverse expansion

We shall use the blast-wave model (see, e.g., Refs. [41,42]
and, in application to transverse momentum correlations,
Refs. [40,43–45]) of the freeze-out surface to perform the
integrals in Eqs. (17)–(19). In this model the freeze-out surface
is isochronous, at a given Bjorken time τ = τf , and the
4-velocity field is given, in longitudinal Bjorken coordinates
(τ,η) and transverse polar coordinates (r,φ), as

(uτ ,uη,ur ,uφ) = (cosh η⊥,0, sinh η⊥,0), (20)

where the transverse velocity is parametrized as

β⊥ ≡ tanh η⊥ ≡ ur

uτ
= βs

r

R
, (21)

where the surface velocity βs ≈ 0.6 is a parameter we
determine by fitting the inclusive single-particle distribution.

The space integral in Eqs. (17)–(19) becomes the integral
over the freeze-out hypersurface:∫

d3x → τ

∫
dη

∫
rdr

∫
dφ. (22)

The momentum integration in Eqs. (17)–(19) can be expressed
as an integral over kinematic rapidity, transverse momentum
p⊥, and azimuthal angle ψ :∫

d3 p
(2π )3

∑
s

1

γ
→ dsm

(2π )3

∫ y2

y1

dy

∫ pmax

pmin

p⊥dp⊥
∫ 2π

0
dψ,

(23)
where ds is the species degeneracy (e.g., ds = 2 for proton
spin). The acceptance cuts are represented by the limits of
the integrations, with y2 − y1 ≡ �y. The particle distribution
function is given in terms of the energy ε p = up in the co-
moving frame and expressed in terms of the laboratory frame
y, p⊥, and ψ , as well as η, r , and φ, via

up = m⊥ cosh(y − η) cosh η⊥ − p⊥ cos(ψ − φ) sinh η⊥,
(24)

where m⊥ ≡
√

m2 + p2
⊥ and η⊥ is given by Eq. (21). The

Boltzmann approximation for the equilibrium distribution
function

f eq ≈ exp

(
μ − up

T

)
, χ ≈ f eq

T
, (25)

is sufficient for our purposes (in particular, for protons,
assuming m − μB � T ), and it allows performing part of the
multiple integration in Eqs. (17)–(19) analytically.

D. Beyond the model

Before proceeding to discuss the results let us emphasize
again that one of our simplifying approximations is that of
Bjorken (boost) invariance of the freeze-out hypersurface.
This assumption does not affect the validity of Eqs. (17)–(19).
The formulas are more general and can be applied also for
a realistic freeze-out surface obtained in a hydrodynamic
simulation, as done in Ref. [46]. The purpose of our paper is to
address the issue of the acceptance dependence in a transparent
fashion. The use of the Bjorken scenario (with a blast-model
transverse flow) allows us to separate the acceptance window
size dependence from, e.g., the dependence on the location of
the acceptance window (central vs forward rapidity), which
has a completely different physical origin.

The approximation R � ξ , as in, e.g., Eq. (8), is also
very helpful to simplify our treatment, but can be relaxed,
if necessary, along the lines of Refs. [46,47]. To be consistent,
however, this should be accompanied by the inclusion of
finite-time, nonequilibrium effects.

We need to keep in mind that the model we use to
demonstrate the acceptance dependence is the most basic
model of critical fluctuations, which neglects nonequilibrium
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effects except for on—the critical slowing down effect limiting
the magnitude of ξ . Nevertheless, the model should be
sufficient to describe qualitatively and semiquantitatively the
acceptance dependence of the cumulants, largely because this
dependence is constrained by generic considerations described
in Sec. II.

The most important feature of this dependence is �ycorr,
which is determined by the thermal momentum distribution
of the particles at freeze-out, and is not much sensitive to
the dynamics of the spatial correlations. The feature of the
critical fluctuations which is very important for both �y and
pT window dependence of the fluctuations is the nonlocality of
the correlations in the momentum space, e.g., in Eq. (14). We
do not expect that taking into account nonequilibrium effects
more thoroughly (along the lines of, e.g., Ref. [47] or [48])
will affect this property significantly.

We do wish, however, to underscore the importance of
developing a more comprehensive nonequilibrium approach
to fluctuations to enable more quantitative comparison with
experiment [49]. Such an approach is especially crucial for
predicting the absolute magnitudes of the cumulants (which
sensitively depend on ξ [22]) as well as their sign [37,48,50].

Finally, we wish to emphasize again that many effects
determining the magnitude of the correlations and their
acceptance dependence are left beyond the scope of the
paper. These are physical effects, such as that of the initial
state fluctuations (baryon stopping, jets, etc.), charge or
baryon number conservation effects, directed flow, final-state
rescattering, etc., as well as instrumental effects, such as
efficiency dependence on the detector occupancy, particle
momenta, or the location of the sector boundaries. Many of
these questions have been addressed or will be addressed by
other theoretical and experimental work. There is still much to
be done.

The goal of the paper is to focus on the physical mechanisms
directly related to critical fluctuations. Furthermore, we do not
attempt to address energy dependence, which has been studied
elsewhere, but the effect of acceptance at a given collision
energy. We expect our results to be correct on a qualitative
and semiquantitative level, in particular, because they satisfy
the general considerations in Sec. II. We hope our paper
will serve as a guide for experiments attempting to compare
measurements at different acceptance. However, more precise
comparison and interpretation of data would require careful
analysis of other relevant effects.

IV. RESULTS

We can now use the formulas we derived for critical point
contributions to (factorial) cumulants to predict the acceptance
dependence of these contributions. We choose

√
s = 19.6 GeV

as a representative collision energy. The results are very similar
at other energies we considered (e.g., 7.7 and 11.5 GeV) and
in agreement with the general arguments described in Sec. II.

We determine the temperature and chemical potential at
freeze-out using the fit from Ref. [51]: T ≈ 160 MeV, μB ≈
200 MeV. We use the value of βs (the radial surface velocity)
optimizing the agreement with the proton pT spectrum, as
shown in Fig. 3.

FIG. 3. Spectrum of proton transverse momenta from experiment
(points) [52], static thermal distribution (dashed line), and blast-wave
model (solid line). pT is measured in GeV.

We normalize the proton cumulants κk[N ] by their Poisson
value, 〈N〉, as in Eq. (2), and consider the contribution of
critical fluctuations,

ωk,σ = κk[N ]σ
〈N〉 , (26)

to ωk − 1 or, more precisely, to κ̂k/〈N〉 (see discussion at the
end of Sec. III B).

This quantity depends on the acceptance window and,
as expected from the arguments in Sec. II, saturates in the
limit of full (infinite in rapidity y and transverse momentum
pT ) acceptance at a value we denote ωk,σ (∞). To show the
acceptance dependence we plot the ratio of ωk,σ in the given
acceptance window (�y in rapidity for three representative
sets of pT cuts) to the full acceptance value ωk,σ (�y)/ωk,σ (∞)
in Fig. 4. In this ratio the prefactors such as g, ξ , and λ̃i in
Eqs. (17)–(19) cancel.

To understand the origin of the �y scale at which the
dependence saturates, it is helpful to look at the thermal
rapidity distribution of protons shown in Fig. 2. The width
of this distribution essentially sets the scale of the rapidity
smearing of correlations (schematically pictured in Fig. 1),
and the corresponding �ycorr ∼ 1.

For small �y � 1, the expected behavior ωk,σ (�y) ∼
(�y)k−1 comes, in the model, from the factor (

∫
Â

χA/γA)k ∼
(�y)k in Eqs. (17)–(19) where the volume of the integration
domain scales as �y [see Eq. (23)], and from division by
〈N〉 ∼ �y in Eq. (26).

Figure 4 also demonstrates that the pT window dependence
is significant, especially for higher-order cumulants. This is a
simple consequence of the nonlocality of the particle correla-
tions in momentum space as seen in, e.g., Eq. (14). In other
words, particles of all momenta in the thermal distribution are
correlated with each other by critical fluctuations.

V. SUMMARY AND CONCLUSIONS

We have described the basic features of the acceptance
dependence of fluctuation measures, in particular, of the
(factorial) cumulants of the proton number fluctuations. The
main lesson from our analysis is that the dependence on
the rapidity acceptance window �y is determined by the
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FIG. 4. Acceptance dependence of the critical contribution to the
normalized cumulants of proton number. See Sec. IV.

correlation range �ycorr in momentum space which has very
little to do with the correlation length in Bjorken coordinate
rapidity η. The latter is related to the spatial correlation length
ξ , �ηcorr ∼ ξ/τf , and is typically negligible compared to the
former, �ycorr ∼ 1, which is due to the thermal distribution
of the particles in the kinematic rapidity. The value �ycorr

separates two regimes of rapidity window dependence.
For �y � �ycorr the cumulants grow linearly with �y and

their ratios, such as, e.g, κk[N ]/〈N〉 = ωk , approach constant
values. The opposite, small acceptance regime, �y � �ycorr,
is easier to describe using the factorial cumulants, κ̂k , because
they scale as (�y)k in this regime. The normal cumulants,
on the other hand, given by linear combinations of factorial

cumulants in Eq. (3), have a more complicated, polynomial
dependence on �y in this regime.

Because the factorial cumulants have much simpler scaling
in both large and small acceptance regimes [Eqs. (4) and (5)],
we conclude that using these cumulants to analyze the
acceptance dependence is advantageous.

For the typical experimental acceptance, �y � 1, we find
that larger acceptance leads to significantly larger critical point
signals, especially for higher-order cumulants of fluctuations
(see Fig. 4). Larger pT acceptance has a similar effect.4

These results underscore the importance of the planned
STAR detector iTPC upgrade [34] to extend the rapidity
coverage for the critical point search in the Beam-Energy Scan
experiment at RHIC.
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APPENDIX: SMALL ACCEPTANCE AND FACTORIAL
CUMULANTS

For completeness, we provide a derivation of the claim,
used in Sec. II, that the kth factorial cumulant, κ̂k , measures
the strength of the (connected) k-particle correlation and,
therefore, in the regime �y � �ycorr, roughly counts the
number of correlated k-plets, leading to κ̂k ∼ (�y)k . We shall
start with a 2-point correlator and build up to derive Eq. (3) up
to k = 4 in order to elucidate the relationship between normal
and factorial cumulants.

Let us choose an infinitesimally small parameter ε and
divide a given kinematic region into O(1/ε) infinitesimally
small cells, or bins, labeled by index a. We shall denote by na

the random, fluctuating event-by-event, occupation number of
bin a, and by 〈na〉 its event average. When ε → 0 the value
of 〈na〉 = O(ε) � 1 and thus na obeys Poisson statistics with
infinitesimally small mean. In other words, the probabilities
are given by

Pna=0 = 1 − 〈na〉 + O(ε2),
(A1)

Pna=1 = 〈na〉 + O(ε2), Pna�2 = O(ε2),

i.e., most of the time na = 0, very seldom = 1, and almost
never �2. This means, in particular, that in expectation values
we can replace n2

a with na: 〈n2
a · · · 〉 = 〈na · · · 〉[1 + O(ε2)].

4It is important to also note that the statistical error of the estimator
of the cumulants grows slower with acceptance in this regime: as
〈N〉k/2 or (�y)k/2. This result is implicit in the analysis of Ref. [53],
where the error is estimated by (κ2/ε)k/2N−1/2

ev with Nev, the number
of events, and ε, the detector efficiency, since in practice κ2 ≈ 〈N〉.
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FIG. 5. Diagrammatic representation of the right-hand side of
Eq. (A5).

Similarly, we can also derive the following equation for the
fluctuation δna = na − 〈na〉 which we shall find useful:

〈(δna)k · · · 〉 = 〈na · · · 〉[1 + O(ε2)] (k � 2). (A2)

Using this equation we can obtain the following expression
for the 2-point correlator:

〈δnaδnb〉 = 〈na〉δab + Cab. (A3)

The first term on the right-hand side, which is nonzero only
when a = b, is simply the contribution of the fluctuation of
the number of particles in a given bin a. It does not represent
correlations. All correlations are in the second term, Cab, which
is nonzero when a �= b. The important feature of this term
is that in the limit ε → 0, Cab varies very little within the
acceptance window if �y � �ycorr, by definition of �ycorr.

Let us sum in Eq. (A3) over all the bins within the
acceptance window. By definition,

∑
a na = N , and thus

κ2 ≡ 〈(δN )2〉 =
∑

a

〈na〉 +
∑
ab

Cab = 〈N〉 + κ̂2. (A4)

The first term on the right-hand side is the well-known result
of Poisson statistics. The last term is the contribution of
correlations. When the acceptance window is much smaller
than the range of the correlations, �y � �ycorr, this term is
proportional to the volume of the acceptance window squared,
(�y)2 or 〈N〉2, because in this case we can approximate Cab

by a constant within the acceptance window.5

Let us generalize this argument to the 3-particle correlator:

〈δnaδnbδnc〉 = 〈na〉δabδac + (δabCac

+ δacCab + δabCac) + Cabc. (A5)

The five terms on the right-hand side can be represented by
diagrams as shown in Fig. 5, where a dot represents a bin and
a line connecting two dots represents two bins which coincide
due to, e.g., δab. The first term is nonzero only when a = b = c
and then it equals 〈(δna)3〉 = 〈na〉 due to Eq. (A2). The next
three terms (in the parentheses) are nonzero only when two of
the three bins coincide. For example, when a = b �= c, they
give 〈(δna)2δnc〉 = 〈δnaδnc〉 = Cac.

Summing over the bins within the acceptance we find

κ3 ≡ 〈(δN )3〉 =
∑

a

〈na〉 + 3
∑
ab

Cab +
∑
abc

Cabc

= 〈N〉 + 3κ̂2 + κ̂3. (A6)

5Note that Cab = O(ε2), but it cannot be neglected compared to
the first O(ε) term in Eq. (A3) because in Eq. (A4) the number of
elements in the sum

∑
a is O(1/ε), while in

∑
ab it is O(1/ε2), so

the two terms in Eq. (A4) are of the same order, O(ε0), finite in the
limit ε → 0. On the other hand, the diagonal terms, Caa , in Eq. (A3)
are negligible, since their contribution to Eq. (A4) is O(ε) → 0.

FIG. 6. Diagrammatic representation of the right-hand side of
Eq. (A8).

It is easy to see that in the regime when the size of the
acceptance is much larger than the range of correlations,
�y � �ycorr, each term in the right-hand side scales with
the volume of the acceptance window, �y, or 〈N〉. While in
the opposite regime, small acceptance window �y � �ycorr,
due to the smoothness of Cabc, the term κ̂3 scales as the volume
to the power 3, or (�y)3.

Defining the connected 4-point correlator as usual

〈δnaδnbδncδnd〉c ≡ 〈δnaδnbδncδnd〉 − (〈δnaδnb〉〈δncδnd〉
+ b ↔ c + b ↔ d), (A7)

we can express it as

〈δnaδnbδncδnd〉c = 〈na〉δabδacδad + (δabδacCad + 3 more)

+ (δabδcdCac + 2 more) + (δabCacd

+ 5 more terms) + Cabcd . (A8)

We have written only one of the similar terms in each set of
the parentheses. The additional terms are easier to represent
diagrammatically, as shown in Fig. 6.

Summing over all bins we obtain

κ4 ≡ 〈(δN)4〉c = 〈(δN )4〉 − (〈(δN)2〉)2

=
∑

a

〈na〉 + 7
∑
ab

Cab + 6
∑
abc

Cabc +
∑
abcd

Cabcd

= 〈N〉 + 7κ̂2 + 6κ̂3 + κ̂4. (A9)

The quantities we denoted by κ̂k and defined so far as k-fold
sums of corresponding C’s can be recognized as factorial
cumulants of the random variable N (with κ̂1 = κ1 = 〈N〉).
In the same way that normal cumulants (for k > 2) measure
the deviations from the normal distribution, the factorial
cumulants (for k > 1) measure deviations from the Poisson
distribution.

We find that the scaling of the factorial cumulants with the
acceptance window volume, or with �y, when this window is
very small, �y � �ycorr, is given by Eq. (5), while for �y �
�ycorr the scaling is the same as for the normal cumulants,
linear in �y, Eq. (4).

In experiment, the factorial cumulants can be easily calcu-
lated from the measured cumulants by solving Eqs. (A4), (A6),
and (A9) for κ̂k:

κ̂1 = κ1 = 〈N〉, κ̂2 = κ2 − κ1,

κ̂3 = κ3 − 3κ2 + 2κ1, (A10)

κ̂4 = κ4 − 6κ3 + 11κ2 − 6κ1
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(the coefficients here are Stirling numbers of the first
kind).

Alternatively, one can use the expansion of the generating
function

g(x) ≡
∞∑

k=1

κ̂k

xk

k!
= ln〈(1 + x)N 〉 (A11)

to express the factorial cumulants directly in terms of the plain
moments 〈Nk〉, or in terms of the factorial moments μ̂k =
〈N (N − 1) · · · (N − k + 1)〉 using

g(x) = ln

(
1 +

∞∑
k=1

μ̂k

xk

k!

)
. (A12)
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