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Deformed flux tubes produce azimuthal anisotropy in heavy ion collisions

H. J. Pirner
Institute for Theoretical Physics, University of Heidelberg, Germany

K. Reygers
Physikalisches Institut, University of Heidelberg, Germany

B. Z. Kopeliovich
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We investigate the azimuthal anisotropy v2 of particle production in nucleus-nucleus collisions in the maximum
entropy approach. This necessitates two new phenomenological input parameters δ and λ2 compared with
integrated multiplicity distributions. The parameter δ describes the deformation of a flux tube and can be
theoretically calculated in a bag model with a bag constant which depends on the density of surrounding flux
tubes. The parameter λ2 defines the anisotropy of the particle distribution in momentum space and can be
connected to δ via the uncertainty relation. In this framework we compute the anisotropy v2 as a function of
centrality, transverse momentum, and rapidity in qualitative agreement with Large Hadron Collider data.
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I. RANDOMNESS AND ORDER

A wide consensus has been reached that nucleus-nucleus
scattering allows one to study equilibrium thermodynam-
ics of the quark-gluon plasma at temperatures T varying
between 150 and 700 MeV. Special emphasis has been
devoted to the crossover transition between the quark-gluon
plasma and the hadron resonance gas. The respective lattice
calculations supplemented by hydrodynamic calculations of
various observables, like the azimuthal asymmetry v2, provide
evidence of hydrodynamical flow of hadronic matter under the
assumptions that the system arrives at local equilibrium very
early after the collision. A historical overview of the success
of this approach is presented in Ref. [1]. More recently also
a highly anisotropic expansion with viscosity, worked out in
Ref. [2], was shown to avoid the appearance of a negative
longitudinal pressure.

The maximum entropy model we propose is an alternative
approach. It emphasizes the phenomenological aspects of the
reaction dynamics and is based on the imbalance between
longitudinal and transverse motion in these high energy
reactions. It agrees with the common wisdom that randomness
is important to describe the momentum dependence of the
inclusive and correlated cross sections. Randomness comes
about because many low momentum partons/particles, radiat-
ing new QCD partons at a primordial stage, interact during the
collision and evolve very differently in the longitudinal and
transverse directions afterwards. Partons are best described by
the Bjorken fractional light cone momenta x, and the transver-
sal momenta. Consequently a random distribution must respect
not only the mean energy pumped into the collision, like
in a gas confined in a volume, but the conservation laws in
longitudinal and transverse directions. Therefore we look for
the most random distribution of partons compatible with two
constraints, namely the produced transverse energy and the
sum of the fractional momenta xi of all particles created in each

hemisphere, which must amount to unity. The most random
distribution with these constraints is the light cone plasma
distribution. We expect this distribution to be reached at an
intermediate time t ∼ (0.5 − 1) fm/c in the c.m. frame.

The maximum entropy approach allows one to include these
nonequilibrium features of the inclusive particle distribution
by using two parameters, the effective transverse temperature
λ and the softness parameter w, instead of only one parameter,
the temperature, as in the equilibrium distribution. The
first parameter λ comes from the constraint that the total
transverse energy of the produced partons is fixed. The second
parameter w guarantees that the sum of all partonic light
cone fractions is unity for forward and backward particles
separately. To simplify we consider only gluons participating
in the collision, then the maximum-entropy method yields a
Bose-type distribution depending on light cone fraction x and
transverse momentum as follows [3]:

n(x, �p⊥) = 1

e
| �p⊥|

λ
+xw − 1

(1)

with

x = ε + pz

E + Pz

.

In pp collisions the transverse configuration space is
homogeneously distributed over the area L2

⊥. Inclusive cross
sections give a size L⊥ ≈ 1 fm for gluon distributions
(cf. Ref. [3]). In nucleus-nucleus collisions we add up the
individual contributions of all nucleonic participants Npart. As
we have shown in Ref. [4], the effective transverse temperature
λ rises with centrality because of collisional broadening of
the partons. Finally invoking parton-hadron duality we obtain
the multiplicity N/2 of produced hadrons in each hemisphere
of the c.m. system by integrating the light cone distribution
over the respective phase space. Note [3] that the relativistic
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measure dx/x arises from the large spatial extension in the
longitudinal direction of the small x partons and the gluon
degeneracy factor is given as g = 2(N2

c − 1):

N/2 = g
Npart

2
L2

⊥

∫
d2p⊥
(2π )2

∫
dx

x
n(x, �p⊥). (2)

We emphasize that a statistical understanding of the final
state in heavy ion collisions necessitates a correct description
of both the momentum and configuration space distribution.
With this in mind it is clear that changes must be implemented
to describe the azimuthal anisotropy in the maximum-entropy
method. One has to take into account that phase space is
deformed for noncentral collisions. This means that both
configuration space and momentum space are not isotropic.
The impact parameter b along the x axis and the momenta of
the incoming particles along the z axis determine the reaction
plane. Orthogonal to this x,z system lies the third y axis. Let the
angle ϕ in the x,y plane be the angle between the transverse
momentum of the particle and the x axis. Any asymmetry
in transverse momentum space relative to the reaction plane
has to be considered together with the deformed asymmetry
in configuration space given by the overlap zone of the two
nuclei. There are indications from Hanbury Brown and Twiss
measurements for a noticeable asymmetry in configuration
space even much later in the collision (cf. Ref. [5]).

In the following, we concentrate on the early stage of the
collision and consider the different manifestations of gluonic
QCD degrees of freedom at very high energies. Shortly after
the collision the scattered nuclei pull many color-flux tubes be-
tween the activated, color charged partons [6]. These tubes are
gluonic degrees of freedom at low resolution. The transverse
size and position of a tube fluctuate, and such fluctuations
are certainly affected by the presence of neighboring tubes.
The tubes keep decaying; i.e., they break up due to the
Schwinger phenomenon and produce q̄q pairs. Flux tube
configurations are important in the initial state of the collision
as, e.g., discussed in the Glasma model [7] (cf. Fig. 1). Kinks
can be associated with hard gluons as in the Lund model [8].

The transverse momentum distribution of partons created
in the homogeneous field of a flux tube is related to the area
of the flux tube L2

⊥ as [6]

dn

d2p⊥
∝ e−α p2

⊥L2
⊥ . (3)

The energy of the color flux per unit of length (string tension)
for tubes formed between color-triplet charges is related
to the slope of meson Regge trajectories, κ = 1/(2πα′

R) ≈
1 GeV/fm. The string tension of a color octet-octet tube is
expected to be much larger, because the slope parameter of
the Pomeron trajectory, α′

P ≈ 0.25 GeV−2, is at least four
times smaller. Data from HERA prefer even smaller α′

P ≈
0.1 GeV−2 [9]. Note that a part of the observed elastic slope
comes from unitarity saturation [10]. As far as the energy
of two triplet-antitriplet strings is lower than the energy of
a single octet-octet string, we conclude that 33̄ flux tubes
repel each other at short transverse distances. The interaction
of QCD flux tubes certainly depends on the distance of
the centers of the tubes, and it is possible that their long

FIG. 1. Schematic picture of the flux tubes formed in the Glasma
are shown for a noncentral collision. A deviation from a circular
transverse shape of a flux tube leads to anisotropic particle production.

range interaction [11] is attractive before the repulsion sets
in.

QCD flux tubes resemble vortex lines in type II super-
conductors [12]. Such vortices can also be studied in a
Bose-Einstein condensate of cold atoms and were simulated
in an anisotropic trap in Ref. [13]. We conjecture that the flux
tube environment in heavy ion collisions will also influence
the transverse shape of QCD flux tubes. The presence of many
surrounding flux tubes dilutes the QCD vacuum, decreasing its
energy density, which leads to a reduction of the bag constant,
i.e., to a reduction of the vacuum pressure on the bag walls.
The tube is swelling more in the direction where the density is
higher. Therefore, we parametrize the available configuration
space for the gluons by two different extensions Lx and Ly in
the x and y directions. One may think that these extensions
are related to the major and minor axes of the ellipsoidal area
of the flux tube.

The transverse tube radius certainly increases, but for the
sake of simplicity we keep the average cross section of a flux
tube fixed and use it as a parameter which has been taken from
previous fits to the inclusive cross section [cf. Eq. (2)]:

LxLy = L2
⊥. (4)

The configuration space asymmetry is described by the
parameter

δ = L2
x − L2

y

L2
x + L2

y

. (5)

We define δ̄(b) as the average of δ over all flux tubes created
in a heavy ion collision at impact parameter b. Note that
the parameter δ̄ differs from the parameter ε given in the
literature, e.g., Ref. [14], which represents the average of
〈x2 − y2〉/〈x2 + y2〉 of the overlap area in the nucleus-nucleus
collision.
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The observed anisotropy in momentum space necessitates a third constraint in the maximum-entropy method. It appears
natural to use the second azimuthal moment of the total transverse energy as an additional constraint. Then the complete set of
constraints is the following:

gLxLy

∫
d2p⊥
(2π )2

∫
dx

x
xn(x, �p⊥,ϕ) = 1, (6)

gLxLy

∫
d2p⊥
(2π )2

∫
dx

x
| �p⊥| n(x, �p⊥,ϕ) = 〈E⊥,pp〉, (7)

gLxLy

∫
d2p⊥
(2π )2

∫
dx

x
| �p⊥| cos[2ϕ]n(x, �p⊥,ϕ) = c2〈E⊥,pp〉. (8)

These three constraints are added to the entropy per participant with three Lagrange parameters. Then the sum is maximized:

δ
(
S + 1

λ0

∑ |p⊥|n(x,p⊥,ϕ) + w
∑

xn(x,p⊥,ϕ) + 1
λ2

∑ |p⊥| cos[2ϕ]n(x,p⊥,ϕ)
)

δn(x,p⊥,ϕ)
= 0. (9)

Since all constraints are linear, the resulting maximum
entropy distribution has the familiar exponential form of the
light-cone Bose distribution. The third constraint defines a
third Lagrange parameter λ2, the transverse energy asymmetry.
The distribution takes the form

n(x,p⊥,ϕ) = 1

e
| �p⊥|( 1

λ0
+ cos[2ϕ]

λ2
)+xw − 1

. (10)

Higher moments on the transverse energy would generate
more parameters. Fluctuating distributions of nucleons in the
nuclei can produce odd moments. These more general cases
needing extra Lagrange parameters can be treated in a similar
way as above. The strictly phenomenological maximum-
entropy method tries first to parametrize the data without
prejudices concerning the reaction mechanism. In a second and
separate step this approach aims to understand the parameters
entering this description. We think this separation is helpful
to get the physics underlying the QCD plasma correctly.
Restricting ourselves to the second azimuthal moment, we
get the following parton distribution:

dNAA

dyp⊥dp⊥dϕ
= g

Npart

2

LxLy

(2π )2

1

e
| �p⊥|( 1

λ0
+ cos[2ϕ]

λ2
+ we|y|√

s
) − 1

. (11)

If parton-hadron duality holds, this generalized maximum-
entropy distribution gives the semi-inclusive cross section of
hadrons in AA collisions including azimuthal asymmetry.
We have seen in previous publications [3,4] that duality
holds approximately. Hadronic masses modify the light-cone
distribution, and probably also the azimuthal asymmetry.
Concentrating on the central rapidity window (y ≈ 0, w√

s
�

1
λ0

) one can integrate the above inclusive cross section with the
weight function cos(2ϕ). Representing the Bose distribution
by a geometric series one obtains a simple expression for the
total asymmetry v2, since |λ2| � λ0:

v2 =
∫

dNAA

dyp⊥dp⊥dϕ

∣∣
y=0 p⊥ cos(2ϕ) dϕdp⊥∫

dNAA

dyp⊥dp⊥dϕ

∣∣
y=0 p⊥ dϕdp⊥

≈ −λ0

λ2
. (12)

A small value of v2 points to a hierarchy of scales manifested in
λ2 being much larger than λ0. This hierarchy also reflects that

flux tubes do not fragment independently from one another,
but do interact slightly.

II. GEOMETRY OF THE COLLISION AND FLUX
TUBE DEFORMATION

In the following we assume a simple bag model [15] for
the flux tube and its support through QCD sum rules [16].
For heavy ion collisions, it is important to consider that the
flux tube is inserted into an environment of nearby flux tubes.
The number of flux tubes is proportional to the density of
participants, Npart(�x⊥). The higher this density the more the
flux tube properties will be affected. The bag constant B in the
environment will differ from the bag constant B0 in vacuum.
This approach is in the spirit of models in which nucleon
radii in nuclei depend on the surrounding density [17]. We
assume that the bag pressure decreases linearly with the density
and deconfines the partons, once the density of participants
approaches a critical value n0 (B ≡ 0 for n � n0):

B(Npart) = B0

(
1 − Npart(�x⊥)

n0

)
. (13)

We expand the local bag constant in the transverse overlap
plane around �x0 up to second order in distance:

B(�x) ≈ B(�x0) + x
∂B

∂x

∣∣∣∣
�x0

+ y
∂B

∂y

∣∣∣∣
�x0

+ · · · (14)

= B(�x0) + xBx |�x0 + yBy |�x0 . (15)

The longitudinal direction of the flux tube remains homoge-
neous in the longitudinal direction, so its energy per length
gives the string tension κ . If Q is the external charge at the
ends of the flux tube, then we get the string tension κ by
integrating over the area LxLy of the flux tube:

κ = 1

2

Q2

LxLy

+ B(�x0)LxLy + 1

2
BxL

2
xLy + 1

2
ByL

2
yLx. (16)

This string tension has to be minimized under the constraint
that the total area of the flux tube is unchanged:

LxLy = L2
⊥. (17)
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The solution depends on the sign of the gradients of the bag
pressure. Since on the left side of the mandola shape formed
in the overlap of the nucleus-nucleus collision the gradients
are opposite to the right side, we can combine the two sides by
taking the absolute values of the gradients. In agreement with
intuitive expectation we find that the flux tube is deformed
when the local pressure is larger on one side of the bag than
on the other; quantitatively the deformation depends on the
gradients of the bag constant in the x and y directions:

L2
x =

∣∣∣∣By

Bx

∣∣∣∣L2
⊥, (18)

L2
y =

∣∣∣∣Bx

By

∣∣∣∣L2
⊥. (19)

Using in these equations the density dependent bag constant
we calculate how the relative extensions Lx and Ly vary
inside the overlap region of the nucleus-nucleus collision for
each impact parameter b. The strongest differences between
Lx and Ly occur at the edges of the overlap regions. In the
following Lx and Ly always denote the mean value of these
extensions averaged over the whole area. Obviously the first
order expansion breaks down when Bx or By are equal to
zero at the y or x axis, but these lines are not important for
the averages. The next section shows how the deformation of
configuration space will affect the momentum distribution.

III. GEOMETRY OF THE COLLISION AND
MOMENTUM ASYMMETRY

At first sight, cf. Eqs. (11) and (12), the configuration space
asymmetry Lx �= Ly cancels out in the ratio for v2. But we
should not leave out how quantum mechanics generates a
momentum anisotropy for the gluons inside the flux tubes
when the flux tubes are deformed. In Ref. [18] the momentum
distribution of hadronization fragments was calculated for
spherical flux tubes. In our dual picture we do not differentiate
between gluons and hadrons. Recalling the relation between
the size of the flux tube and the momenta of partons given in
Eq. (3), we estimate the momentum asymmetry of the gluons
from the uncertainty principle:

〈
p2

x − p2
y

〉
〈
p2

x + p2
y

〉 =
1
L2

x
− 1

L2
y

1
L2

x
+ 1

L2
y

(20)

= −δ. (21)

We can also calculate this asymmetry in leading order λ0/λ2

from the deformed light-cone plasma distribution of gluons
given in Eq. (10): 〈

p2
x − p2

y

〉
〈
p2

x + p2
y

〉 = −2λ0

λ2
. (22)

Combining the two equations we are able to relate the
momentum space asymmetry λ2 to the configuration space
anisotropy δ. This is the main result of this section:

λ2 = 2λ0

δ
. (23)
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FIG. 2. The theoretical azimuthal asymmetry v2 is shown as
a function of centrality in percent. The data points represent
measurements of v2{2} (blue points) and v2{4} (red points) for charged
particles from ALICE [19] at

√
sNN = 2.76 TeV.

Finally, we compute the momentum integrated v2 from
the anisotropic light-cone plasma distribution with the pa-
rameter λ2 [Eq. (12)]. The resulting v2 is simply related to
the geometrical function δ̄(b) which we calculate from the
overlap area averaged asymmetry. Note that in this derivation
the parametrization of the light-cone distribution with the
parameters λ0 and λ2 enters:

v2(b) ≈ − δ̄(b)

2
. (24)

In Fig. 2 we compare the so calculated azimuthal asym-
metry v2 for massless gluons with the data for v2{2} (blue
points) and v2{4} (red points) of charged particles as a
function of the centrality for Pb-Pb collisions at the Large
Hadron Collider (LHC) at

√
sNN = 2.76 TeV. We reproduce

the general behavior of v2, but we underestimate the data
for low centralities where fluctuations in the positions of
the participants are important. Integrating over all impact
parameters one obtains an average value λ2 for LHC:

λ2 = −6.9 GeV.

Negative λ2 gives a positive value for v2(p⊥). The large
absolute value of the transverse asymmetry energy λ2 com-
pared with the transverse effective temperature λ0 ≈ 0.38 GeV
generates a small anisotropy.

The presented model is based on the early stage of the
collision, where the flux tube geometry plays an important
role. As noted in Ref. [14], any sort of interaction among the
primordial QCD degrees of freedom will cause nonvanishing
radial and anisotropic flows even before the system has
thermalized and viscous hydrodynamics becomes applicable.
Of course strong interactions of the finally produced hadrons
may also modify the angular anisotropy. Recently another
model of the initial state interaction based on the duality
of gravity in anti-de Sitter space with conformal field theory
(AdS/CFT) [20] has come to a different conclusion about the
deformation of the flux tubes. It proposes a widening of the
flux tubes along the impact parameter axis. Since AdS/CFT
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TABLE I. Parameters of the anisotropic light-cone distribution
for different centralities in Pb-Pb collisions at

√
sNN = 2.76 TeV.

Centrality λ0 (GeV) λ2 (GeV) w

10–20% 0.396 − 9.25 7.2
20–30% 0.383 − 5.65 6.73
30–40% 0.376 − 4.48 6.49

has special problems to describe QCD in the region between
Tc and 3Tc [21,22], we think its predictive power for such
complicated processes is limited. The simple bag model may
do better.

A momentum dependent v2(p⊥) can be computed from
the azimuthal integrals of the anisotropic light-cone plasma
distribution which give sums of modified Bessel functions I1

and I0 of the first kind:

v2(p⊥) =
∫

dNAA

dyp⊥dp⊥dϕ

∣∣
y=0 cos(2ϕ)dϕ∫

dNAA

dyp⊥dp⊥dϕ

∣∣
y=0 dϕ

=
∑∞

n=1(−1) exp(−np⊥/λ0)I1
(

np⊥
λ2

)
∑∞

n=1 exp(−np⊥/λ0)I0
(

np⊥
λ2

) . (25)

For the LHC at
√

sNN = 2.76 TeV we have the parameters
given in Table I. These parameters are fitted at each centrality
bin to the constraints dN/dy at y = 0, 〈p⊥〉 and the x-sum
rule. The effective transverse temperatures and the transverse
size for massless gluons differ slightly from the corresponding
parameters for massive pions. The effective temperature λ0

rises for more central collisions due to parton rescattering as
explained in Ref. [4]. The asymmetry energy λ2 increases
much more strongly with centrality. The transverse size is
constant: L⊥ = 0.766 fm.

In Fig. 3 we show the resulting momentum dependent
asymmetries for LHC at

√
sNN = 2.76 TeV in these three

different centrality bins. The different slopes of v2 as a function
of transverse momentum are reproduced. With masses of

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

pT �GeV�c�

v 2

FIG. 3. The azimuthal asymmetry v2 is shown as a function of
transverse momentum, in three different centrality bins (30–40%,
20–30%, 10–20%) from top to bottom for LHC at

√
sNN = 2.76 TeV.

The data points are v2{4} measurements from ALICE [19].
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0.10

y

v 2

FIG. 4. The impact parameter integrated azimuthal asymmetries
v2 are shown as a function of rapidity using the deformed light-cone
plasma distribution for centrality bins (30–40%, 20–30%, 10–20%)
from top to bottom.

the hadrons included in the constraints of the maximum-
entropy distribution the anisotropy will be suppressed for small
momenta.

Since |λ2| � λ0, we can expand the Bessel functions for
small transverse momentum p⊥ → 0 and obtain a formula
which is good for 0.1 < p⊥ < 1 GeV. For small momenta
the slope is given by the inverse of the transverse asymmetry
energy. Therefore, peripheral collisions have steeper slopes:

v2(p⊥) = − 1

λ2

(
λ0

2
+ p⊥

4
+ p2

⊥
24λ0

)
. (26)

Since we have the explicit form of the rapidity dependence
of the light-cone plasma distribution, we can also calculate
the momentum integrated flow parameter as a function of
the rapidity y with the parameters of Table I used for the
calculation of the momentum dependence and K = 0.35 given
in Ref. [4]:

v2(y) = − 1

λ2

(
1

1
λ0

+ we|y|
K

√
s

)
. (27)

The anisotropy v2(y) depends on rapidity in the above
specific combination including the effective transverse tem-
perature λ0, the softness parameter w, and the effective
c.m. energy K

√
s. In Fig. 4 we show the resulting rapidity

dependent asymmetries. For each centrality there is only
one calculated λ2 in the light-cone plasma distribution to
describe the dependence of the anisotropy parameter v2 on
momentum and rapidity. This is a definite advantage of the
light-cone plasma distribution compared with other statistical
distributions. The theory at y = 0 agrees with the data points
displayed in Fig. 2.

IV. DISCUSSION

We presented a model for the anisotropy parameter v2

based on the nonequilibrium maximum-entropy distribution.
We argue that deformed gluon flux tubes cause the momentum
anisotropy v2 which develops at an intermediate stage of the
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collision described by the nonequilibrium gluon light-cone
plasma. From the momentum scale λ0 of the light-cone distri-
bution one can estimate this time to be τ ≈ 1

λ0
= 0.5 fm/c.

In various models of heavy ion collisions, like the EPOS
model [23] and the Glasma picture [7], flux tubes play an
important role, and one must investigate their properties. These
should be compatible with an increasing tendency to deconfine
as seen in a thermal environment at high temperature. With
a bag constant which depends linearly on the density of
participants, one can quantify how the flux tube behaves in
the environment. From this calculation a deformation results
corresponding to the different gradients of the participant
densities in different directions. We remark that these gradients
also played a role in a perturbative calculation of the azimuthal
anisotropy of photons [24] which, however, could not explain
the size of the observed effect. In our model the total cross
section L2

⊥ of the flux tube is constrained from the integrated
multiplicity and was kept constant. It cannot account for very
high densities where the environment would also affect the
total area, which has to be studied separately. Especially high
densities are investigated in a recent article [11] where an
“implosion” of strongly overlapping flux tubes is discussed.

We emphasize the quantum properties of the flux tube.
Quantum mechanically, the flux-tube size gives the right size
of transverse momenta. The uncertainty relation connects the

spatial asymmetry δ to the momentum asymmetry of gluons.
This way, we can determine the transverse asymmetry energy
λ2, the third parameter in the maximum entropy distribution.

The presented paper restricts itself to the asymmetry of the
gluons; therefore, it presents only a crude picture of the full col-
lision dynamics. Further work is necessary to investigate addi-
tional consequences following from our picture. For instance,
deformed flux tubes can be used as a model for preequilibrium
flow to initialize a further hydrodynamic evolution. On a purely
phenomenological level it is also worthwhile to determine the
transverse asymmetry energy parameter λ2 in Eq. (8) directly
from the experimental data. It may be interesting to study
fluctuations along the longitudinal direction, which become
important for more peripheral collisions and also show up in
anisotropic flows. Relevant work in this direction can be found
in Refs. [25–27]. The more facets we learn about high energy
pp and nucleus-nucleus collisions the more the early stages of
the collision seem to become important, reflecting the lightlike
trajectories of the partons and their dynamics.
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