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Many hybrid models of heavy ion collisions construct the initial state for hydrodynamics from transport
models. Hydrodynamics requires that the energy-momentum tensor T μν and four-currents jμ do not deviate
considerably from the equilibrium ideal-fluid form, but the ones constructed from transport do not necessarily
possess this property. In this work we investigate the space-time picture of T μν deviations from equilibrium in
Au+Au collisions using a coarse-grained transport approach. The collision energy is varied in the range Elab =
5–160 A GeV. The sensitivity of T μν deviations from equilibrium to collision centrality, and other parameters
such as the switching criterion, the amount of statistics used to construct the initial state, and the smearing
parameter σ are investigated. For low statistics, deviations of T μν from equilibrium are large and dominated by
the effect of finite sampling. For large statistics, the pressure anisotropy plays the most significant role, while
the off-diagonal components of T μν are small in a large volume during the whole evolution. For all considered
energies and centralities the pressure anisotropy exhibits a similar feature: there is a narrow interval of time when
it rapidly drops in a considerable volume. This allows us to introduce an “isotropization time,” which is found to
decrease with energy and slightly increase with centrality. The isotropization times are larger than times typically
used for initializing hydrodynamics.
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I. INTRODUCTION

Heavy ion collision experiments at the BNL Relativistic
Heavy Ion Collider (RHIC) at center-of-mass energy

√
sNN =

200 GeV per nucleon pair and at the CERN Large Hadron
Collider (LHC) at

√
sNN = 2.76 TeV have provided evidence

of the quark-gluon plasma (QGP) existence and proven that it
behaves almost like a perfect fluid [1–6]. Models based on ideal
hydrodynamics, which requires local thermalization, are very
successful in describing the experimental data from RHIC and
LHC. It was argued that a good description of experimental
data requires rather small initialization times (τ � 0.6 fm/c
at RHIC) [7]. This raised the questions of how fast and due
to which physical mechanisms the QGP can be thermalized.
In contrast to this requirement of early thermalization, in the
newer works applying viscous hydrodynamics it is claimed
that “experimental data for bulk quantities can be reproduced
by hydrodynamic models also for large initialization times,
so no early thermalization assumption is needed” [8]. Still,
the necessary condition for applying hydrodynamics is the
vicinity to the thermal equilibrium. The recently developed
anisotropic hydrodynamics [9] is partially an exception: it can
be applied for arbitrarily high pressure anisotropy, but not
for arbitrarily high off-diagonal components of the energy-
momentum tensor.

The question about the degree of nonequilibrium at the
time of hydrodynamics initialization cannot be answered by
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hydrodynamics itself. The approach to equilibrium in heavy
ion collisions is actively studied microscopically within two
types of models, an overview of both being given in [10]. The
first ones apply dualities of supersymmetric Yang-Mills gauge
theory for calculations in the strong coupling limit [11,12].
Other approaches are able to achieve fast thermalization in a
weak coupling limit, where colliding nuclei are described in
the color-glass condensate (CGC) framework [13,14]. The pri-
mary effect in CGC leading to fast thermalization is believed to
be plasma instabilities, such as the chromo-Weibel instability
[15]. Both kinds of models predict considerable momentum
space anisotropies at the times when hydrodynamics is initial-
ized. The aforementioned studies are relevant for high collision
energies. At intermediate energies thermalization was studied
using transport models [16], where momentum distributions
were averaged over a (5 × 5 × 5) fm3 central cell. In contrast
to the work [16], in this paper we study thermalization
and isotropization at intermediate energies locally in space,
paying attention not only to pressure anisotropy but also to
off-diagonal components of the energy-momentum tensor. Our
study is particularly relevant for hydrodynamics + transport
hybrid models that construct the initial state from transport
approaches [17–24].

In such models the initial energy-momentum tensor T μν

and the four-current jμ are obtained from particles, a procedure
we refer to as fluidization. Afterwards they can be unam-
biguously decomposed into T μν = T

μν
ideal + πμν and jμ =

j
μ
ideal + qμ, where T

μν
ideal and j

μ
ideal are the energy-momentum

tensor and the four-current of conserved charges of an ideal
fluid. For a fully consistent fluidization a set of conditions
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is required. First, the hydrodynamics should be applicable,
therefore the system has to be close to equilibrium:

‖πμν‖ � ∥∥T
μν

ideal

∥∥, (1)

‖qμ‖ � ∥∥j
μ
ideal

∥∥. (2)

For applicability of hydrodynamics it is also required that the
Knudsen number be small,

Kn ≡ lmicro/Lmacro � 1, (3)

where lmicro is a microscopic scale related to particle collisions,
e.g. mean free path, and Lmacro is a macroscopic scale, e.g.,
the system size. Second, hydrodynamics and transport have
to be matched: energy-momentum tensor, currents, and their
time derivatives should be the same for transport and hy-
drodynamics at fluidization. Matching time derivatives means
that the transport properties (viscosities, thermal conductivity,
relaxation time, etc.), chemical rates, and the equation of state
(EoS) should be the same on both sides:

T
μν

transport = T
μν

hydro, (4)

j
μ
transport = j

μ
hydro, (5)

same transport properties, chemical rates, and EoS. (6)

Let us call this set of conditions (1)–(6) strong con-
sistency conditions. These conditions guarantee that, for a
small time after fluidization, results of the hydrodynamic
calculation are equivalent to the results of the transport
model. Hydrodynamics in this case is just another language
for the description of the same phenomena, which may
have some technical advantages. This is the case for the
applications of nonrelativistic hydrodynamics (see, e.g., [25]
and references therein): for boundary layers and dilute regions,
where hydrodynamics is not applicable, a transport model
is used, otherwise hydrodynamics is applied, because it is
computationally cheaper. In such models simulating the whole
system with transport and comparing to the hybrid model is
just a consistency check: the approaches should give identical
results. Strong consistency conditions are a necessary and
sufficient condition for that.

The purpose of applying hydrodynamics in heavy ion
collision simulations is completely different from the non-
relativistic applications, where the hydrodynamics is just a
matter of the simulation speed-up. In heavy ion collisions
switching to hydrodynamics allows us to investigate the
effects of thermalization, equation of state, and transport
properties of the hot and dense hadronic or QGP matter.
This implies instantaneous thermalization and rapid change
of EoS and transport properties at fluidization. Therefore,
conditions (3) and (6) are not required, but conservation laws
represented by equations (4) and (5) should be fulfilled, and
conditions (1) and (2) remain as a practical requirement to
solve the hydrodynamic equations numerically. We further
call conditions (1), (2), (4), and (5) the weak consistency
conditions.

The fluidization is typically performed either at a constant
proper time hypersurface τ = const or at a constant center-

of-mass frame time hypersurface tCM = const. The constant
is often chosen according to the geometrical criterion, the
time when nuclei geometrically pass through each other:
tCM = 2R

γβ
= 2R(Elab/2mN )−1/2, where R is radius of the

nucleus, β is velocity, γ = (1 − β2)−1/2, Elab is laboratory
frame kinetic energy per nucleon, and mN is nucleon mass.
This time is taken to be the same for all collision centralities.
It was never systematically verified if consistency (strong or
weak) is fulfilled at fluidization.

In this contribution we want to close this gap and answer
the following questions:

(1) Which conditions of weak consistency are fulfilled at
the time of geometrical overlap?

(2) What is a better fluidization criterion? Should it depend
on centrality?

(3) How can one perform fluidization consistently in the
weak sense?

To answer these questions we analyze the outcome of a
hadron cascade and determine where and when conditions (1)
and (2) are fulfilled.

The article is organized as follows. To set the stage, the
way fluidization is performed in different models is discussed
in Sec. II. In Section III we derive the expressions to quantify
deviations of T μν and jμ from the ideal fluid. The methodology
of our work is described in Sec. IV. Results for quantifying the
deviations are split into two sections: in Sec. V we consider
effects of nuisance parameters—statistics, smearing, and grid
spacing—while in Sec. VI we highlight the dependence on
collision energy and centrality. Our criticism of the smearing
procedure in the fluidization of the existing models and a
suggestion for its improvement are given in the Appendix.

II. OVERVIEW OF FLUIDIZATION IN CURRENT
HYBRID MODELS

Let us start by summarizing the current approaches that
are employed in hybrid models (see Table I). All the shown
approaches need to obtain the ideal fluid part of T μν and jμ

from discrete degrees of freedom (hadrons, partons, strings).
The viscous corrections are neglected in all models, even
if viscous hydrodynamics is applied for the evolution. The
only exception is a recent work by Liu et al. [26], where the
initial stage for viscous hydrodynamics is constructed from
free streaming partons and viscous corrections are explicitly
included.

The energy-momentum tensor T μν and four-currents jμ are
constructed as

T
μν

init (r) =
∑

i

p
μ
i pν

i

p0
i

K(r − ri , p),

(7)

j
μ
init(r) =

∑
i

p
μ
i

p0
i

K(r − ri , p).

Here K is a smearing kernel, which is often taken as a
Gaussian in various coordinates. In the Appendix we argue
that K(r)d3r should be Lorentz scalar, show that none of
the models fully meets this requirement, and derive a simple
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TABLE I. Fluidization features in different hybrid approaches. Each of these models, including those using viscous hydrodynamics, neglects
viscous corrections at fluidization.

Model Initial condition Hydro Switching criterion Smearing kernel Getting T
μν

ideal

UrQMD hybrid [17] UrQMD cascade ideal 3+1D, SHASTA tCM = max(2R

√
Elab

2mN

,1.0) fm/c Gaussian z-contracted T μ0, j 0

Skokov-Toneev hybrid [18] Quark-Gluon-String Model ideal 3+1D, SHASTA tCM such that S/QB = const not mentioned T μ0, j 0

EPOS [19] Strings (Regge- Gribov model) ideal 3+1D τ Gaussian z-contracted Landau frame

NeXSPheRIO hybrid [20,27] Strings (Regge- Gribov model) ideal 3+1D, SPH τ = 1 fm [28] Gaussian in x, y, τη Landau frame

Gale et al. [21] IP glasma viscous 3+1D, MUSIC τ = 0.2 fm/c (
√

sNN = 2.76 TeV) not mentioned Landau frame

Karpenko hybrid [22] UrQMD cascade viscous 3+1D τgeom Gaussian with σ⊥ and ση T μ0, j 0

Pang et al. hybrid [23] AMPT ideal 3+1D, SHASTA τ Gaussian with σ⊥ and ση T μ0, j 0

Bhalerao et al. hybrid [24] AMPT viscous 2+1D, VISH2+1 τ = 0.4 fm/c (
√

sNN = 2.76 TeV) Gaussian in x, y local CM frame

smearing kernel, which can be employed instead. Note that
changing to this Lorentz-invariant kernel leaves the final results
rather unaffected.

There are three ways in the literature to match the obtained
T μν and jμ to ideal hydrodynamics. The first one is to use
only T μ0 and j 0, assuming that they have ideal fluid forms
T

μν
ideal = (ε + p)uμuν − pgμν and j

μ
ideal = nuμ, and adding the

equation of state (EoS) p = p(ε,n). The following system
of equations is then solved (usually iteratively; for details
see [23]): ⎧⎪⎪⎨

⎪⎪⎩

T 00 = (ε + p)γ 2 − p,

T 0i = (ε + p)γ 2v,

j 0
B = nγ,

p = pEoS(n,ε).

(8)

The advantage of this method is that it conserves energy
and momentum. However, this method supports switching
only to ideal fluid T

μν
ideal; keeping viscous corrections is hardly

possible. Even though the switching method conserves energy
and momentum, one of the models which employs it violates
conservation laws [23], because in [23] the whole T μν is
multiplied by a free parameter K , which is then fixed by
experimental multiplicities.

Another way is to determine the energy density ε and the
collective velocity uμ by solving the eigenvalue problem

T μνuν = εuμ, (9)

using the fact that uμ is a timelike eigenvector of T μν and
satisfies uμuμ = 1. Then the density n is computed as n =
jμuμ. Only after that is the pressure determined from the
EoS. Note that this way is not equivalent to the previous one:
here the collective velocity does not depend on the equation
of state. This method conserves energy and momentum only
if the viscous corrections are kept. If they are neglected (as
in [19–21]) then conservation laws are violated. For a simple
example assume that uμ = γ (1,0,0,v). In this case, the energy
density in the computational frame is εcomp = γ 2(ε + v2T 33

L ),
where T 33

L can be split into the ideal fluid pressure and a viscous
correction. If the correction is neglected, energy conservation
is violated.

The third way is applied in [24]. All particles in the cell
are boosted to the local center-of-mass frame, which moves
with velocity v =

∑
pi∑
Ei

, where Ei and pi are energy and
momentum of the ith particle. Energy density is computed as

ε(r) = ∑
i E

′
iK(r − ri ), where E′

i is the energy of ith particle
in the local center-of-mass frame, and K is the smearing
kernel. Pressure is determined from the equation of state; local
collective velocity is assumed to be equal to v. In this method
energy and momentum conservation are violated if viscous
corrections are neglected, as in the previous method.

The switching criteria are rather similar in most of the
approaches: either constant proper time τ or constant time
in the center-of-mass frame tCM , the value being determined
by the geometrical criterion. It provides the earliest time
when equilibration could be possible, in principle. In [18]
the fluidization time tf l has a better physical motivation: tf l

is chosen such that the entropy per baryon does not change
anymore at t > tf l .

III. EXPRESSIONS FOR VERIFICATION OF WEAK
CONSISTENCY

Let us rewrite the conditions of weak consistency with
hydrodynamics for T μν and jμ in a way convenient for
numerical computation. General expressions for T μν and jμ

in viscous hydrodynamics (Landau picture) are the following:

T μν = ε0u
μuν − 
μν(P0 + �) + πμν,

(10)
jμ = n0u

μ + qμ,

where � is the bulk pressure, πμν is the shear stress tensor, n0 is
the conserved quantum number density, and qμ is the diffusion
current. Viscous corrections to ideal hydrodynamical T μν and
jμ are supposed to be small:

‖πμν‖ � ‖T μν‖, (11)

� � P0, (12)

‖qμ‖ � n0, (13)

From Eqs. (10) one obtains

πμν = T μν − ε0u
μuν + 1

3
μν
(
T α

α − ε0
)
, (14)

P0 + � = − 1
3
μνT

μν, (15)

qμ = 
μ
ν jν. (16)

One can see that in the Landau rest frame u
μ
L = diag(1,0,0,0),

π
μ0
L = 0, and q0

L = 0. The nonzero components are written as
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follows:

P0 + � = 1
3

(
T 11

L + T 22
L + T 33

L

)
, (17)

π
ij
L = T

ij
L − (P0 + �)δij , (18)

qi
L = −j i

L. (19)

Let us note that tensor and vector norms are frame independent,
so the consistency conditions for viscous hydrodynamics can
be formulated in any frame. In Eq. (11) one can substitute
‖T μν‖ by its largest component in the Landau frame: ε0. Then
Eq. (11) will turn into∥∥T

μν
L − diag(ε0,P

′,P ′,P ′)
∥∥ � ε0 , (20)

where P ′ denotes 1
3 (T 11

L + T 22
L + T 33

L ) = P0 + �. The physi-
cal meaning of this equation is that the diagonal components of
T μν in the Landau rest frame do not deviate much from P ′, and
simultaneously off-diagonal components are small compared
to ε0. The condition for qμ is rewritten as(

j 1
L

)2 + (
j 2
L

)2 + (
j 3
L

)2 � (
j 0
L

)2
. (21)

Here the physical meaning is that relative velocity between
Landau and Eckart frames should be small. To rewrite � �
P0 one has to add an equation of state P0 = pEoS(ε0,n0)
to the system. Then one obtains P ′/pEoS(ε0,j

0
L) − 1 � 1.

Consequently, whether or not the tensor T μν is suitable for
fluid dynamics is also defined by the equation of state from
the fluid dynamics itself. The same T μν can be consistent with
viscous hydrodynamics with some equation of state, and may
fail when the equation of state is changed. Therefore, we will
not study the smallness of bulk corrections further, but leave
this for a future study.

The conditions for smallness of the shear stress tensor
can be split into two: pressure isotropy and smallness of
off-diagonal elements. One has to note that the Landau frame
is defined only up to an arbitrary rotation. Locally one can
always choose such coordinates that T 12

L = T 23
L = T 13

L = 0.
However, our coordinates are the global coordinates of the
computational frame and therefore nondiagonal components
of the T

μν
L are in general nonzero. Therefore,∣∣T 11

L − P ′∣∣ + ∣∣T 22
L − P ′∣∣ + ∣∣T 33

L − P ′∣∣ � ε0, (22)∣∣T 12
L

∣∣ + ∣∣T 23
L

∣∣ + ∣∣T 13
L

∣∣ � ε0. (23)

To make these conditions stricter, every term is substituted
by the right-hand side of the inequality |T 11

L − P ′| = |T 11
L −

T 22
L + T 11

L − T 33
L |/3 � |T 11

L − T 22
L |/3 + |T 11

L − T 33
L |/3 and

ε0 is substituted by P ′. In this way a set of criteria is obtained
that we use for numerical calculations:

X ≡
∣∣T 11

L − T 22
L

∣∣ + ∣∣T 22
L − T 33

L

∣∣ + ∣∣T 33
L − T 11

L

∣∣
T 11

L + T 22
L + T 33

L

� 1,

Y ≡ 3
(∣∣T 12

L

∣∣ + ∣∣T 23
L

∣∣ + ∣∣T 13
L

∣∣)
T 11

L + T 22
L + T 33

L

� 1,

(24)

vLE =
√(

j 1
L

)2 + (
j 2
L

)2 + (
j 3
L

)2/
j 0
L � 1,

Z ≡ T 11
L + T 22

L + T 33
L

3 pEoS
(
ε0,j

0
L

) − 1 � 1.

In the following X is referred to as pressure anisotropy and
Y as off-diagonality. Please note that due to the inequality
|a − b| � |a| + |b| it is always fulfilled that X � 2. For ideal
fluid dynamics X = 0. For Y let us remark that

T 12 ∼
∑ p1p2

p0
� 1

2

∑ p2
1 + p2

2

p0
∼ 1

2
(T 11 + T 22). (25)

Interchanging indices and substituting this into the definition
of Y one gets Y � 3. For an ideal fluid Y = 0.

IV. METHODOLOGY

Our calculation is based on the hadronic transport approach
referred to as Ultrarelativistic Quantum Molecular Dynamics
(UrQMD 3.4) [29]. The degrees of freedom in UrQMD are
hadrons, resonances up to a mass of 2.2 GeV, and strings. The
implemented processes include binary elastic and inelastic
scatterings which mainly proceed via resonance formation
and decays or string excitation and fragmentation at higher
collision energies. The UrQMD particles move along classical
trajectories and scatter according to their free-particle cross
sections. In our studies there are no long-range potentials,
and particle trajectories between collisions are always straight
lines. Using UrQMD we simulate Au+Au collisions at labo-
ratory frame energies Elab = 5, 10, 20, 40, 80 and 160 A GeV.

The general procedure for our calculations is as follows:

(1) Generate many UrQMD events and coarse-grain them
using a 2+1-dimensional (2+1D) space-time grid.
The space dimensions are chosen to be the event
plane xz. We choose a 2+1D grid and not 3+1D
because observing the behavior of some quantity on
a 2D surface versus time is much easier and more
informative for a human than observing the quantity
on a 3D grid. Additionally, in central collisions due
to symmetry the event plane completely characterizes
all the volume. The center-of-mass frame is used as
the computational frame in the simulation. In all the
following text the time is measured in the center-
of-mass frame. By UrQMD convention, t = 0 is the
moment when the contracted spheres of the nuclear
radius first touch each other in a central collision.

(2) Use particles from the generated events to construct the
energy-momentum tensor T μν(t,x,z) locally for each
grid cell. To compute T μν we take only participants
into account, i.e., the particles that took part in at least
one collision. To construct T μν , Gaussian smearing
is employed; for details see the Appendix. We argue
that the construction of T μν in the existing models is
not a Lorentz-invariant procedure due to the smearing
kernels. A simple kernel is suggested, which satisfies
the necessary Lorentz-transformation requirements.
However, the introduction of the new kernel appeared
to be only a matter of physical rigor: switching the
standard kernel to our kernel did not produce noticeable
changes in the results.

(3) Transform the constructed energy-momentum tensor
in each grid cell to the Landau rest frame.
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(4) Verify the weak consistency conditions [see Eq. (24)]
locally in time and space. We check conditions for
smallness of pressure anisotropy, off-diagonality, and
Eckart velocity relative to Landau, but the condition
for smallness of bulk pressure compared to pressure is
left for future studies.

In this procedure we follow exactly the fluidization in
hybrid models; the only addition is that the weak consistency
checks are performed.

V. SENSITIVITY TO STATISTICS, GRID SPACING,
AND SMEARING

The deviations of T μν in the simulation from the ideal
fluid T

μν
ideal can have two distinct reasons. The first one is the

deviation of the distribution function f (r, p) in the transport
approach from equilibrium; this reason is referred to as
physical. The second reason is statistical: due to finite number
of particles in the simulation, the distribution function is not
sampled exactly.

Let us consider two energy-momentum tensors, calculated
from particles T

μν
part and a “true” T μν :

T
μν

part(r) = 1

Nev

∑
events

∑
i

p
μ
i pν

i

p0
i

K(r − ri ,pi), (26)

T μν(r) =
∫

pμpν

p0
f (r, p)d3p. (27)

Here Nev is the number of events and K(r − ri ,pi) is a general
smearing kernel. Particular examples of popular kernels are
given in the Appendix. In the limit of Nev → ∞,

1

Nev

∑
events

∑
i

K(r − ri ,pi)

Nev→∞−−−−→
∫

d3p d3r ′ f (r ′, p)K(r − r ′). (28)

For the case of a Gaussian kernel for σ → 0, the kernel K →
δ(r − r ′), and one retains the “true” T μν . To combine these two
limits (σ → 0, Nev → ∞) one has to keep enough particles
within a volume of size σ 3. Consequently, to obtain the “true”
T μν in the simulation, one has to take the limit (ρ is particle
number density)

σ → 0, Nevρσ 3 → ∞. (29)

This creates practical limitations for finding the “true” T μν

in simulations: decreasing σ 10 times demands increasing the
statistics 1000 times. One can also see that regions with lower
density are more demanding with respect to statistics. To get
some insights into the effect of statistics, we performed an
auxiliary simulation: N pions are generated, their momenta
being sampled from a thermal distribution with an ad hoc
temperature of T = 0.2 GeV, then

∑ pμpμ

p0 is computed, and
pressure isotropy X and off-diagonality Y of the energy-
momentum tensor from Eq. (24) are calculated. We varied
number of pions N and plotted X and Y versus N . The results
can be seen in Fig. 1. For every point the simulation was
repeated 100 times and the standard deviation is displayed as

(a)

pressure anisotropy,
N pions,
thermal distribution
X = 0.3

X

0

0.5

1.5

2

number of pions N
1 10 100 1000

(b)

off-diagonality,
N pions,
thermal distribution
Y = 0.3

Y

0

0.5

1.5

2

number of pions N
1 10 100 1000

FIG. 1. Pressure anisotropy X (a) and off-diagonality Y (b) of
T μν for particles sampled according to thermal distributions. The
effect of statistics on the deviation of the energy-momentum tensor
from the ideal fluid one is demonstrated.

an error. For the thermal distribution X = Y = 0 in the limit
of N → ∞, so the Fig. 1 demonstrates a pure effect of finite
sampling.

Figure 1 can be used to specify the number of events needed
to reach a good enough approximation to the “true” T μν . For
example, for Y = 0.3 as an acceptable level, the condition of
Eq. (29) becomes Nevρσ 3 > 100. From Fig. 1 one can also see
that the off-diagonality Y is more sensitive to statistics than
the pressure isotropy X.

In the previous paragraph we considered the effect of
statistics itself rather as an obstacle to get the physical “true”
T μν . However, recently event-by-event simulations gained
popularity in which the initial state for hydrodynamics was
intentionally constructed from a small number of events to
include the fluctuations. Let us see how the number of events
influences deviations of T μν from the ideal form in heavy
ion collisions. We compute T μν locally on every point of the
grid, and as a general characteristic we choose the percentage
of the event-plane area, where X < 0.3 (Y < 0.3). To define
the total area numerically, only grid cells where pressure
p > 10−4 GeV/fm3 are taken into account. For this example
Au+Au collisions at E = 80 A GeV with the impact parameter
b = 6 fm are considered. The smearing σ is 0.8 fm. Results
are depicted in Fig. 2.

(a)
Number of events

10000
1000
100
10
1

%
 a

re
a 

(X
 <

 0
.3

)

0

100

t [fm/c]0 2.5 10 12.5

(b)

%
 a

re
a 

(Y
 <

 0
.3

)

0

100

t [fm/c]0 2.5 10 12.5

FIG. 2. Event plane area percentage, where pressure isotropy X

(a) or off-diagonality Y (b) does not exceed 0.3 versus time for
different number of events Nev used to construct T μν . The number of
events Nev = 1 corresponds to the event-by-event case. The dotted
line marks geometrical time.
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(a) σ = 1 fm

Δx = Δz [fm]
0.2
0.7
0.9
1.1

%
 a

re
a 

(X
 <

 0
.3

)

0

100

t [fm/c]0 2.5 12.5 15
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FIG. 3. Event plane area percentage, where pressure isotropy X

does not exceed 0.3. Au+Au versus time. E = 80 A GeV, centrality
b = 6 fm, and number of events Nev = 1000. Gaussian smearing
σ (right) and grid spacing 
x = 
z (left) are varied to study the
sensitivity of results to them.

One can see that for this given σ 1000 events are enough for
X to saturate, so the line for Nev = 1000 represents results for
the physical pressure isotropy, i.e., due to deviation of f (r, p) in
the transport from equilibrium. For Y at Nev = 10000 almost
all the event area has small off-diagonality, which means
that the physical off-diagonality is small. For event-by-event
simulations, deviations of T μν from ideal fluid are dominated
by statistical effects.

In addition to the effect of statistics we investigate the effect
of other nuisance parameters, i.e., the grid spacing and the
Gaussian smearing, on our results. According to Fig. 3, the
grid spacing does not influence the results if taken sufficiently
small. This is expected, because the grid does not participate in
the simulation or in the calculation of T μν ; it only determines
the resolution of the T μν output. The only effect of grid
spacing is on the precision of the area calculation by counting
cells; here resolution of the output matters. At early times, it
makes some difference, because the total area is small. That
is why later we take 
x = 
z = 0.6 fm. At the same time
the Gaussian σ influences the results very significantly, as can
be seen from Fig. 3. The effect of Gaussian σ is twofold: on
the one hand larger σ means effective increase of statistics.
On the other hand, if the pressure anisotropy is large at some
space point due to physics, the Gaussian smearing will spread
this asymmetry in a 1–2 σ radius.

To characterize the influence of σ in a simpler way, we
plot tiso versus σ , where tiso is the earliest time when at
least 50% of the area have X < 0.3. We refer to this time
as isotropization time, as further described in the following
section. In Fig. 4 this dependence is displayed: the isotropiza-
tion time is monotonically growing with σ and is approaching
the geometrical time for σ → 0. Taking the limit σ → 0
is computationally challenging, because one has to increase
statistics as σ−3, as we have shown previously. Instead we
choose a reasonable σ = 0.8 fm and assign systematic errors
to our results, corresponding to changing σ in the range
0.6–1.0 fm. Another justification for such a treatment is that
none of the existing models attempts to consider the “physical”
limit of σ → 0, Nevρσ 3 → ∞; all the models use some fixed
σ instead.

E = 80A GeV
b = 6 fm
Δx = Δz = 1 fm

isotropization time:
X< 0.3 at >50% area
geometrical criterion

t is
o [

fm
/c

]

0

2

6

8

σ [fm]0 0.5 1.5 2

FIG. 4. Isotropization time (the time such that more than 50% of
the event-plane area has pressure isotropy X < 0.3) versus σ .

VI. RESULTS AND DISCUSSION

While in the previous section we studied the effects of nui-
sance parameters on the energy-momentum tensor generated
from particles, here we consider the dependence on physical
parameters: collision energy and centrality. All the following
figures are shown for grid spacing 
x = 
z = 0.6 fm, Gaus-
sian smearing σ = 0.8 fm, and number of events Nev = 1000.
The smearing kernel K(r) = (2πσ 2)−3/2γ exp (− r2+(r·u)2

2σ 2 ) is
used; see the Appendix for notations, its derivation, and
discussion.

The pressure anisotropy X satisfies the following prop-
erties: X � 2 for any tensor and X = 0 if and only if
T 11

L = T 22
L = T 33

L , as it is for ideal fluid T μν . For viscous
hydrodynamics it is necessary that X � 1. We consider
Xcrit = 0.3 as a limiting value when viscous hydrodynamics
is still applicable. Changing Xcrit to 0.4 leaves us with
qualitatively the same results and conclusions. Figure 5 gives
a qualitative impression of the space-time evolution of the
pressure anisotropy. Even though the figure shows a particular
energy of Elab = 80 A GeV and centrality b = 6 fm, some
features are universal for all energies and centralities that we
considered:

(1) On the borders of the expanding system the anisotropy
is always high, thus these regions are never consistent
with viscous hydrodynamics.

(2) After some moment of time a relatively isotropized
central region rapidly expands and never disappears
completely during the time evolution.

To make quantitative statements let us consider the evolu-
tion of the pressure anisotropy at several points along the x
axis (z = 0) versus time. This is shown in Fig. 6. One can see
that in the beginning the anisotropy is almost maximal, then
it rapidly decreases and never rises too much again. As we
have shown in the previous section, Nev = 1000 is enough to
suppress the anisotropy due to statistics, so the behavior of
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FIG. 5. Space-time evolution of pressure anisotropy X = |T 11
L −T 22

L |+|T 22
L −T 33

L |+|T 33
L −T 11

L |
T 11
L +T 22

L +T 33
L

(see color scale above the figure) for collision energy

in laboratory frame E = 80 A GeV and centrality b = 6 fm. If the value of X exceeds the color map maximum, it is marked with the same
color as the maximum. Solid lines mark the positions of the nuclei if they would not interact.

X in Fig. 6 is dominated by physics. However, the impact of
statistical fluctuations can be observed already at t > 5 fm/c:
X starts to fluctuate in space and time. One can see this both
in Fig. 5 at later times and in Fig. 6.

After looking at the space-time evolution of the anisotropy
in 2D as in Fig. 5 for different energies, one gets the impression
that there is a special moment tiso for each energy and centrality,
before which pressures are highly anisotropic in the whole
event plane and after which there emerges a considerable
isotropic region. To quantify this feeling we consider the
ratio of area where X < 0.3 to the total area versus time.
From Fig. 7 one can see that there is indeed a steep rise
of isotropized area at some moment for every considered
energy and centrality. Let us define the isotropization time
tiso such that more than 50% of the area has X < 0.3 at

TL
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FIG. 6. Example of pressure anisotropy behavior versus time.
Collision energy in the laboratory frame E = 80 A GeV; centrality
b = 6 fm.

t = tiso. The behavior of this isotropization time versus energy
and centrality is compared to the geometrical criterion in
Fig. 8. One can see that the isotropization time decreases with
energy, but remains larger than the geometrical criterion for
all energies except 5 A GeV. It is interesting to note that the
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FIG. 7. Percentage of area in the event plane, where pressure
anisotropy X < 0.3, for Au+Au collision energies Elab = 5, 10, 20,
40, 80, 160 A GeV panels (a)–(f) respectively.
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FIG. 8. Isotropization time tiso (see definition in the text) versus
energy and centrality.

isotropization time differs with centrality: for larger impact
parameters b it slightly increases. One might assume that this
has a pure geometrical reason: t0 = 0 is chosen in UrQMD as
a moment when nuclei touch each other in a central collision.
However, for peripheral collisions the nuclei will only touch
at t0(b) = R

γv
(1 −

√
1 − (b/2R)2). In Fig. 9 one can see that

this naive expectation yields the right trend: tiso rises with
centrality and the rise is smaller for higher energies. However,
quantitatively it overestimates tiso for large impact parameters.

Let us compare our findings to the study by Bravina et al.
[16], where one central cell of (5 × 5 × 5) fm3 was chosen to
study the pressure anisotropy of the energy-momentum tensor
in Au+Au collisions. An isotropization time was defined,
and it did not change significantly after zooming the central
cell to (1 × 1 × 1) fm3. This allowed for the conclusion
that isotropization happens rapidly in a large volume. The
isotropization time determined in this study also decreases
with collision energy. All of these results are confirmed in the
present study. However, our isotropization times are smaller
than the ones obtained by Bravina et al. There are two
possible reasons for that. First, we do not count spectators
for constructing pressure anisotropies. Second, the criterion
for isotropization we use is less strict: while we only require
at least 50% of event plane area to have X < 0.3, the central
cell study demands pz/px − 1 < 0.1 in the whole cell, which
corresponds to X < 0.065.

The off-diagonality Y = 3(|T 12
L |+|T 23

L |+|T 13
L |)

T 11
L +T 22

L +T 33
L

characterizes the

size of the off-diagonal components of the stress tensor
compared to the pressure. In ideal hydrodynamics Y = 0.
For the applicability of viscous hydrodynamics it is necessary
that Y � 1. We consider Ycrit = 0.3 as a value after which
viscous hydrodynamics is hardly applicable. An example for

E la b  =  5 A Ge V
E la b  =  1 0 A Ge V
E la b  =  2 0 A Ge V
E la b  =  4 0 A Ge V
E la b  =  8 0 A Ge V
E la b  =  1 6 0 A Ge V

t i
so

 [
fm

/c
]

2.5

5

10

b /2 RAu
0 0.2 0.8 1

FIG. 9. Isotropization time tiso (see definition in the text) versus
centrality. Dotted lines are the naive expectation from the collision
geometry: tiso(b) = tiso(b = 0) + R

γv
(1 − √

1 − (b/2R)2).

the space-time evolution of Y is given in Fig. 10. From
this figure it can be seen that in the central region Y is
always small. On the boundaries Y is typically large due to
statistical effects. A quantitative study similar to the study of
the pressure isotropy X shows that, for all considered energies
and centralities, more than 80% of the event plane area has
Y < 0.3 for the whole time of the evolution.

The relative velocity between Landau and Eckart frames
for baryon charge vLE is shown in Fig. 11. At high enough
statistics the relative velocity between Eckart and Landau
frames is not an important factor. It is significant only on the
borders of the system, where the density is small and statistical
effects play a role. But in all the rest of the volume, for all the
considered time evolution it remains small.

The effect of momentum-space cuts. Previously, we included
all participants into the T μν calculation. However, it is
generally believed that soft particles at midrapidity thermalize
faster, therefore it might be insightful to impose cuts in
momentum space, if one wants to obtain a more isotropic
T μν . On the other hand, applying tranverse momentum pT and
rapidity y cuts on a perfectly symmetric distribution results in
an asymmetry. In addition, these cuts decrease the statistics,
which leads to an increase of the anisotropy. To study the
effect of the kinematic cuts on the space distribution of the
pressure anisotropy X, we constructed T μν only from particles
with pT < 2 GeV and |y| < 1. The effect of cuts on X over
space is shown in Fig. 12. We made sure that the statistical
effect does not play a significant role by checking that results
do not change after increasing the number of events from
Nev = 103 to 104. The large anisotropy at very early times
decreases after imposing cuts. But the anisotropy at later times
is strikingly larger with cuts, first of all in the regions behind
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FIG. 10. Space-time evolution of off-diagonality Y = 3(|T 12
L |+|T 23

L |+|T 13
L |)

T 11
L +T 22

L +T 33
L

(see color scale above the figure) for collision energy in the laboratory

frame E = 80 A GeV and centrality b = 6 fm. If the value of Y exceeds the color map maximum, it is marked with the same color as the
maximum. Solid lines mark the positions of the nuclei, if they would not interact.

the nuclei. While without cuts we were able to introduce an
“isotropization time,” when X is smaller than 0.3 at more than
50% of the area, with the cuts the anisotropy is so high all over
the space that the isotropization time cannot be introduced
anymore.

VII. CONCLUSIONS

We have studied the energy-momentum tensor from the
UrQMD transport approach locally in space and time and
quantified its deviation from the ideal fluid form with two
numbers: the pressure anisotropy X and the off-diagonality
Y . First of all, we have shown that X and Y depend on
the number of UrQMD events Nev used to construct T μν .
Low statistics implies large deviations, even if the underlying
distribution function is completely thermal and isotropic. An
initial state constructed from less than few hundred events
(or a few hundred test particles equivalently) is bound to
deviate strongly from the ideal fluid form. The off-diagonality
appears to be mostly produced by this statistics effect. For
large statistics Y tends to be small in all the collision region
at all times. The pressure anisotropy does not vanish at large
statistics; it is a physical effect related to the anisotropy of the
underlying distribution function f (r, p). As a consequence,
the initial state from UrQMD with enough statistics is suitable
for anisotropic hydrodynamics.

Unfortunately, all the results depend on the smearing
parameter σ . With larger σ isotropization is reached later,
but the degree of isotropization is higher. From a practical
point of view that means that selecting large σ one has
to take larger fluidization time. This is in agreement with
conclusion of [30] that larger fluidization time should be
taken for larger σ to obtain the same pion yield. However,
strictly speaking, the physical limit is σ → 0, σ 3ρNev → ∞.
We found that at small σ the isotropization time approaches to
the time of geometrical criterion tgeom = 2R(Elab/2mN )−1/2,
so the geometrical criterion is partly justified, but only in the
above-mentioned limit. In the existing models the smearing
parameters and statistics are such that at tgeom the anisotropies
are very high.

For the pressure anisotropy X it was observed that it exhibits
a similar pattern for all the considered collision energies and
centralities: there is a narrow interval of time when it rapidly
drops in a considerable volume. This feature allowed us to
introduce and study the isotropization time tiso. The time
tiso can be considered as the time when UrQMD starts to
be compatible with viscous hydrodynamics. At t < tiso the
pressure anisotropy X is too high for viscous hydrodynamics
to be applied. Isotropization time decreases with collision
energy, following the same trend as the geometrical overlap
time. Based on this finding a new fluidization criterion is
suggested: tiso = tgeom(E) + 
t0(σ ), where 
t0 depends only

FIG. 11. Space-time evolution of relative velocity between Landau and Eckart frames vLE =
√

(j 1
L)2 + (j 2

L)2 + (j 3
L)2/j 0

L (see color scale
above the figure) for collision energy in the laboratory frame E = 80 A GeV and centrality b = 6 fm. If the value of vLE exceeds the color map
maximum, it is marked with the same color as the maximum. Solid lines mark the positions of the nuclei, if they would not interact.
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FIG. 12. The effect of pT < 2 GeV and |y| < 1 cuts on the space

distribution of pressure anisotropy X = |T 11
L −T 22

L |+|T 22
L −T 33

L |+|T 33
L −T 11

L |
T 11
L +T 22

L +T 33
L

(see color scale above the figure) for collision energy in laboratory
frame E = 80 A GeV, centrality b = 6 fm. If the value of X exceeds
color map maximum, it is marked with the same color as maximum.
Solid lines mark the positions of the nuclei, if they wouldn’t interact.

on the Gaussian smearing σ and can be determined from Fig. 4.
We observed a slight dependence of isotropization time on
centrality: it increases with impact parameter, but the slope of
this increase becomes smaller and smaller for higher energies.
This behavior has a simple geometrical interpretation.

Testing the smallness of the bulk pressure compared to
pressure left is beyond the scope of this article. As we have
mentioned, the extracted bulk pressure depends on the equation
of state, therefore this check has to be performed with a set of
EoS used in the literature. Since in this article we restricted
ourselves to testing the weak consistency, the next possible
step is to test locally the fulfillment of the strong consistency.
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APPENDIX: Tμν AND jμ FROM PARTICLES

The general formula for calculating T μν and jμ from
particles is

T
μν

init (r) =
∫

pμpν

p0
f (r, p)d3p,

j
μ
init(r) =

∫
pμ

p0
f (r, p)d3p.

(A1)

Here f is the one-particle distribution function. For a discrete
set of particles it is

f (r, p) =
∑
part

δ3( p − ppart)δ
3(r − rpart). (A2)

For numerical calculations the spatial dependence of the
distribution function needs to be smeared in some way,
therefore the delta function is substituted by some smearing
kernel K(r − rpart). The smearing kernel should satisfy three
conditions: K(r)d3r should be a Lorentz scalar, it should
be normalized as

∫
K(r)d3r = 1, and it should approach

the delta function for smearing parameters approaching zero.
Surprisingly, all current popular choices of K are such that
K(r)d3r is not a Lorentz scalar:

(1) Cell averaging:

K(r) =
{

1/
V, r ∈ 
V,
0, otherwise.

Here K(r)d3r is not a Lorentz scalar, since volume

V is not contracted.

(2) Gaussian averaging with Lorentz contraction in the

z direction: K(r) = N exp (− x2+y2+γ 2
z z2

2σ 2 ) is behaving
properly only under boosts in the z direction.

(3) Gaussian in x, y, η coordinates also behaves properly
only under boosts in the z direction.

Further, we derive a simple, not too computationally
demanding kernel that satisfies all aforementioned condi-
tions, in particular K(r)d3r being a Lorentz scalar. In the
rest frame of the particle we take a Gaussian: K(r rest) =
(2πσ 2)−3/2 exp(−r2

rest/2σ 2). If 
x ′μ are the coordinates in
the computational frame and 
xμ are the coordinates in the
rest frame then 
xμ = �μ

ν 
x ′ν , where � is the matrix of the
Lorentz transformation. We want to consider a Gaussian at
fixed time in the computational frame, so 
x ′0 = 0. Denoting
the spatial part of the particle four-velocity as u = γβ, where
β is the three-velocity and γ = (1 − β2)−1/2, one obtains


xi = �i
j
x ′j , (A3)

�i
j = δi

j + (uiuj )/(1 + γ ), (A4)
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(
xi)2 = �i
j
x ′j�i

k
x ′k, (A5)

�i
j�

i
k = δjk + ujuk, (A6)

(
x)2 = (
x′)2 + (
x′ · u)2, (A7)

K(r) = N0(2πσ 2)−3/2 exp

(
− r2 + (r · u)2

2σ 2

)
. (A8)

To determine the normalization factor N0, one can
use that

∫
(
∏n

i=1 dxi)e−xiA
ij xj = πn/2 (detA)−1/2. The

determinant det(�i
j�

i
k) = det(δjk + ujuk) = γ 2, so∫

K(r)d3r = N0/γ = 1 and therefore N0 = γ . Finally we

obtain

K(r) = (2πσ 2)−3/2γ exp

(
− r2 + (r · u)2

2σ 2

)
. (A9)

One can check that this formula turns into the commonly
used one if u = γz(0,0,βz). Since 1 + (γzβz)2 = γ 2

z in this
case, we immediately retain the usual smearing kernel. Scalar
products do not change under rotations, so the expression in the
exponential does not change under rotations either. Rotating
to the frame where the z axis is parallel to u, one can see that
our kernel is nothing else but a proper Lorentz contraction in
the direction of motion.
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