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Theoretical optical potential derived from nucleon-nucleon chiral potentials
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Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this
process has been extensively studied over the last years, a consistent description, i.e., starting from microscopic
two- and many-body forces connected by the same symmetries and principles, is still under development.
Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the
construction of an optical potential.
Methods: We basically follow the Kerman, McManus, and Thaler approach [Ann. Phys. (NY) 8, 551 (1959)] to
build a microscopic complex optical potential, and then we perform some test calculations on 16O at different
energies.
Results:. Our conclusion is that a particular set of potentials with a Lippmann–Schwinger cutoff at relatively
high energies (above 500 MeV) reproduces best the scattering observables.
Conclusions: Our work shows that building an optical potential within chiral perturbation theory is a promising
approach for describing elastic proton scattering; in particular, in view of the future inclusion of many-body
forces that naturally arises in such a framework.
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I. INTRODUCTION

Elastic proton scattering has been extensively studied over
many decades, both experimentally and theoretically, and
there now exist extensive measurements of cross sections and
polarization observables for the elastic scattering of protons
from a wide variety of stable nuclei over a wide range of
energies. A suitable and successful framework to describe
the nucleon-nucleus (NA) interaction in elastic scattering
is provided by the nuclear optical potential [1]. With this
instrument we can compute the scattering observables, such as
the differential cross section, the analyzing power, and the spin
rotation, for the elastic NA scattering across wide regions of
the nuclear landscape. The use of the optical potential has been
extended to calculations of inelastic scattering and to generate
the distorted waves for the analysis of the cross sections for a
wide variety of nuclear reactions. For instance, in quasi-elastic
electron scattering, an optical potential is commonly used to
describe the final-state interaction between the emitted nucleon
and the residual nucleus in the exclusive (e,e′p) [2] and in the
inclusive (e,e′) reactions [3,4].

The optical potential can be obtained in different ways.
It can be obtained phenomenologically [5,6], by assuming
a form of the potential and a dependence on a number of
adjustable parameters for the real and imaginary parts that
characterizes the shape of the nuclear density distribution and
that varies with the nucleon energy and with the nucleus
mass number. These parameters are adjusted to optimize
the fit to the experimental data of elastic NA scattering.
The optical potential has an imaginary part that takes into
account the absorption of the reaction flux from the elastic
channel to the nonelastic reaction channels. Alternatively and
more fundamentally, the optical potential can be obtained
microscopically. The calculation requires, in principle, the
solution of the full nuclear many-body problem, which is
beyond present capabilities. In practice, some approximations
must necessarily be adopted. With suitable approximations,

microscopic optical potentials are usually derived from two
basic quantities: the nucleon-nucleon (NN) t matrix and the
matter distribution of the nucleus. All these models based
on the NN interaction are nonrelativistic (see Ref. [7] for a
detailed review). Because microscopic optical potentials do
not contain adjustable parameters, we expect that they have
a greater predictive power when applied to situations where
experimental data are not yet available, such as, for instance,
to the study of unstable nuclei.

The theoretical justification for the NA optical potential
built in terms of underlying NN scattering amplitudes was
given for the first time by Chew [8] and Watson et al. [9,10]
more than 60 years ago. Successively, Kerman, McManus, and
Thaler (KMT) [11] developed the Watson multiple scattering
approach expressing the NA optical potential by a series
expansion in terms of the free NN scattering amplitudes.
Several years later, with the development of high-accuracy
NN potentials, there has been a renewed interest in finding a
rigorous treatment of the NA scattering theory in momentum
space. Such potentials permit us to generate the NN interaction
directly in momentum space, which is thus chosen as the
working space in which to develop the NA optical potential
and to compute the elastic scattering observables. Several
authors contributed to the development of multiple scattering
theory and, with a series of papers [12–32], to calculations of
microscopic optical potentials. The present work is framed in
this context.

The NN potential is an essential ingredient in the NA
scattering theory and its off-shell properties play an important
role. To obtain a good description of these properties, the
optical potential models have always employed “realistic”
potentials, in which the experimental NN phase shifts are
reproduced with a χ2 per data �1. The most commonly
used NN potentials are those given by groups from Nijmegen
[33], Paris [34], Bonn [35], and Argonne [36]. In contrast,
with recent advances in lattice quantum chromodynamics
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(lattice QCD), new attempts have been made to derive the
nuclear potential directly from first principles [37]. However,
since QCD is a nonperturbative theory in the low-energy
regime, which is characteristic of nuclear physics, an ab initio
solution of this problem is not feasible at the moment. On
the other hand, when the concepts of effective field theory
(EFT) were applied to low-energy QCD, chiral perturbation
theory (ChPT) [38] was developed and it became possible
to implement chiral symmetry consistently in a theory of
pionic and nuclear interactions. For this theory some sort
of perturbative expansion was assumed, such that only a
finite number of terms contribute at a given order. This
expansion was provided by powers of small external momenta
over the chiral-symmetry-breaking scale, �χ ≈ 1 GeV. The
NN potential is then calculated perturbatively in the chiral
expansion and iterated to all orders in a Schrödinger or
Lippmann–Schwinger (LS) equation to obtain the nuclear
amplitude.

The most recently available chiral potentials are developed
at fourth order (N3LO) in the chiral expansion and are used in
this work as a basic ingredient to compute the NN t matrix
for the construction of the NA optical potential. In particular,
in all the calculations presented in this paper we adopt the
two different versions of chiral potentials developed by Entem
and Machleidt (EM, [39–43]), and Epelbaum, Glöckle, and
Meißner (EGM, [44]).

Very recently Epelbaum et al. [45] presented a nucleon-
nucleon potential at fifth order (N4LO) with an innovative
coordinate-space regularization. It is also worth mentioning
that, over the last years, some authors [46–48], following
different approaches, have started to include chiral three-
body forces [49,50] at order N2LO. We plan to extend
our calculations along these research lines in forthcoming
presentations.

The second important ingredient of the NA scattering
theory is the microscopic structure of the nuclear target,
given by neutron and proton densities. These quantities are
computed within the relativistic mean-field (RMF) description
[51] of spherical nuclei by using a density-dependent meson-
exchange (DDME) model, where the couplings between
mesonic and baryonic fields are assumed as functions of the
density itself [52].

The paper is organized as follows: in Sec. II we describe
the theoretical framework used to calculate the NA optical
potential and the scattering observables. This section is divided
into five sections in which we outline the different aspects of
the calculation. In Sec. II A the general scattering problem
is introduced in the momentum frame and is represented
by the LS equation for the entire system composed of the
projectile and the target nucleus. This equation is separated
into a simple one-body equation for the transition matrix
and a more complicated one for the optical potential. By
using the optimum factorization approximation the expression
for the optical potential is reduced to a simple form, in which
the NN t matrix and the nuclear density are factorized. In
Sec. II B we give the explicit formulas to compute the NN
Wolfenstein amplitudes that are proportional to the central
and spin-orbit parts of the NN t matrix, which is then used
to compute the NA optical potential. In Secs. II C and II D we

describe the theoretical framework to solve the NA LS equation
in the partial-wave representation and then use these solutions
to compute the scattering observables. In Sec. II E we show
the algorithm we use to include in the model the Coulomb
interaction between the projectile and the target nucleus.

In Sec. III we present and discuss the theoretical results
for the NN Wolfenstein amplitudes obtained with the different
NN potentials. In particular, the novelty in our calculations is
the use of the chiral potentials [39,44] as basic ingredients
to compute the microscopic NA optical potential and the
scattering observables.

In Sec. IV we present theoretical results for the scattering
observables on 16O calculated with all NN potentials. Predic-
tions based on EM and EGM potentials are compared with
available experimental data in order to determine the most
successful theoretical approach and the best LS cutoff.

Finally, in Sec. V, we draw our conclusions.

II. THEORETICAL FRAMEWORK

A. First-order optical potential

The general problem of the elastic scattering of a proton
from a target nucleus of A nucleons can be stated in momentum
space by the full (A + 1)-body Lippmann–Schwinger equation

T = V + V G0(E)T , (1)

whose general solution is beyond present capabilities. A reli-
able method to treat Eq. (1) is given by the spectator expansion
[30], in which multiple scattering theory is expanded in a finite
series of terms where the target nucleons interact directly with
the incident proton. In particular, the first term of this series
only involves the interaction of the projectile with a single
target nucleon, the second term involves the interaction of the
projectile with two target nucleons, and so on to the subsequent
orders. In the standard approach to elastic scattering, Eq. (1)
is separated into two equations. The first one is an integral
equation for T

T = U + UG0(E)PT, (2)

where U is the optical potential operator, and the second one
is an integral equation for U

U = V + V G0(E)QU. (3)

The operator V represents the external interaction and the total
Hamiltonian for the (A + 1)-nucleon system is given by

HA+1 = H0 + V. (4)

If we assume the presence of only two-body forces, the
operator V is expressed as

V =
A∑

i=1

v0i , (5)

where the two-body potential v0i describes the interaction
between the incident proton and the ith target nucleon. The
system is asymptotically an eigenstate of the free Hamiltonian
H0 and G0(E) is the free propagator for the (A + 1)-nucleon
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system,

G0(E) = 1

E − H0 + iε
. (6)

The free Hamiltonian is given by

H0 = h0 + HA, (7)

where h0 is the kinetic energy operator of the projectile and
HA is the target Hamiltonian,

HA |�A〉 = EA |�A〉 , (8)

where |�A〉 is the ground state of the target. The operators P
and Q in Eqs. (2) and (3) are projection operators,

P + Q = 1, (9)

and P fulfills the condition

[G0,P ] = 0. (10)

In the case of elastic scattering P projects onto the elastic
channel and can be defined as

P = |�A〉 〈�A|
〈�A|�A〉 . (11)

With these definitions, the elastic transition operator may be
defined as Tel = PT P and, in this case, Eq. (2) becomes

Tel = PUP + PUPG0(E)Tel. (12)

Thus the transition operator for elastic scattering is given by
a one-body integral equation. In order to solve Eq. (12) we
need to know the operator PUP . In the spectator expansion
the operator U is expanded as

U =
A∑

i=1

τi +
A∑

i,j �=i

τij +
A∑

i,j �=i,k �=i,j

τijk + · · · , (13)

according to the number of nucleons interacting with the
projectile. In the present work we only consider the first-order
term of this expansion and thus the optical potential operator
becomes

U =
A∑

i=1

τi, (14)

where τi can be expressed as

τi = τ̂i − τ̂iG0(E)Pτi. (15)

For elastic scattering we only need to consider PτiP or,
equivalently,

〈�A|τi |�A〉 = 〈�A|τ̂i |�A〉 − 〈�A|τ̂i |�A〉
× 1

(E − EA) − h0 + iε
〈�A|τi |�A〉 , (16)

where τ̂i is the solution of

τ̂i = v0i + v0iG0(E)τ̂i . (17)

Expanding the propagator G0(E) within a single-particle
description, at first order we obtain

Gi(E) = 1

(E − Ei) − h0 − hi − Wi + iε
, (18)

where hi is the kinetic energy of the ith target nucleon and Wi

is given by

Wi =
∑
j �=i

vij (19)

and represents the force between the struck nucleon and the
other (A − 1) nucleons. With the operator Gi(E), the τ̂i matrix
of Eq. (17) is expressed as

τ̂i = v0i + v0iGi(E)τ̂i = t0i + t0igiWiGi(E)τ̂i , (20)

where the operators t0i and gi are defined as

t0i = v0i + v0igi t0i , (21)

gi = 1

(E − Ei) − h0 − hi + iε
. (22)

In Eq. (21) the matrix t0i represents the free NN t matrix and,
in the impulse approximation (IA), we have τ̂i ≈ t0i . Thus in
this approximation we only have to solve a two-body equation.

To develop a theoretical framework to compute the optical
potential and the transition amplitude for the elastic scattering
observables, we follow the path outlined in Ref. [53], that is
based on the KMT multiple scattering theory and that, at first
order, is equivalent to the IA. In this formulation, the elastic
scattering amplitude is given by

Tel(k
′,k; E) = A

A − 1
T̂ (k′,k; E), (23)

where the auxiliary elastic amplitude is determined by the
solution of the integral equation

T̂ (k′,k; E) = Û (k′,k; ω) +
∫

d3p
Û (k′, p; ω)T̂ ( p,k; E)

E(k0) − E(p) + iε
,

(24)

and the auxiliary first-order optical potential is defined by

Û (k′,k; ω) = (A − 1) 〈k′,�A|t(ω)|k,�A〉 , (25)

where t is any one of the free NN t0i matrices. Our problem is
then described in the zero-momentum frame of the NA system
by Eq. (24), where k0 is the initial on-shell momentum and
E(k0) is the corresponding initial energy of the system in the
NA frame. To compute the scattering observables we only need
the on-shell term Tel(k0,k0; E) of the transition matrix, but in
this work we consider the full off-shell matrix with the general
initial and final momenta k and k′, respectively.

The KMT first-order optical potential is given by Eq. (25)
where t(ω) is the free NN t matrix evaluated at a fixed energy
ω. Defining the new variables

q ≡ k′ − k, K ≡ 1
2 (k′ + k), (26)

some manipulations [53] give Eq. (25) in a factorized form
(optimum factorization approximation) as the product of the
NN t matrix and the nuclear matter density,

Û (q,K ; ω) = A−1

A
η(q,K )

∑
N=n,p

tpN

[
q,

A+1

A
K ; ω

]
ρN (q),

(27)

where N = n,p, tpN represents the proton-proton (pp) and
proton-neutron (pn) t matrix, ρN the neutron and proton profile
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density, and η(q,K ) is the Møller factor,

η(q,K ) =
[

Eproj(κ ′)Eproj(−κ ′)Eproj(κ)Eproj(−κ)

Eproj(k
′)Eproj

(− q
2 − K

A

)
Eproj(k)Eproj

( q
2 − K

A

)
] 1

2

,

(28)

that imposes the Lorentz invariance of the flux when we pass
from the NA to the NN frame in which the t matrices are
evaluated. The optical potential obtained so far is an operator
in the spin space of the projectile. To make the spin dependence
explicit, the t matrix tpN is averaged over the spin of the struck
nucleon and is written as

tpN

[
q,

A + 1

A
K ; ω

]
= t cpN

[
q,

A + 1

A
K ; ω

]
+

(
A + 1

2A

)

× i

2
σ · q × K t lspN

[
q,

A + 1

A
K ; ω

]
. (29)

The first term of Eq. (29) corresponds to the central spin-
independent contribution and the second term corresponds to
the spin-orbit contribution. In the latter term the usual total
Pauli spin operator of the NN system is replaced by the Pauli
spin operator of the projectile, because the spin operator of the
struck nucleon has been eliminated by the trace over the spin.
The replacement of Eq. (29) into Eq. (27) gives the optical
potential as

Û (q,K ; ω) = Û c(q,K ; ω) + i

2
σ · q × K Û ls(q,K ; ω), (30)

where the central and the spin-orbit terms are given by

Û c(q,K ; ω) = A − 1

A
η(q,K )

×
∑

N=n,p

tcpN

[
q,

A + 1

A
K ; ω

]
ρN (q), (31)

Û ls(q,K ; ω) = A − 1

A
η(q,K )

(
A + 1

2A

)

×
∑

N=n,p

t lspN

[
q,

A + 1

A
K ; ω

]
ρN (q). (32)

The optimally factorized optical potential given in
Eqs. (30)–(32) exhibits nonlocality and off-shell effects
through the dependence of η and tpN upon K . The energy
ω at which the matrices t cpN and t lspN are evaluated is fixed as

ω = Tlab

2
= 1

2

k2
lab

2m
, (33)

where klab is the on-shell momentum of the projectile in the lab-
oratory system. This is the fixed beam energy approximation,
which is a historic choice performed in all calculations based
on the KMT formulation. A review of this type of calculations
can be found in Ref. [54].

B. The NN transition matrix

The NN elastic scattering amplitude for the scattering from
a relative momentum κ to κ ′, denoted by M(κ ′,κ,ω), is related

to the antisymmetrized transition matrix elements by the usual
relation (� = 1)

M(κ ′,κ,ω) = 〈κ ′|M(ω)|κ〉 = −4π2μ 〈κ ′|t(ω)|κ〉 , (34)

where μ is the NN reduced mass. The most general form of
this amplitude, consistent with invariance under rotation, time
reversal, and parity is [55]

M = a + c(σ 1+σ 2) · n̂+m(σ 1 · n̂)(σ 2 · n̂)+(g + h)(σ 1 · l̂)

× (σ 2 · l̂) + (g − h)(σ 1 · m̂)(σ 2 · m̂), (35)

where

l̂ = κ ′ + κ

|κ ′ + κ | , m̂ = κ ′ − κ

|κ ′ − κ | , n̂ = κ × κ ′

|κ × κ ′| , (36)

are the unit vectors defined by the NN scattering plane. The
amplitudes a, c, m, g, and h can be expressed as complex
functions of ω, κ , and κ ′. The amplitudes in Eq. (35) are
given in the Hoshizaki notation [56]. There are different ways
to define them, a survey of the other decompositions can be
found in Refs. [57,58] and references therein. We may also
note that, for an even-even nucleus with J = 0, terms linear
in the spin of the target nucleons average to zero; only a and
c amplitudes survive and they are connected to the central and
spin-orbit part of the NN t matrix, respectively.

The NN amplitudes are usually expressed in terms of the
decomposition of the scattering amplitude into components
describing spin singlet (S = 0) and spin triplet (S = 1)
scattering, MS

ν ′ν , where ν and ν ′ refer to the incident- and
final-spin projections in the triplet state. In the representation in
which these projections are referred to an axis of quantization
along the incident beam direction (κ) we have

a = 1

4

(
2M1

11 + M1
00 + M0

00

)
, (37)

c = i

2
√

2

(
M1

10 − M1
01

)
, (38)

m = 1

4

(
M1

00 − 2M1
1−1 − M0

00

)
, (39)

g = 1

4

(
M1

11 − M0
00 + M1

1−1

)
, (40)

h = 1

4 cos φ

(
M1

11 − M1
00 − M1

1−1

)
. (41)

The amplitudes MS
ν ′ν = 〈κSν ′|M(ω)|κSν〉 and hence a–h, are

obtained [13,59] in terms of the partial-wave components of
the NN amplitude, MJS

L′L(κ ′,κ; ω), defined by

M(κ ′,κ ; ω) = 2

π

∑
JLL′SM

iL−L′
YL′S

JM (κ̂ ′)

×MJS
L′L(κ ′,κ; ω)YLS†

JM (κ̂), (42)

where YLS
JM is the spin-angular function

YLS
JM (κ̂) =

∑
�ν

(L�Sν|JM)Y�
L (κ̂) ⊗ χSν, (43)
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and Y�
L and χSν are the spherical harmonic and the spin wave

function of the NN pair, respectively. Explicitly, we have

MS
ν ′ν = 2

π

∑
JMLL′��′

iL−L′
(L′�′Sν ′|JM)(L�Sν|JM)

×Y�′
L′ (κ̂ ′)Y�∗

L (κ̂)MJS
L′L(κ ′,κ; ω). (44)

Detailed formulas for the required MS
ν ′ν amplitudes in

terms of the partial-wave amplitudes MJS
L′L(κ ′,κ; ω) for a

quantization axis along the incident-beam direction can be
found in Refs. [13,59]. According to these formulas, the a and
c amplitudes are given by

apN = 1

fpNπ2

∞∑
L=0

PL(cos φ)
[
(2L + 1)ML,S=0

LL

+ (2L + 1)ML,S=1
LL + (2L + 3)ML+1,S=1

LL

+ (2L − 1)ML−1,S=1
LL

]
, (45)

cpN = i

fpNπ2

∞∑
L=1

P 1
L(cos φ)

[(
2L + 3

L + 1

)
M

L+1,S=1
LL

−
(

2L + 1

L(L + 1)

)
M

L,S=1
LL −

(
2L − 1

L

)
M

L−1,S=1
LL

]
,

(46)

where fpp = 4, fpn = 8, and P 1
L(x) are the associated Legen-

dre polynomials

P 1
L(x) =

√
1 − x2

d

dx
PL(x). (47)

From these equations we can obtain the explicit expressions
for the pp and pn central and spin-orbit parts of the NN t
matrix. As stated above, the optical potential is an operator
in the spin space of the projectile and the spin dependence is
made explicit writing the t matrix in the form (N = p,n)

tpN (κ ′,κ ; ω) = t cpN (κ ′,κ ; ω) + i

2
σ · κ ′ × κ t lspN (κ ′,κ ; ω).

(48)

In terms of the partial-wave components tST
JLL(κ ′,κ; ω) we have

the following results for the central part:

t cpp = 1

4π2

∞∑
L=0

PL(cos φ)
[
(2L + 1)tS=0,T =1

L,LL

+(2L + 1)tS=1,T =1
L,LL + (2L − 1)tS=1,T =1

L−1,LL

+ (2L + 3)tS=1,T =1
L+1,LL

]
, (49)

t cpn = 1

8π2

∞∑
L=0

PL(cos φ)
[
(2L + 1)tS=0,T =0

L,LL

+ (2L + 1)tS=1,T =0
L,LL + (2L − 1)tS=1,T =0

L−1,LL

+ (2L + 3)tS=1,T =0
L+1,LL + (2L + 1)tS=0,T =1

L,LL

+ (2L + 1)tS=1,T =1
L,LL + (2L − 1)tS=1,T =1

L−1,LL

+ (2L + 3)tS=1,T =1
L+1,LL

]
, (50)

TABLE I. Partial waves of the NN potential used to construct the
three-dimensional NN t matrix tpN (κ ′,κ ; ω).

tS=0,T =1
L,LL : 1

S0 , 1
D2 , 1

G4 , 1
I6 , 1

K8

tS=1,T =1
L−1,LL : 3

P0 , 3
F2 , 3

H4 , 3
J6 , 3

L8

tS=1,T =1
L,LL : 3

P1 , 3
F3 , 3

H5 , 3
J7

tS=1,T =1
L+1,LL : 3

P2 , 3
F4 , 3

H6 , 3
J8

tS=0,T =0
L,LL : 1

P1 , 1
F3 , 1

H5 , 1
J7

tS=1,T =0
L−1,LL : 3

D1 , 3
G3 , 3

I5 , 3
K7

tS=1,T =0
L,LL : 3

D2 , 3
G4 , 3

I6 , 3
K8

tS=1,T =0
L+1,LL : 3

S1 , 3
D3 , 3

G5 , 3
I7

and, similarly, for the spin-orbit part:

t lspp = − 1

2π2

∞∑
L=1

dPL(cos φ)

d cos φ

1

κ ′κ

[
− 2L − 1

L
t
S=1,T =1
L−1,LL

− 2L + 1

L(L + 1)
t
S=1,T =1
L,LL + 2L + 3

L + 1
t
S=1,T =1
L+1,LL

]
, (51)

t lspn = − 1

4π2

∞∑
L=1

dPL(cos φ)

d cos φ

1

κ ′κ

[
− 2L − 1

L
t
S=1,T =0
L−1,LL

− 2L + 1

L(L + 1)
t
S=1,T =0
L,LL + 2L + 3

L + 1
t
S=1,T =0
L+1,LL

− 2L − 1

L
t
S=1,T =1
L−1,LL − 2L + 1

L(L + 1)
t
S=1,T =1
L,LL

+ 2L + 3

L + 1
t
S=1,T =1
L+1,LL

]
. (52)

The partial-wave components tST
JLL(κ ′,κ; ω) are computed in

the NN center-of-mass frame, from the NN potential. In this
work we use two different versions of the chiral potential at the
fourth order (N3LO) developed by Entem and Machleidt [39]
and Epelbaum, Glöckle, and Meißner [44]. The tST

JLL(κ ′,κ; ω)
matrices are computed for each partial wave up to J = 8. The
partial waves are collected in the Table I.

C. Transition amplitude in partial-wave representation

The optimally factorized first-order KMT optical potential
as an operator in the spin space of the projectile is given in
Eq. (30) as

Û (k′,k; ω) = Û c(k′,k; ω) + i

2
σ · k′ × k Û ls(k′,k; ω). (53)

From the conservation of the total angular momentum and
parity, this spin operator can be expanded as

Û (k′,k; ω) = 2

π

∑
JLM

Y
L 1

2
JM (k̂

′
)ÛLJ (k′,k; ω)Y

L 1
2 †

JM (k̂), (54)

where J = L ± 1/2 and Y
L 1

2
JM is the standard spin-angular

function of Eq. (43). Inserting the expansion in Eq. (54) into
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Eq. (24), we obtain the same decomposition for the T matrix:

T̂ (k′,k; E) = 2

π

∑
JLM

Y
L 1

2
JM (k̂

′
)T̂LJ (k′,k; E)Y

L 1
2 †

JM (k̂), (55)

where the partial-wave components of the transition operator
for the elastic scattering are given by

T̂LJ (k′,k; E)= ÛLJ (k′,k; ω)

+ 2

π

∫ ∞

0
dp p2 ÛLJ (k′,p; ω)T̂LJ (p,k; E)

E(k0) − E(p) + iε
, (56)

where

E(k0) =
√

k2
0 + m2

proj +
√

k2
0 + m2

targ, (57)

E(p) =
√

p2 + m2
proj +

√
p2 + m2

targ, (58)

and mproj and mtarg are the masses of the projectile and of the
target, respectively. In terms of the partial-wave components
of the quantities Û c(k′,k; ω) and Û ls(k′,k; ω), we have

ÛLJ (k′,k; ω) = Û c
L(k′,k; ω) + CLJ V̂ ls

L (k′,k; ω), (59)

where

CLJ = 1

2

[
J (J + 1) − L(L + 1) − 3

4

]
,

V̂ ls
L (k′,k; ω) = k′k

2L + 1

[
Û ls

L+1(k′,k; ω) − Û ls
L−1(k′,k; ω)

]
.

(60)

To obtain these results, the quantities Û c(k′,k; ω) and
Û ls(k′,k; ω) are expanded in a manner similar to Eq. (54),
with the difference that the partial-wave components Û c

L and
Û ls

L are independent of J .
The partial-wave components of Û c(k′,k; ω) and

Û ls(k′,k; ω) can be calculated in terms of the NN t-matrix
components and of the nuclear densities from Eqs. (31)
and (32). The projection can be performed numerically by
evaluating the integral (a = c, ls)

Û a
L(k′,k; ω) = π2

∫ +1

−1
dxPL(x)Û a(k′,k; ω)

= π2
∫ +1

−1
dxPL(x)Û a(k′,k,x; ω), (61)

where x = cos θ and the potentials in terms of k′ and k are
obtained from Eqs. (31) and (32) with

q(x) =
√

k′2 + k2 − 2k′kx,

K(x) = 1
2

√
k′2 + k2 + 2k′kx, (62)

q · K = 1
2 (k′2 − k2).

The one-dimensional integral equation for the partial-wave
elements T̂LJ [Eq. (56)] is solved for the complex potentials
ÛLJ . In actual calculations, the number of L values needed to
represent the nuclear optical potential at the level of accuracy
required through the partial-wave components ÛLJ (k′,k; ω)
can be as large as 30 for an 16O target at 200 MeV.

D. Scattering observables

Under the assumptions of parity conservation and rotational
invariance, the most general form of the full amplitude for the
elastic proton scattering from a spin 0 nucleus is given by

M(k0,θ ) = A(k0,θ ) + σ · N̂C(k0,θ ), (63)

where the amplitudes A(k0,θ ) and C(k0,θ ) are obtained from
the partial-wave solutions of Eq. (56) as

A(θ ) = 1

2π2

∞∑
L=0

[(L + 1)F+
L (k0) + LF−

L (k0)]PL(cos θ ),

(64)

C(θ ) = i

2π2

∞∑
L=1

[F+
L (k0) − F−

L (k0)]P 1
L(cos θ ). (65)

In Eqs. (64) and (65), an implicit dependence on k0 is assumed.
The functions F±

L denote FLJ for J = L ± 1/2, respectively,
and are given as

FLJ (k0) = − A

A − 1
4π2μ(k0)T̂LJ (k0,k0; E), (66)

where the relativistic reduced mass is

μ(k0) = Eproj(k0)Etarg(k0)

Eproj(k0) + Etarg(k0)
. (67)

Three independent scattering observables can be considered:
the unpolarized differential cross section, the analyzing power
Ay , and the spin rotation Q. Their expressions as functions of
the amplitudes A and C are

dσ

d�
(θ ) = |A(θ )|2 + |C(θ )|2, (68)

Ay(θ ) = 2 Re[A∗(θ )C(θ )]

|A(θ )|2 + |C(θ )|2 , (69)

Q(θ ) = 2 Im[A(θ )C∗(θ )]

|A(θ )|2 + |C(θ )|2 . (70)

E. Treatment of Coulomb potential

In this section we include in the theoretical framework
the Coulomb interaction between the incoming proton with
charge e and the spin-zero target with charge Ze. This has
been done following the algorithm outlined in Refs. [26,27].
The interaction is separated into the sum of two parts: the
“point” Coulomb interaction and the short-ranged one which
is given by the sum of the nuclear potential and the short-range
Coulomb interaction due to the finite dimension of the nucleus.
Since the Coulomb T matrix is known analytically, we only
need to compute the transition matrix modified by the residual
Coulomb field.

In this approach the total scattering amplitude can be written
in the standard way as

M(k0,θ ) = A(k0,θ ) + σ · N̂C(k0,θ ), (71)

where now instead of Eqs. (64) and (65) we have

A(k0,θ ) = Fc
pt (k0,θ ) + 1

2π2

∞∑
L=0

e2iσL

× [(L + 1)F̄+
L (k0) + LF̄−

L (k0)]PL(cos θ ), (72)
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C(k0,θ ) = i

2π2

∞∑
L=1

e2iσL [F̄+
L (k0) − F̄−

L (k0)]P 1
L(cos θ ). (73)

In Eqs. (72) and (73) Fc
pt (k0,θ ) is the Coulomb scattering

amplitude due to a point charge [61]:

Fc
pt (k0,θ ) = −η(k0)2iη(k0) exp[2iσ0 − iη(k0) ln(1 − cos θ )]

k0(1 − cos θ )
,

(74)
where

η(k) = μZα

k
(75)

is the Sommerfeld parameter, μ is the reduced mass of Eq. (67),
and α is the fine structure constant. The Coulomb phase shifts
σL are given by

σL = arg �[L + 1 + iη(k0)]. (76)

The partial-wave scattering amplitudes F̄±
L are obtained

from the solution of the Coulomb-distorted T̄ matrix

T̄ (k′,k; E) = Ū (k′,k; ω) +
∫

d3p
Ū (k′, p; ω)T̄ ( p,k; E)

E(k0) − E(p) + iε
,

(77)
where

Ū (k′,k; ω) = 〈k′|Ū (ω)|k〉 = 〈ψ (+)
c (k′)|Û (ω)|ψ (+)

c (k)〉, (78)

and ψ (+)
c (k) is the Coulomb-distorted wave function.

In order to solve Eq. (77), we need to be able to generate
the momentum-space matrix element Ū (k′,k; ω) as given in
Eq. (78). We begin with the potential Û (k′,k; ω), discussed in
Sec. II A, and we transform it into the coordinate space through
the double Fourier transform

Û (r ′,r; ω) =
∫

d3k′d3k 〈r ′|k′〉 Û (k′,k; ω) 〈k|r〉 , (79)

and then we construct the matrix element of Eq. (78) by folding
Û (r ′,r; ω) with coordinate space Coulomb wave functions

Ū (k′,k; ω) =
∫

d3r ′d3r 〈ψ (+)
c (k′)|r ′〉

× Û (r ′,r; ω) 〈r|ψ (+)
c (k)〉 . (80)

In the partial-wave representation, Eq. (79) for the central and
spin-orbit parts becomes

Û a
L(r ′,r; ω) = 4

π2

∫ ∞

0
dk′ k′2

∫ ∞

0
dk k2jL(k′r ′)

× Û a
L(k′,k; ω)jL(kr), (81)

where jL(kr) are spherical Bessel functions. Similarly, Eq. (80)
becomes

Ū a
L(k′,k; ω) = 1

k′k

∫ ∞

0
dr ′ r ′

∫ ∞

0
dr rFL(η,k′r ′)

× Û a
L(r ′,r; ω)FL(η,kr), (82)

where FL is the regular Coulomb function. The potential
Ū (k′,k; ω) can be expanded in partial waves as in Eq. (54):

Ū (k′,k; ω) = 2

π

∑
JLM

Y
L 1

2
JM (k̂

′
)ŪLJ (k′,k; ω)Y

L 1
2 †

JM (k̂), (83)

where

ŪLJ (k′,k; ω) = Ū c
L(k′,k; ω) + CLJ V̄ ls

L (k′,k; ω), (84)

and

CLJ = 1

2

[
J (J + 1) − L(L + 1) − 3

4

]
,

V̄ ls
L (k′,k; ω) = k′k

2L + 1

[
Ū ls

L+1(k′,k; ω) − Ū ls
L−1(k′,k; ω)

]
,

(85)

Likewise, we can expand the T̄ matrix in Eq. (77) as

T̄ (k′,k; E) = 2

π

∑
JLM

Y
L 1

2
JM (k̂

′
)T̄LJ (k′,k; E)Y

L 1
2 †

JM (k̂), (86)

where the partial-wave components are

T̄LJ (k′,k; E)= ŪLJ (k′,k; ω)

+ 2

π

∫ ∞

0
dp p2 ŪLJ (k′,p; ω)T̄LJ (p,k; E)

E(k0) − E(p) + iε
. (87)

The partial-wave scattering amplitudes F̄±
L entering Eqs. (72)

and (73) are given by

F̄LJ (k0) = − A

A − 1
4π2μ(k0)T̄LJ (k0,k0; E). (88)

III. THE NN AMPLITUDES

In this section we present and discuss the theoretical results
for the pp and pn Wolfenstein amplitudes which are used to
compute the central a (45) and the spin-orbit part c (46) of the
three-dimensional NN t matrix. Calculations are performed
by using two different versions of the chiral potential at fourth
order (N3LO) based on the works of Entem and Machleidt
[39–41,43] and Epelbaum et al. [44]. The performance of
our code has been tested against the CD-Bonn potential [60]
reproducing well-known results [63,64] in order to check its
numerical correctness.

Entem and Machleidt (EM), who first presented a chiral
potential at the fourth order, treat divergent terms in the
two-pion exchange (2PE) contributions with dimensional
regularization (DR), while Epelbaum, Glöckle, and Meißner
(EGM) employ a spectral function regularization (SFR). In
both cases the goal is to cut out the short-range part of the
2PE contribution that, as shown in Ref. [40], has unphysically
strong attraction, particularly at N2LO (for a comprehensive
discussion about different regularization schemes we refer the
reader to Sec. 3.2.1 of Ref. [44]). As a usual procedure,
the nucleon-nucleon potential entering the LS equation is
multiplied by a regulator function f �:

V (k,k′) → V (k,k′)f �(k,k′), (89)

where

f � = exp[−(k′/�)2n − (k/�)2n] with n = 2,3. (90)

While Entem and Machleidt present results for three
choices of the cutoff necessary to regulate the high-momentum
components in the LS equation (� = 450, 500, and 600 MeV),
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FIG. 1. Real (left panel) and imaginary (right panel) parts of pp

and pn Wolfenstein amplitudes (a and c) as functions of the center-
of-mass NN angle φ. All the amplitudes are computed at 100 MeV
using the EM potentials [39–41,43] with a LS cutoff ranging from
450 to 600 MeV. Data (black squares) are taken from Ref. [62].

Epelbaum et al. [44] allow us also to study variations of the
cutoff �̃ that regulates the 2PE contribution. In fact, in the
latter approach one can choose between the following cutoff
combinations:

{�,�̃} = {450,500}, {450,700}, {550,600},
{600,600}, {600,700}. (91)

In the following figures all the results are labeled by an
acronym (to distinguish the authors) followed by the value of
the LS cutoff (�). In the EGM case, for � = 450 and 600 MeV
we plot bands that show how calculations can change with
respect to variations of the SFR cutoff �̃.

In Fig. 1 the theoretical results for the real and imaginary
parts of pp and pn Wolfenstein amplitudes (a and c) computed
at an energy of 100 MeV are shown as functions of the center-
of-mass NN angle φ and compared with the experimental data.
The calculations are performed by using the EM potentials
[39–41,43] with a LS cutoff ranging from 450 to 600 MeV.
The experimental data are globally reproduced by the three
potentials, with the only remarkable exception of the real
part of the cpp amplitude that is overestimated. It must be
considered, however, that this is a small quantity, i.e., two
orders of magnitude smaller than the respective imaginary part,
and it will only provide a very small contribution to the optical
potential. Concerning the other amplitudes, some deviations
from the experimental data are found, in particular for the
imaginary part of the cpp and cpn amplitudes. Finding some
discrepancies is not surprising, because the NN amplitudes are
directly related to the empirical NN phase shifts, which are not
always perfectly reproduced by realistic potentials for some J
(see 3

F3, 3
F4, and 3

G5 cases in Figs. 8 and 9 of Ref. [39] and
in Fig. 27 of Ref. [44]).

In Fig. 2 we show the results obtained at 100 MeV with the
EGM potentials [44]. Also in this case, all three potentials are
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FIG. 2. The same as in Fig. 1 using EGM potentials [44] with
a LS cutoff ranging from 450 to 600 MeV. In two cases (� = 450
and 600 MeV) we show uncertainty bands produced by changing �̃

according to Eq. (91). Data (black squares) are taken from Ref. [62].

in overall good agreement with the experimental data with the
only remarkable exception of the real part of the cpp amplitude.
In particular, they show very similar results and in many cases
the yellow and turquoise bands are overlapped. Their trends are
also very close to the ones shown in Fig. 1 for the EM potential
and they display the same discrepancy in comparison with the
experimental data for cpn and around the peak of the imaginary
part of cpp.

Since ChPT is a low-momentum expansion of QCD, we
expect that, as the energy is increased, larger discrepancies
appear with respect to empirical data. In Figs. 3 and 4 we
present the results corresponding to those shown in Figs. 1
and 2 but at an energy of 200 MeV. As energy is increased, all
potentials are still unable to reproduce the experimental data
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FIG. 3. Same as in Fig. 1 but for an energy of 200 MeV. Data
(black squares) are taken from Ref. [62].
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FIG. 4. Same as is Fig. 2 but for an energy of 200 MeV. Data
(black squares) are taken from Ref. [62].

of the real part of the cpp amplitude, but most of the chiral
potentials give satisfactory results, in agreement with the data
for all the other amplitudes, with one notable exception. In
fact, in both approaches, potentials with a cutoff of 450 MeV
(see Figs. 3 and 4) fail to reproduce the real part of app and
apn and underestimate the imaginary part of the cpn amplitude.
Based on these flaws, we predict an unsatisfactory result for a
nucleon-nucleus optical potential if EM-450 or EGM-450 are
employed at energies well above 100 MeV.

Chiral potentials at orders NLO, N2LO, and N3LO have
been constructed and compared in Ref. [44] for EGM and
in Ref. [42] for EM. As an example, in Fig. 5 we present a
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FIG. 5. Real (left panel) and imaginary (right panel) parts of pp

and pn Wolfenstein amplitudes (a and c) as functions of the center-
of-mass NN angle φ computed at 200 MeV using the EGM potential
[44] at different orders: red bands are NLO results, green and blue
bands are, respectively, the N2LO and N3LO results. Data (black
squares) are taken from Ref. [62].

systematic study order by order of the convergence pattern
using the EGM potential. At each order, calculations have
been performed for all the cutoff combinations in Eq. (91),
the variation produced by the different combinations in the
calculated amplitudes is depicted by the bands in the figure.
From the results shown for all NN amplitudes, we can draw
the conclusion that it is mandatory to use potentials at order
N3LO. At orders NLO and N2LO the amplitudes not only
underestimate or overestimate empirical data but also miss the
overall shapes. The order-by-order convergence will be further
explored in a forthcoming presentation using the recent N4LO
potential [45].

IV. SCATTERING RESULTS

In this section we present and discuss our numerical results
for the NA elastic scattering observables calculated with the
microscopic optical potential obtained within the theoretical
framework described in Sec. II. As a study case in our
calculations we consider elastic proton scattering on 16O.

We investigate the sensitivity of our results to the choice
of the NN potential and, in particular, their dependence on
the cutoff values. In order to investigate and emphasize the
differences between the different NN potentials and also on the
basis of the results obtained for the NN Wolfenstein amplitudes
a and c, the scattering observables have been calculated for
different energies (100, 135, 200, and 318 MeV) for which
experimental data are available. In light of the fact that chiral
potentials are based on a low-momentum expansion, the last
energy may be considered beyond the limit of applicability of
such potentials.

With these calculations we intend to achieve the following
goals: (1) to check the agreement of our theoretical predictions
with the empirical data, (2) to study the limits of applicability
of chiral potentials in terms of the proton energy, (3) to identify
the best set of values for the LS and, eventually, SFR cutoffs.

In Figs. 6–9 we show the differential cross section (dσ/d�),
the analyzing power Ay , and the spin rotation Q for elastic
proton scattering on 16O as functions of the center-of-mass
scattering angle θ with the above-mentioned four energies
(E = 100, 135, 200, and 318 MeV). In the left panels we
show the results obtained with the EM potentials [39–41,43]
while in the right panels we show the results obtained with the
EGM potentials [44]. All potentials are denoted by the value
of the LS cutoff. The Coulomb interaction between the proton
and the target nucleus is included as described in Sec. II E.

In Fig. 6, at 100 MeV, all sets of potentials, regardless of
cutoffs and theoretical approaches, give very similar results
for all three observables, with the exception of Ay above 50
degrees, where all potentials overestimate the experimental
data up to the maximum and then display an unrealistic
downward trend, and Q around the maximum at 30 degrees.
In particular, the experimental cross section is well reproduced
by all potentials in the minimum region, between 30 and 35
degrees. Polarization observables are usually more sensitive
to the differences in the potentials and to the ingredients
and approximations of the model. Experimental data for such
observables are usually more difficult to reproduce. Even if
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FIG. 6. Scattering observables (differential cross section dσ/d�,
analyzing power Ay , and spin rotation Q) as a function of the
center-of-mass scattering angle θ for elastic proton scattering on
16O computed at 100 MeV (laboratory energy). On the left panel we
employ the set of EM potentials [39–41,43] while in the right panel
we show the EGM potentials [44]. All potentials are denoted by the
value of the LS cutoff. Coulomb distortion is included as explained
in Sec. II E. Data are taken from Refs. [65,66].

differences are rather small, potentials with the largest cutoff
(� = 600 MeV) seem to provide the best description of Ay .

A similar result is obtained in Fig. 7, where we display the
scattering observables calculated at 135 MeV. In this case all
sets of potentials reproduce very well the experimental cross
section and globally describe the shape of Ay but are unable
to reproduce its magnitude for angles larger than 20◦.

In Fig. 8 we plot the results obtained at 200 MeV. At this
energy, it is clear that potentials obtained with the lower cutoffs
(EM-450 and EGM-450) cannot be employed any further: in
both cases, the differential cross sections are not satisfactorily
reproduced and the behavior of Ay and Q as a function of
θ is in clear disagreement with the empirical one. On the
other hand, the remaining sets of potentials well describe the
experimental cross sections and the analyzing power Ay , which
is reasonably described not only for small scattering angles but
also for values larger than the minimum value up to about 45◦.

10-1
100
101
102
103
104

dσ
/d

Ω
 [m

b/
sr

]

EM-450
EM-500
EM-600

EGM-450
EGM-600
EGM-550

0
0.2
0.4
0.6
0.8

A
y

0 10 20 30 40 50 60
θ [deg]

-0.5

0

0.5

1

Q

0 10 20 30 40 50 60
θ [deg]

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. The same as is Fig. 6 but for an energy of 135 MeV. Data
are taken from Refs. [65,66].
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FIG. 8. The same as is Fig. 6 but for an energy of 200 MeV. Data
are taken from Refs. [65,66].

On the basis of all these results for 16O we can draw
two conclusions: (1) Potentials with lower cutoffs cannot
reproduce experimental data at energies close to 200 MeV.
(2) There is no appreciable difference in using 500 or 600 MeV
as LS cutoffs, even if the EM-600 and EGM-600 potentials
seem to have a slightly better agreement with empirical data;
in particular looking at polarization observables.

For energies above 200 MeV, this behavior changes and
the agreement with the experimental data begins to fail. This
failure becomes larger as the energy increases. As an example,
in Fig. 9 we display the results for the scattering observables on
16O computed at 318 MeV, an energy for which experimental
data are available. We clearly see that, at this energy, all
potentials are unable to describe the data. A somewhat better
description is given by the EM-600 potential, which is able
to reproduce the global shape of the experimental results and
the position of the minima, but the general agreement is poor.
However, we stress that ChPT is a low-momentum expansion
and its goal should be to perform calculations at lower energies.

In Fig. 10 we repeat the same order by order analysis (NLO,
N2LO, and N3LO) of the convergence pattern performed
in Sec. III for the NN amplitudes. The results confirm the
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FIG. 9. The same as is Fig. 6 but for an energy of 318 MeV. Data
are taken from Refs. [65,66].
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FIG. 10. Scattering observables as a function of the center-of-
mass scattering angle θ for elastic proton scattering on 16O computed
at 200 MeV (laboratory energy) with the EGM potential [44] at
different orders: red bands are the NLO results, green and blue bands
are respectively the N2LO and N3LO results. Data are taken from
Refs. [65,66].

conclusion drawn looking at the NN amplitudes, i.e., that it
is mandatory to use potentials at order N3LO. At orders NLO
and N2LO our theoretical predictions not only underestimate
or overestimate empirical data but also miss the overall shapes.
The order-by-order convergence suggests that there is space
for improvement going to higher orders (N4LO) [45].

In order to understand why some potentials provide a better
description of certain scattering data than other potentials, in
Figs. 11 and 12 we plot the relevant components, Eqs. (64) and
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FIG. 11. Contributions, in terms of the amplitudes A (64) and C

(65), to the scattering observables (differential cross section dσ/d�

and asymmetry parameter Ay) for elastic proton scattering on 16O
computed at 200 MeV (laboratory energy) using two EGM potentials
with {�,�̃} = {600,600},{600,700}. Coulomb distortion is included.
Data are taken from Refs. [65,66].
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FIG. 12. L components (92) for the C amplitude for two EGM po-
tentials with the following cutoffs: {�,�̃} = {600,600}, {600,700}.

(65), for the differential cross section and the analyzing power
computed at 200 MeV. We have chosen, as a test case, two
EGM potentials, with {�,�̃} = {600,600}, {600,700}, that
reproduce differential cross sections with the same accuracy
but give different predictions for the analyzing power. In the
upper panels of Fig. 11 we plot, for both potentials, the total
differential cross section (proportional to the sum |A|2 + |C|2)
with a red line, and the single contributions |A|2 and |C|2
with green and blue lines, respectively. The two potentials
give similar results for |A|2 while significant differences
around the minima are obtained for |C|2. These differences,
however, do not affect the final cross section, which is clearly
dominated by the contribution proportional to |A|2. The two
potentials give relevant differences for the analyzing power
Ay , which is plotted in the lower panels. In this case we cannot
disentangle single contributions because Ay is proportional to a
combination of A and C (Ay ∼ Re[A∗(θ )C(θ )]). Nonetheless,
a connection between |C|2 in the upper blue curves and Ay

seems to be plausible. To test if the first minimum of Ay is
really determined by the behavior of the C amplitudes, in
Fig. 12 we plot the L components of C, defined as

CL = [F+
L (k0) − F−

L (k0)]P 1
L(cos θ ), (92)

evaluated at the angle θ = 27◦ corresponding to the minimum
position. The two potentials give close results for the real parts
and large differences for the imaginary parts of the L compo-
nents. With both potentials the real part of the C amplitude
is almost canceled in the sum C(θ ) = i/(2π2)

∑
L CL. For

the imaginary part, the sum gives a contribution that is small
for {�,�̃} = {600,600} and sizable for {�,�̃} = {600,700}.
As a consequence, in the case {�,�̃} = {600,600} the C
amplitude is very small and the analyzing power and the
|C|2 contribution to the differential cross section develop
well-defined minima, while in the case {�,�̃} = {600,700},
where the C amplitude is larger, the corresponding minima are
not deep enough and the disagreement with the experimental
Ay is more pronounced.
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V. CONCLUSIONS

In this work we obtained a new microscopic optical
potential for elastic proton-nucleus scattering. Our optical
potential was derived as the first-order term within the
spectator expansion of the nonrelativistic multiple scattering
theory. In the interaction between the projectile and the target
nucleon, which is described by the NNτ matrix, we neglected
medium effects and adopted the impulse approximation, which
consists of replacing τ by the free NN t matrix.

As a further simplification, we adopted the optimum
factorization approximation, where the optical potential is
given in a factorized form by the product of the free NN t
matrix and the nuclear density. This form conserves the
off-shell nature of the optical potential and has been used
in this work to compute the cross sections and the polarization
observables of elastic proton-nucleus scattering.

Two basic ingredients underlie the calculation of our mi-
croscopic optical potential: the NN interaction and a model for
nuclear densities. For the NN interaction we used here for the
first time the chiral potential. Microscopic optical potentials
have been derived from two different versions of the chiral
potential at fourth order (N3LO) based on the work of Entem
and Machleidt (EM) [39–41,43] and Epelbaum, Glöckle, and
Meißner (EGM) [44], which differ in the regularization scheme
employed in the two-pion exchange term and in the choice of
the cutoffs. Neutron and proton densities have been obtained
by considering a system of nucleons coupled to the exchange
of mesons and the electromagnetic field through an effective
Lagrangian. In practice, they were computed within the RMF
description [52] of spherical nuclei by using a DDME model
[52]. The Coulomb proton-nucleus interaction has also been
included in the calculations.

The NN potentials have been used to calculate the NN
amplitudes that have then been employed to compute the NN t
matrix. Results for pp and np Wolfenstein amplitudes (a and c)
obtained with different NN potentials have been presented and
discussed. Since ChPT is a low-momentum expansion of QCD,
the agreement of the chiral potential with the experimental
data becomes, as expected, worse upon increasing the energy.
While at 100 MeV all the NN potentials are able to reproduce
the experimental amplitudes, with the only exception of the
real part of cpp amplitude, which is anyhow extremely small,
at 200 MeV the set of potentials with lower cutoffs (450 MeV)
fail to reproduce empirical data.

As a case study for our investigation we considered elastic
proton scattering on 16O. Results for the cross section, the
analyzing power, and the spin rotation have been presented
and discussed in comparison with available experimental data.
Calculations have been performed with different NN potentials
at different energies.

The comparison between the results obtained with the
different versions of the chiral potential represents a useful
test of the reliability of our new optical potentials and allows
us to identify the best set of LS cutoff values.

Polarization observables are more sensitive to the dif-
ferences in the NN interactions and to the approximations
of the model. This sensitivity makes it difficult to describe
the experimental analyzing powers over the whole scattering
angular distribution. The optical potentials obtained from all
the NN potentials give close results and a good description
of the experimental cross sections for proton energies up
to about 135 MeV. Of course, the differences among the
results obtained with different NN potentials increase with the
energy and with the scattering angle. Our results indicate that
EM-600 and EGM-600 provide a slightly better agreement
with empirical data for energies up to 200 MeV. Increasing
the energy, however, the agreement between the results from
chiral potentials and data declines and it is plausible to believe
that, above 200 MeV, ChPT is no longer applicable.

In the near future we plan to study the order-by-order
convergence by using the recent N4LO potential [45] and
to improve our calculations including three-body forces and
nuclear medium effects. In addition, our investigation will be
extended to N �= Z nuclei [67].

The case of elastic proton scattering considered in this
work represents the first natural and necessary test of the
reliability of an optical potential. The optical potential,
however, represents a crucial and critical input for calculations
over a wide variety of nuclear reactions and can therefore be
employed in many other situations beyond those considered in
this paper.
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