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Final-state interactions in two-nucleon knockout reactions
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Background: Exclusive two-nucleon knockout after electroexcitation of nuclei [A(e,e′NN ) in brief] is
considered to be a primary source of information about short-range correlations (SRCs) in nuclei. For a proper
interpretation of the data, final-state interactions (FSIs) need to be theoretically controlled.
Purpose: Our goal is to quantify the role of FSI effects in exclusive A(e,e′pN ) reactions for four target nuclei
representative of the whole mass region. Our focus is on processes that are SRC driven. We investigate the role of
FSIs for two characteristic detector setups corresponding to “small” and “large” coverage of the available phase
space.
Method: Use is made of a factorized expression for the A(e,e′pN ) cross section that is proportional to the
two-body center-of-mass (c.m.) momentum distribution of close-proximity pairs. The A(e,e′pp) and A(e,e′pn)
reactions for the target nuclei 12C, 27Al, 56Fe, and 208Pb are investigated. The elastic attenuation mechanisms in
the FSIs are included using the relativistic multiple-scattering Glauber approximation (RMSGA). Single-charge
exchange (SCX) reactions are also included. We introduce the nuclear transparency T

pN
A , defined as the ratio of

exclusive (e,e′pN ) cross sections on nuclei to those on “free” nucleon pairs, as a measure for the aggregated
effect of FSIs in pN knockout reactions from nucleus A. A toy model is introduced in order to gain a better
understanding of the A dependence of T

pN
A .

Results: The transparency T
pN
A drops from 0.2–0.3 for 12C to 0.04–0.07 for 208Pb. For all considered kinematics,

the mass dependence of T
pN
A can be captured by the power law T

pN
A ∝ A−λ with 0.4 � λ � 0.5. Apart from an

overall reduction factor, we find that FSIs only modestly affect the distinct features of SRC-driven A(e,e′pN )
which are dictated by the c.m. distribution of close-proximity pairs.
Conclusion: The SCX mechanisms represent a relatively small (order of a few percent) contribution of SRC-
driven A(e,e′pN ) processes. The mass dependence of FSI effects in exclusive A(e,e′pN ) can be captured in a
robust power law and is in agreement with the predictions obtained in a toy model.

DOI: 10.1103/PhysRevC.93.034608

I. INTRODUCTION

Nuclear short-range correlations (SRCs) are an essential
ingredient of the dynamics of nuclei at large momenta
and energies. The short- and medium-range components of
the nucleon-nucleon interaction induce beyond-mean-field
high-momentum and high-density fluctuations in the nuclear
medium, thereby giving rise to fat tails in the nuclear
momentum distributions [1–3]. The magnitude of nuclear
SRCs has been linked to plateaus in ratios of cross sections
of inclusive electron scattering off different nuclei [4–6] and
to the size of the EMC (European Muon Collaboration) effect
[7].

Nuclear SRCs can be studied in exclusive two-nucleon
knockout processes with hadronic and electroweak probes. In
appropriately selected kinematics, those reactions give access
to the dynamics and isospin composition of the initial nucleon
pair. In the 1990s, high-resolution A(e,e′pp) measurements
carried out at MAMI [8,9] and NIKHEF [10–12] could
determine the transition to a specific final state of the residual
A − 2 nucleus. When comparing to data for the 16O(e,e′pp)
transition to the 0+ ground state of 14C, model calculations
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[13–15] showed the clear dominance of SRC contributions to
the cross section at low center-of-mass (c.m.) pair momentum,
where the initial pair is in a relative S state. The EVA
Collaboration at Brookhaven National Laboratory (BNL)
measured the 12C(p,ppn) reaction [16] as a function of the
initial neutron momentum. For neutron momenta above the
Fermi surface (∼220 MeV) the data showed a clear angular
correlation between the initial proton and neutron momenta
with backward angles (>90◦) dominating. For momenta
below the Fermi surface the angular correlation between
the two nucleon momenta is almost random. This picture
was later confirmed by a 3He(e,e′pp) experiment performed
at Jefferson Lab [17]. More recently, 12C(e,e′pN ) [18,19]
and 4He(e,e′pN ) [20] measurements (both at Jefferson Lab)
provided proof that in the probed kinematics about 20% of
the nucleons in nuclei form correlated pairs. Of those, about
90% are of the proton-neutron type [21], illustrating the
dominance of tensor correlations in the nucleon momentum
region of 300–500 MeV/c. A feature that emerges from all
those experimental investigations is that SRC pairs are mostly
in a back-to-back configuration with a high relative and small
c.m. momentum, whereby small and large are defined relative
to the Fermi momentum.

In this paper we focus on the effect of final-state in-
teractions (FSIs) in SRC-driven high-virtuality A(e,e′pN )
cross sections. In Sec. II, we discuss the approximations
underlying the factorized form of the A(e,e′pN ) cross section
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FIG. 1. (Left) Sketch of the exclusive A(e,e′pN ) reaction with all kinematic variables. (Right) The A(e,e′pN ) reaction in the impulse and
spectator approximation.

(detailed in Ref. [22]) and how we implement the FSIs.
Using the factorized A(e,e′pN ) cross-section expression, we
show in Sec. II C that cross-section ratios can be directly
related to the ratios of the integrated distorted two-body c.m.
momentum distributions of close-proximity nucleon pairs.
In Sec. III, we apply the developed model to four different
target nuclei ( 12C , 27Al , 56Fe , 208Pb) and two very different
kinematics probing SRC pairs. The first is the kinematics of
the A(e,e′pp) cross-section measurements with the CEBAF
Large Acceptance Spectrometer (CLAS) [21] covering a
very large phase space. The second is the kinematics of an
experimental setup with a very restricted phase-space coverage
[18]. We extract the nuclear transparencies for two-nucleon
knockout and compare them to single-particle knockout
transparencies extracted from A(e,e′p) measurements. We
propose parametrizations for the mass dependence of the
A(e,e′pN ) transparencies in the form of a power law and
study its robustness. The opening-angle distribution for the
initial correlated nucleon pair is shown to be dominated by
backward angles, with little modification after the inclusion of
FSIs. A toy model that captures the essential features of elastic
attenuation mechanisms in A(e,e′NN ) is proposed. This toy
model allows us to gain a more qualitative understanding of
the mass dependence of the nuclear transparency. Conclusions
are given in Sec. IV.

II. MODEL

A. Factorization of the A(e,e′ pN) cross section

We consider exclusive electroinduced knockout of a corre-
lated proton-nucleon (pN ) pair from the target nucleus A:

e + A → e′ + (A − 2)∗ + p + N. (1)

In this paper we solely deal with reactions whereby the
residual (A − 2)∗ is left with little or no excitation energy. This
condition is essential for keeping the number of contributing
reaction mechanisms under control.

Let (�k1,�k2) and ( �p1, �p2) be the initial and final three-
momenta of the nucleon pair. We label the struck proton with
“1” and the recoiling nucleon with “2”. In the impulse ap-
proximation, in which the exchanged momentum is absorbed
by a single nucleon, we have that �p1 = �k1 + �q with �q the

transferred three-momentum of the virtual photon (Fig. 1). We
define the c.m. �P12 and relative momentum �k12 of the initial
pair as

�P12 = �k1 + �k2, �k12 =
�k1 − �k2

2
. (2)

The corresponding c.m. and relative coordinates are denoted
by �R12 and �r12.

By selecting events with a large |�q | [large in comparison to
the initial momenta (�k1,�k2) of the nucleon pair] and requiring
that one of the measured nucleons carries a significant fraction
of the exchanged momentum |�q |, the contribution from the
exchange term in which nucleon “2” absorbs the photon can be
made negligible. Indeed, above the Fermi momentum, the �k12

distribution of the pairs is strongly decreasing with increasing
|�k12| [22,23]. This makes it highly unlikely that the fast nucleon
in the final state is not the one that absorbed the virtual photon.

As outlined in Refs. [22,24], in kinematics probing SRC
pairs, it is possible to factorize the A(e,e′pN ) cross section in
a product of a function depending on the relative momentum
�k12 and a part depending on the c.m. momentum �P12 of the
initial pN pair:

d8σ (e,e′pN )

d2�ke′ d
3 �p1d3 �p2

= MAMA−2

EAEA−2

1

(2π )3
frecσepN (�k12)FpN,D

A ( �P12),

(3)
with �ke′ the solid angle of the scattered electron, frec the
recoil factor,

frec =
∣∣1 − Ee′

E2

�p2·�ke′
|�ke′ |2

∣∣∣∣1 + Ee′
EA−2

�P ·�ke′
|�ke′ |2

∣∣ , (4)

and MA,EA(MA−2,EA−2) the rest mass and energy of the
initial (recoiling A − 2) nucleus. σepN (�k12) encodes the virtual-
photon coupling to a correlated pN pair with relative mo-
mentum �k12. F

pN,D
A ( �P12) is the distorted c.m. momentum

distribution of the close-proximity pair that absorbs the photon.
The factorized cross-section expression of Eq. (3) hinges on
the validity of the zero-range approximation (ZRA), which
amounts to putting the relative pair coordinate �r12 to zero
(Fig. 2). Thereby, the amplitude for photoabsorption on a close-
proximity pair that involves the product of two independent

034608-2



FINAL-STATE INTERACTIONS IN TWO-NUCLEON . . . PHYSICAL REVIEW C 93, 034608 (2016)

FIG. 2. A sketch of the zero-range approximation (ZRA) which underlies the factorized expression of the exclusive A(e,e′pN ) cross
section.

particle model (IPM) wave functions ψα( �R12 + �r12
2 ) and

ψβ( �R12 − �r12
2 ) and a two-body operator Ô[2]( �R12,�r12) (left

panel of Fig. 2) is written as a product of a one-body operator
Ô[1] evaluated at the c.m. coordinate �R12 and a correlation
operator 	̂ that depends only on the relative coordinate �r12

(right panel of Fig. 2). In nuclei, 	̂ has a complicated spin and
isospin structure. The ZRA acts as a projection operator on the
short-range components of the wave function corresponding
to the relative motion of the pair. Throughout this paper
the factorized cross section of Eq. (3) is used. The validity
of this expression (3) has been experimentally verified. The
proposed factorization of the cross section in terms of F

pp,D
A

was first confirmed in 12C(e,e′pp) measurements back in
the late 1990s [9]. An effort is on its way to extract the
width of the F

pp,D
A distribution in A(e,e′pp) measurements on

12C, 27Al, 56Fe, and 208Pb [25,26], and compare them with
the theoretical predictions [22]. Another striking prediction
of the expression (3) is that the A(e,e′pN ) cross section
is proportional to the number of close-proximity pN pairs
in the target nucleus. As a result, it can be inferred that
the A dependence of the A(e,e′pp) cross section is much
softer than naive FSI-corrected Z(Z − 1)/2 counting. Re-
cent measurements of the A(e,e′pp)/12C(e,e′pp) ratios are
completely in line with those predictions [27]. The measured
and predicted 208Pb / 12C (e,e′pp) cross-section ratio, for
example, is a mere 5 whereas the naive prediction is over
200.

B. Final-state interactions

We include two FSI mechanisms in our model. The first is
attenuation (ATT) of the outgoing nucleons upon traversing
the recoiling nucleus. The second is single-charge exchange
(SCX), i.e., an outgoing proton (neutron) rescattering into
a neutron (proton). The attenuation effect is calculated in
the relativistic multiple-scattering Glauber approximation
(RMSGA) [28,29]. The RMSGA is based on high-energy
diffractive scattering. It uses an eikonal form for the
rescattering amplitude dominated by the central term,
neglecting spin-dependent attenuation. The RMSGA is fully
parameterized in terms of nucleon-nucleon scattering data.
We systematically use “FSI” when referring to the combined
effect of attenuation and single-charge exchange. Throughout
this paper, we refer to A(e,e′pN ) results that ignore the effect
of FSIs as “ZRA” results.

The distorted c.m. momentum distribution F
pN,D
A ( �P12) in

Eq. (3) is defined in the following way:

F
pN,D
A ( �P12) =

∑
α,β

F
pN,D;αβ
A ( �P12)

=
∑
s1,s2

αβ

∣∣∣∣
∫

d �R12 ei �P12· �R12 ū(�k1,s1)ψα( �R12)

×ū(�k2,s2)ψβ( �R12)FRMSGA( �R12)

∣∣∣∣2

. (5)

Here, u(�k,s) is the positive-energy free Dirac spinor and
(ψα,ψβ ) are relativistic mean-field wave functions with IPM
quantum numbers (α,β) computed in the Serot-Walecka model
[30]. The contribution from a specific IPM nucleon pair with
quantum numbers (α,β) is denoted as F

pN,D;αβ
A ( �P12). We

consider experimental conditions whereby the precise state
of the residual A − 2 nucleus is not resolved. As a result,
the sum over (α,β) extends over all occupied pN pairs. In the
practical implementation of Eq. (5), we neglect the projection
on the lower components of the plane-wave Dirac spinors.
The rescattering of the ejected pair with the remaining A − 2
spectators, encoded in the standard Glauber phase FRMSGA,
is computed in the RMSGA [28]. The interactions among the
two ejected nucleons do not affect F

pN,D
A ( �P12) due to c.m.

momentum conservation, and they are effectively included in
σepN (�k12). The implementation of reinteractions between the
ejected nucleons is not addressed in this article, as σepN (�k12)
drops out in the cross-section ratios defined in Sec. II C.

The SCX mechanisms are treated in a semiclassical manner.
The joint probability for the struck proton, labeled “1”,
undergoing SCX while the recoiling nucleon of the SRC pair,
labeled “2”, is not undergoing any SCX, is given by

P
[1]2,pN
CX,A

=
∑
α,β

∫
d3 �R12 P

[α]β
CX ( �R12)

[
1 − P

α[β]
CX ( �R12)

]
F

pN,D;αβ
A ( �R12)∫

d3 �R12 F
pN,D;αβ
A ( �R12)

.

(6)

As in Eq. (5), the sum over (α,β) extends over all the
occupied pN pairs. Further, the square bracket [1] identifies
the nucleon subject to SCX. In Eq. (6), the probability
that an initial nucleon with quantum numbers α (with
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correlated partner with quantum numbers β) has undergone
a SCX after a hard interaction at c.m. coordinate �R12 is
given by P

[α]β
CX ( �R12), and is weighted with the RMSGA-

corrected probability F
pN,D;αβ
A ( �R12) of finding the two nu-

cleons at c.m. coordinate �R12. Expressions similar to Eq. (6)
can be written for the situations where only the recoil
nucleon “2” is subject to SCX (P 1[2],pN

CX,A ), both nucleons

in the pair are subject to SCX (P [12],pN
CX,A ), or none of

the nucleons in the pair are subject to SCX (P 12,pN
CX,A ).

In those situations, the factor P
[α]β
CX ( �R12)[1 − P

α[β]
CX ( �R12)]

in the numerator of Eq. (6), is replaced by, respectively,
the factors [1 − P

[α]β
CX ( �R12)]P α[β]

CX (R12),P [α]β
CX ( �R12)P α[β]

CX (R12)
and [1 − P

[α]β
CX ( �R12)][1 − P

α[β]
CX ( �R12)]. One has P

[1]2,pN
CX,A +

P
1[2],pN
CX,A + P

[12],pN
CX,A + P

12,pN
CX,A = 1.

The SCX probabilities P
[α]β
CX ( �R12) are calculated in a semi-

classical approximation. Thereby, the probability of charge-
exchange rescattering for a nucleon with bound-state IPM
quantum numbers α that is brought in a continuum state at
the coordinate �r is modeled by

P
[α]β
CX (�r ) = 1 − exp

[
− σCX(s)

∫ +∞

z

dz′ραβ
A−2(z′)

]
. (7)

The z axis is chosen along the direction of propagation of the
nucleon undergoing SCX ([α]). ρ

αβ
A−2 is the one-body density

of the recoiling A − 2 nucleus that contributes to the SCX
reaction. For an ejected proton (neutron) only the neutron
(proton) density of the recoiling nucleus affects SCX reactions.
The parameter σCX(s) in Eq. (7) can be extracted from elastic
proton-neutron scattering data [31], with s the total c.m. energy
squared of the two nucleons involved in the SCX. In Ref. [32],
it was shown that σCX(s) obeys the relation

σCX(s) = 0.424
s

s800
fm2, (8)

where s800 is the c.m. energy squared for a collision between
a neutron with 800 MeV kinetic energy and a stationary
proton. The value 0.424 fm2 is obtained by integrating the
elastic pn differential cross section with s = s800 at backward
scattering angles dominated by charge exchange [31]. The
parametrization of Eq. (8) is valid for laboratory frame
momenta in the interval [0.1,100] GeV/c.

In Eq. (6), the weight factor F
pN,D;αβ
A ( �R12) gives the

attenuation corrected probability to find a pair (α,β) at a
coordinate �R12

F
pN,D;αβ
A ( �R12) = lim

�r12→�0

∣∣∣∣ψα

(
�R12 + �r12

2

)∣∣∣∣2∣∣∣∣ψβ

(
�R12− �r12

2

)∣∣∣∣2

×
∣∣∣∣FRMSGA

(
�R12 ± �r12

2

)∣∣∣∣2

. (9)

Note that F
pN,D;αβ
A ( �R12) is the Fourier transform of

F
pN,D;αβ
A ( �P12) appearing in Eq. (3). In the limit of vanishing

FSI (FRMSGA ≡ 1), Eq. (9) reduces to the probability of finding
two IPM nucleons at the same coordinate �R12.

The flow diagram in Fig. 3 shows an overview of the
different FSI mechanisms that are included in the A(e,e′pN )

FIG. 3. A flow diagram illustrating the different FSI effects
included in our model calculations. The center of the diagram (σpN

A )
denotes the plane-wave ZRA A(e,e′pN ) cross section. The σ̃

pp
A and

σ̃
pn
A correspond with the observed A(e,e′pp) and A(e,e′pn) cross

sections. The solid arrows denote SCX reactions. The dashed arrows
denote the attenuation (ATT).

reactions considered in this article. The initial plane-wave
(vanishing FSI) ZRA A(e,e′pN ) cross section (σpN

A ) is
positioned at the center. The partner nucleon can be a proton
(σpp

A ) or a neutron (σpn
A ). The observable cross sections are

denoted with σ̃
pp
A and σ̃

pn
A . The sources and sinks between

the different σ̃ NN
A through the SCX mechanism are denoted

with the solid arrows. The dashed arrows denote the RMSGA
attenuation contribution, quantified by means of the nuclear
transparency T

pN
A , defined as the ratio of the A(e,e′pN )

cross section with and without the RMSGA attenuations [see
Eq. (14)]. It is a measure for attenuation caused by the nuclear
medium. The different contributions to the final cross sections
σ̃

pp
A ,̃σ

pn
A can be visually deduced by following all possible

paths from σ
pN
A to σ̃

pp
A or σ̃

pn
A in Fig. (3). Because we

only account for single-charge exchange, the SCX arrows
can only be used at most once for each particle in every
path, meaning P

1[2],pN
CX,A P

[1]2,pN
CX,A is allowed but P [1]2,pN

CX,A P
[1]2,pN
CX,A

or P
1[2],pN
CX,A P

1[2],pN
CX,A are not. The missing SCX arrows (from

and between σnn
A ,σ

np
A ) are neglected as we assume that the

struck nucleon is a proton. We argue that this is a valid
approximation. First, the photon-neutron coupling is a fraction
of the photon-proton one. Second, an SCX reaction is a
necessary condition to end up with a leading proton in the
final state. We find that those SCX probabilities are very small
(Sec. III).

C. A(e,e′ pN) cross-section ratios

Most often, it is extremely challenging to measure
A(e,e′pN ) cross sections. A lot of information regarding
nuclear SRCs has been obtained by measuring cross-section
rations over extended ranges of the phase space [4,5,21,25,27].
Using the factorized form of the differential cross section from
Eq. (3), one can investigate A(e,e′pN ) cross-section ratios
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relative to 12C. Let R̃
pN
A (RpN

A ) be the cross-section ratios
with (without) the inclusion of FSIs:

R̃
pN
A = σ̃

pN
A

σ̃
pN

12C

≈
∫

d2�ke′ d
3�k12σepN (�k12)

∫
d3 �P12F

pN,D
A ( �P12)∫

d2�ke′ d
3�k12σepN (�k12)

∫
d3 �P12F

pN,D
12C ( �P12)

=
∫

d3 �P12F
pN,D
A ( �P12)∫

d3 �P12F
pN,D

12C ( �P12)
. (10)

The σ̃
pN
A denotes the FSI-corrected A(e,e′pN ) cross section.

The cross-section ratios are independent of the information
contained in the photon-nucleon coupling σepN (�k12). There-
fore, we use cross-section ratios to quantify the effect of SRCs,
as those are less model dependent.

In the limit of vanishing FSI, the integrated c.m. momentum
distribution

∫
d3 �P12 F

pN,D
A ( �P12) is proportional to the amount

of SRC-susceptible pN pairs. The relative amount of SRC
pairs for nucleus A relative to 12C is then given by RpN =
σ

pN
A /σ

pN
12C , where σ

pN
A denotes the A(e,e′pN ) cross section in

the limit of vanishing FSI. It is well established that the tensor
correlation [3,19] induces a heavy dominance of SRC pn
pairs over SRC pp pairs. This dominance is not automatically
generated in the ZRA without introducing additional assump-
tions with regard to the dynamical mechanisms underlying the
SRCs. The pn- over pp-pair dominance can be included for
nucleus A using the measured pn/pp pair ratio (18 ± 5) in
12C [19], in the following way:

σ
pn
A

σ
pp
A

= σ
pn
A

σ
pn

12C

σ
pn

12C

σ
pp

12C

σ
pp

12C

σ
pp
A

≈ σ
pn
A

σ
pn

12C

#pn-pairs(12C)

2 × #pp-pairs(12C)

σ
pp

12C

σ
pp
A

≈ σ
pn
A

σ
pn

12C

(
18 ± 5

2

)
σ

pp
12C

σ
pp
A

. (11)

The exchanged photon can couple to both protons in a
pp pair and to one in a pn pair, leading to the factor 2 in the
denominator of Eq. (11). The expressions for the FSI-corrected
cross-section ratios, R̃pN = σ̃

pN
A /σ̃

pN
12C , are then given by (see

Fig. 3)

R̃
pp
A = σ̃

pp
A

σ̃
pp

12C

= P
12,pp
CX,A T

pp
A σ

pp
A + P

1[2],pn
CX,A T

p∗
A σ

pn
A

P
12,pp

CX12C
T

pp
12Cσ

pp
12C + P

1[2],pn

CX12C
T

p∗
12Cσ

pn
12C

=
P

12,pp
CX,A T

pp
A R

pp
A + P

1[2],pn
CX,A T

p∗
A

σ
pn
A

σ
pp
12C

P
12,pp

CX12C
T

pp
12C + P

1[2],pn

CX12C
T

p∗
12C

σ
pn
12C

σ
pp
12C

= P
12,pp
CX,A T

pp
A R

pp
A + P

1[2],pn
CX,A T

p∗
A R

pn
A

18±5
2

P
12,pp

CX12C
T

pp
12C + P

1[2],pn

CX12C
T

p∗
12C

18±5
2

. (12)

Here, σ̃
pN
A is the FSI-corrected A(e,e′pN ) cross section. The

first term in the numerator and denominator consists of the
A(e,e′pp) cross section (σpp

A ) corrected for attenuation (T pp
A )

given that no SCX occurred (P 12,pp
CX,A ). The second term is the

contribution from an initial A(e,e′pn) (σpn
A ) multiplied by

the attenuation factor (T p∗
A ) given that the recoiling partner

changes to a proton (P 1[2],pn
CX,A ). These two terms correspond

with the two possible paths to σ̃
pp
A in Fig. 3 :

σ
pN
A → σ

pp
A

P
12,pp
CX,A T

pp
A−−−−−→ σ̃

pp
A and

σ
pN
A → σ

pn
A

P
1[2],pn
CX,A T

p∗
A−−−−−→ σ̃

pp
A . (13)

In the ZRA, the nuclear A(e,e′pN ) transparency T
pN
A can be

calculated as

T
pN
A ≈

∫
d3 �P12 F

pN,D
A ( �P12)∫

d3 �P12 F
pN
A ( �P12)

. (14)

Here, FpN
A ( �P12) is the c.m. momentum distribution in the limit

of vanishing attenuation [FRMSGA ≡ 1 in Eq. (5)]. We stress
that the transparency depends on the sampled phase space, i.e.,
the integration volume of �P12 in Eq. (14).

In estimating the attenuation effect for the SCX contribu-
tion, we use the averaged transparency T

p∗
A = 1

2 (T pp
A + T

pn
A ).

The reason is that in our model we have no information about
the time ordering of the SCX and attenuation mechanisms.
Therefore, starting from initial pp knockout followed by

p → n SCX, one can adopt the averaged attenuation T
pn
A +T

pp
A

2 .
Note that the difference between T

pp
A and T

pn
A is rather small

for the kinematics addressed in this paper (2% for 12C and
about 20% for 208Pb).

For the A(e,e′pn) cross-section ratios we get

R̃
pn
A = σ̃

pn
A

σ̃
pn

12C

= P
12,pn
CX,A T

pn
A σ

pn
A + P

1[2],pp
CX,A T

p∗
A σ

pp
A

P
12,pn

CX12C
T

pn
12Cσ

pn
12C + P

1[2],pp

CX12C
T

p∗
12Cσ

pp
12C

= P
12,pn
CX,A T

pn
A R

pn
A + P

1[2],pp
CX,A T

p∗
A R

pp
A

2
18±5

P
12,pn

CX12C
T

pn
12C + P

1[2],pp

CX12C
T

p∗
12C

2
18±5

. (15)

As in Eq. (12) each term can be identified with a certain path to
σ̃

pn
A in Fig. 3. The experimental values for R̃

pn
A are not known

if the outgoing neutrons are not detected. In kinematics tuned
so that the A(e,e′p) signal is dominated by A(e,e′pN ) events
it is possible to deduce R̃

pn
A from the A(e,e′p) cross-section

ratios (R̃p
A) measured for the same kinematical settings:

R̃
p
A = σ̃

p
A

σ̃
p

12C

≈ 2σ̃
pp
A + σ̃

pn
A

2σ̃
pp

12C + σ̃
pn

12C

= 2R̃
pp
A + R̃

pn
A R̃

pn
pp

12C

2 + R̃
pn
pp

12C

. (16)

The 12C(e,e′pn) over 12C(e,e′pp) cross-section ratio R̃
pn
pp

12C
can be extracted in the following way:

R̃
pn
pp

12C = σ̃
pn

12C

σ̃
pp

12C

= P
12,pn

CX12C
T

pn
12Cσ

pn
12C + P

1[2],pp

CX12C
T

p∗
12Cσ

pp
12C

P
12,pp

CX12C
T

pp
12Cσ

pp
12C + P

1[2],pn

CX12C
T

p∗
12Cσ

pn
12C

= P
12,pn

CX12C
T

pn
12C

18±5
2 + P

1[2],pp

CX12C
T

p∗
12C

P
12,pp

CX12C
T

pp
12C + P

1[2],pn

CX12C
T

p∗
12C

18±5
2

. (17)

Hence, from Eq. (16),

R̃
pn
A = 1

R̃
pn
pp

12C

[
R̃

p
A

(
2 + R̃

pn
pp

12C

) − 2R̃
pp
A

]
. (18)
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The relations for R̃
pp
A and R̃

pn
A can be inverted to extract the

FSI-uncorrected cross section ratios (which are proportional
to the ratios of SRC prone pairs) R

pp
A ,R

pn
A from the measured

values for R̃pp and R̃pn [27].

III. RESULTS

In this section we present the results of the numerical
A(e,e′pN ) calculations for four representative target nuclei
and two representative but distinct kinematic settings. First, we
apply the formalism developed in the previous section to the
A(e,e′pN ) reaction in the kinematics covered by the Jefferson
Lab CLAS detector [21]. The latter is a “4π” detector, which
results in a very large phase-space coverage. We systematically
refer to this kinematics as “KinB”. Kinematics approaching a
4π layout pose challenges for the calculations and require
dedicated sampling techniques that are outlined below. After
the discussion of the 4π KinB results we present two-nucleon
knockout calculations in kinematics in very narrow solid
angles for all detected particles (coined “KinA”).

In dealing with the KinB situation, we define a reference
frame with the z axis along the initial momentum �k1 of the
proton and the exchanged photon-momentum �q in the x-z
plane. A two-nucleon knockout event is uniquely characterized
by the set of six kinematical variables {Q2 ≡ |�q |2 − ω2,xB =

Q2

2mN ω
,θq, �P12}. Here, θq is the direction of �q relative to the z

axis.
Upon numerically computing the distorted c.m. momentum

distribution of Eq. (5), we generate phase-space samples by
drawing (xB,Q2) from the experimentally measured (xB,Q2)
distribution [25]. We draw the θq and the �P12 uniformly from
the relevant ranges. In order to guarantee that the virtual
photon primarily probes correlated pairs a number of kinematic
constraints are imposed:

θ �p1,�q � 25◦, 0.62 <
| �p1|
|�q| < 0.96, xB � 1.2,

|�k1| � 300 MeV, | �p2| � 350 MeV. (19)

The first two cuts select events where the virtual photon
has mainly interacted with the struck (leading) proton. The
xB � 1.2 cut selects events with a high |�q| and relatively low ω,
suppressing for example pion production through intermediate
 production. The last two cuts impose high-momentum
conditions (larger than the Fermi momentum) for the initial
nucleon pair.

Sampling over the complete {xB,Q2,θq, �P12} space is
computationally very demanding in the RMSGA calculations.
Therefore, we use stratified sampling on the binned plane-wave
result, F

pN
A ( �P12) = F

pN,D
A ( �P12|FRMSGA ≡ 1), to generate the

events in phase space (see Fig. 4 for an illustration). Thereby,
after calculating F

pN
A ( �P12) for a large number of events, we

bin the events in the �P12 space. Next, we sample phase-space

events from the bins using the bin-averaged value F
pN

A ( �P12)
of F

pN
A ( �P12) as bin weights. We then include the effect

of attenuation by calculating F
pN,D
A ( �P12) in the RMSGA,

for the sampled phase-space events. It is assumed that the

103 104
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n
v
e
rg

e
n
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27Al

103 104

56Fe
208Pb

103 104

Ns

0.00

0.25

T
p
p

A
103 104

FIG. 4. (Top) A schematic representation of the sampling proce-
dure adopted in the A(e,e′pN ) calculations in kinematics covering
a large phase space. The gray cubes are �P12 bins. The black circles
are those points in �P12 space for which A(e,e′pN ) calculations with
vanishing FSI (FRMSGA ≡ 1) are done. The red dots represent the
sampled points for which the RMSGA A(e,e′pN ) calculations are
performed. The sampling weight of each bin is the bin-averaged c.m.

momentum distribution F
pN

A ( �P12) indicated by the white bars. The
resulting bin-averaged c.m. momentum distribution including FSIs is
indicated by the red bars. (Bottom) The convergence as defined in
Eq. (21) and the transparency T

pp
A of Eq. (14) as a function of the

sample size Ns for (e,e′pp) from 12C, 27Al, 56Fe, and 208Pb in the
kinematics defined by Eq. (19).

bin-averaged F
pN,D

A ( �P12) of the function F
pN,D
A ( �P12) of the

sampled events is representative for the real bin average. Using
this procedure, the integrals in Eq. (10) are determined in the
following way:∫

d3 �P12F
pN,D
A ( �P12) ≈ V �P12

Ns

∑
n∈bins

F
pN,D

A,n ( �P12)Nn , (20)

with Nn the number of events in the nth bin, Ns the total number
of phase-space events, and V �P12

the considered phase-space

volume in �P12.
Figure 4 displays the convergence of the plane-wave

integrated c.m. distribution, defined as[ ∫
d3 �P12F

pN
A ( �P12)

]
Ns[ ∫

d3 �P12F
pN
A ( �P12)

]
Ns=104

, (21)

and the nuclear transparency T
pp
A [Eq. (14)] as a function of

the number of sampled events Ns . The convergence at a 1000
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FIG. 5. The P12,x ,P12,y ,P12,z dependence of the c.m. momentum distribution F
pN
A ( �P12) (ZRA in the plane-wave limit of the ejected nucleons)

and F
pN,D
A ( �P12) (including elastic attenuation of the ejected nucleons) for 12C(e,e′pp) (top) and 12C(e,e′pn) (bottom) in KinB kinematics.

The solid lines, obtained in the ZRA, are multiplied by the nuclear transparency for 12C (Table I).

samples is between 94% and 97% for all nuclei. We perform
the RMSGA calculations for this sample size. From Fig. 4 it
is clear that the nuclear transparency is almost independent of
the sample size. This indicates that the ZRA and RMSGA (≡
ZRA+RMSGA) have almost identical convergence behavior
as a function of the sample size Ns .

Figures 5 and 6 show the computed c.m. distribution for
A(e,e′pp) and A(e,e′pn). Both undistorted [ZRA, FpN ( �P12)]
and distorted [RMSGA, FpN,D( �P12)] results are shown. It is
clear that, for all target nuclei considered, attenuation effects
on the ejected nucleons marginally affect the shape of the
c.m. momentum distribution. Note that the shape of the c.m.
momentum distribution is fairly similar for all four nuclei con-
sidered. This illustrates that SRCs are connected with the local
and “universal” short-distance behavior of nucleon pairs [3].

The opening angle θ12 is defined as the angle between
the two initial nucleon momenta, cos θ12 = (�k1 · �k2)/(|�k1||�k2|).
Nucleon pairs susceptible to SRC have a high relative
momentum and a small c.m momentum, reminiscent of “back-
to-back” motion. This causes the opening-angle distribution of
SRC pairs to be biased towards backward angles. Figure 7 dis-
plays the normalized θ12 distributions as they can be extracted
from the undistorted and distorted distributions FpN ( �P12)
and FpN,D( �P12) for the different nuclei. The inclusion of
elastic attenuation mechanisms, as computed in the RMSGA
framework, has a relatively small effect on the opening-angle
distribution. A slight tendency to effectively increase the
contributions of the cos θ12 ≈ −1 events is observed.

Charge-exchange reactions in the final state will mix
the c.m. momentum distribution and the opening-angle

|P12|MeV/c

F
p
n
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)
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0.00

0.50

1.00
12C ZRA×0.29
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FIG. 6. The c.m. momentum distribution in the ZRA F
pN,(D)
A ( �P12) with and without RMSGA attenuation corrections for A(e,e′pp) (left)

and A(e,e′pn) (right) in KinB kinematics. As in Fig. 5 the ZRA results are multiplied by the corresponding T
pN
A (see Table I).
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FIG. 7. The normalized θ12 distributions for A(e,e′pp) (top) and
A(e,e′pn) (bottom) in KinB kinematics.

distribution of the initial pp and pn pairs. For example, initial
pp pairs, with a c.m. momentum distribution F

pp,D
A ( �P12), can

change into pn pairs, contaminating F
pn,D
A ( �P12), and vice

versa. From Figs. 5 to 7 it is clear that throughout the mass table
the A(e,e′pp) and A(e,e′pn) c.m. momentum distributions as
well as the opening angle distributions are very similar. The
effect of SCX on the shape of these distributions is close
to negligible. The SCX probabilities calculated in the ZRA
and ZRA+RMSGA [Eq. (6)] are displayed in Fig. 8. The
RMSGA clearly diminishes the SCX probabilities. This can be
understood in the following way: the events most susceptible
to SCX reactions are those whereby the ejected nucleon pair
traverses large distances in the recoiling nucleus. These events
are most suppressed by the attenuation, causing the SCX
probabilities to decrease.

Table I lists the cross-section ratios R
pN
A calculated in the

ZRA. These are approximately equal to the SRC pair ratios.
The nuclear transparencies T

pN
A calculated in the RMSGA

[Eq. (14)] and the FSI (RMSGA+SCX) corrected cross section
ratios R̃

pN
A are listed as well. The RMSGA attenuates the cross
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P
[1]2,pN
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P
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12 27 56 208
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X
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pn

27 56 208

FIG. 8. The mass dependence of the SCX probabilities for
A(e,e′pp) (top) and A(e,e′pn) (bottom) for KinB. P 12,pN

CX,A is the prob-

ability that no charge exchange scattering occurs. P
[1],2,pN
CX,A ,P

1,[2],pN
CX,A

are the probabilities that either the leading or the recoil nucleon
undergoes charge exchange. P

[1,2],pN
CX,A is the probability that both the

leading proton and recoiling nucleon undergo charge exchange. The
black lines (left) are calculated in the ZRA; the red ones (right) include
RMSGA attenuation.

TABLE I. The numerical results for the cross-section ratios R
pN
A

(ZRA) and the corresponding transparencies [Eq. (14)] calculated
with the RMSGA. R̃pN

A are the cross-section ratios corrected for FSIs
(RMSGA and SCX). For vanishing SCX probabilities R̃

pN
A is equal

to R
pN
A T

pN
A /T

pN
12C

. T
p
A is the measured A(e,e′p) transparency [29].

R
pp
A T

pp
A R̃

pp
A R

pn
A T

pn
A R̃

pn
A (T p

A )2

12C 1.00 0.280 1.00 1.00 0.286 1.00 0.26
27Al 2.89 0.186 1.91+0.01

−0.01 2.52 0.186 1.65+0.01
−0.01

56Fe 5.89 0.138 2.85+0.01
−0.01 4.82 0.150 2.49+0.01

−0.01 0.10
208Pb 17.44 0.073 4.96+0.11

−0.14 18.80 0.093 6.00+0.01
−0.01 0.05

sections significantly, ranging from a factor of 4 for 12C to 14
for 208Pb. The inclusion of SCX has a very modest effect on
the cross-section ratios R̃

pN
A : the largest effect is approximately

8% for R̃
pp
208Pb.

The mass dependence of the calculated transparencies for
the 4π kinematics KinB follow a power law (T pN

A ∝ Aλ) and
are displayed in Fig. 9. Up to now we concentrated on the
kinematics accessed in the experiment of Ref. [21].

We test the robustness of our methodology by applying it
to the kinematics accessed in the 12C(e,e′pp) measurements
of Ref. [18], denoted KinA. It corresponds to a very selective
phase space whereby the scattered electron and leading proton
are detected with two high-resolution spectrometers at the
fixed central angles 19.5◦ (electron) and −35.8◦ (leading
proton) relative to the incoming electron beam. The angular
acceptance is ±0.03 mrad (±0.06 mrad) in the horizontal
(vertical) plane. The initial (final) electron momentum is
fixed at 4.627 GeV/c (3.724 GeV/c). The leading proton
momentum is 1.42 ± 4% GeV/c. The recoiling proton is
detected at the central angle −99◦ with an angular acceptance
of 96 msr. These kinematics are finely tuned and optimized
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en
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Tpp
A KinB

Tpn
A KinB

Tpp
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FIG. 9. Mass dependence of the two-nucleon knockout trans-
parency calculated according to Eq. (14). The lines are power-law
fits (∼Aλ) to the numerical predictions. KinB denotes the results
for the A(e,e′pN ) kinematics accessed in Ref. [21] covering a large
phase space. KinA are the transparencies calculated for A(e,e′pN ) in
the kinematics accessed in Ref. [18] with very selective phase space.
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to select knockout reactions of initial back-to-back pairs. For
example, more than 80% of the available phase space has
opening angle cos θ12 < −0.9.

The power-law dependencies of the T
pN
A transparencies

in KinA and KinB kinematics are very similar and are
included in Fig. 9. We find T

pp
A ∝ A−0.46±0.02 (KinB), T

pp
A ∝

A−0.49±0.06 (KinA), T
pn
A ∝ A−0.38±0.03 (KinB), and T

pn
A ∝

A−0.42±0.05 (KinA). This indicates that the mass dependence
of the transparency is robust. The absolute value of the
KinA transparencies is lower by approximately a factor of 2
compared to the KinB results. Given the small phase space of
KinA, we cannot make a detailed study of the c.m. momentum
distribution F

pN,(D)
A and the opening-angle distribution, as was

done for KinB. Indeed, KinA kinematics only covers restricted
ranges in �P12 and cos θ12.

Next, we outline an alternative method to account for the
mass dependence of T

pN
A . The transparency T

p
A of A(e,e′p)

processes can be interpreted as the probability of a single
proton leaving the nucleus after virtual photon excitation.
Recent measurements [25] have confirmed that the A depen-
dence of the T

p
A can be captured by the power law A−0.33

[33]. One could naively expect that T
pp
A ≈ T

p
A T

p
A ≈ A−0.66.

Upon squaring the T
p
A one assumes that the two protons

are independent. This is in obvious contradiction with the
ZRA picture for SRC-driven two-nucleon knockout reaction
where the nucleon pair is maximally correlated: finding
one nucleon at the spatial coordinate �R12 fixes the second
nucleon’s spatial coordinate. To obtain a deeper and more
intuitive understanding of the A dependence of T

pN
A we have

developed a toy model detailed in the AppendixA. Thereby the
nucleus is treated as a uniform sphere with radius R = 1.2A− 1

3

fm and density ρ = A
4/3πR3 = 0.138fm−3. We calculate the

transparencies using a semiclassical approach analogous to
the method used to compute the SCX probabilities. The
attenuation is derived using the scattering probabilities as
in Eq. (7), where the scattering cross section is treated as a
model parameter. We derive a range λ ∈ [−0.37, − 0.78] for
the exponent λ in T

pN
A ∝ Aλ. This range is established by

varying two parameters: (1) the nucleon-nucleus cross section
describing the attenuation and (2) the θ12 distribution for the
nucleon pair, varied from a uniform distribution (no angular
correlation) to a back-to-back delta function δ(θ12 − π ). The
exponents derived involving the full calculations (Fig. 9) are
in good agreement with the toy model. The toy model predicts
that for increasingly backward peaked θ12 distributions the
exponent λ becomes more negative. The toy model also
explains why the T

pN
A diminishes as one increasingly selects

back-to-back nucleons.

IV. SUMMARY

We have studied the impact of final-state interactions
in SRC-driven exclusive A(e,e′pN ) processes. Attenuation
through elastic and soft inelastic rescattering as well as single-
charge exchange processes are included in the description
of the FSIs. We applied our model to two very different
kinematics probing SRC pairs and four target nuclei from
carbon to lead. It is shown that the inclusion of FSIs has a

limited effect on the extracted shapes of the c.m. momentum
and opening-angle distributions of the correlated nucleon pair.
The cross section, however, is significantly attenuated by
the FSIs. The absolute values of the transparencies depend
on the kinematics, and we find T

pN
A ≈ 0.2–0.3 for a light

nucleus like 12C and T
pN
A ≈ 0.04–0.07 for a heavy nucleus

like 208Pb. The mass dependence of the nuclear transparency is
more robust. We find T

pp
A ∝ A−0.46±0.02 and T

pn
A ∝ A−0.38±0.03

in 4π kinematics. For the highly selective kinematics, that
exclusively probes back-to-back nucleons, we find T

pp
A ∝

A−0.49±0.06 and T
pn
A ∝ A−0.42±0.05. Both are softer than one

would expect from a doubling of the power found for single-
nucleon knockout (T p

A ∝ A−0.33). The values for the exponent
λ in the power-law dependence of T

pN
A ∝ Aλ are tested against

the results of a toy model which allows us to set bounds on
values for λ. We find the calculated values to be well within
these bounds, λ ∈ [−0.37,−0.78].

It is well known that exclusive A(e,e′p) reactions, popu-
lating low-lying states in the residual (A − 1)∗ nucleus, are
proportional to the FSI-corrected single-particle momentum
distributions for specific hole states. Along similar lines, the
SRC-driven A(e,e′pN ) cross section is proportional to the
c.m. distribution of close-proximity pairs. We find that the
FSIs only modestly affect the shape of the c.m. distribution,
with the width of the distribution barely changing. In essence,
to a reasonable degree of accuracy, the aggregated effect of
FSIs for exclusive A(e,e′pN ) processes is a sizable reduction
of the plane-wave cross sections. This is a remarkable
result that could help to quantify the effect of two-nucleon
knockout contributions to quasielastic neutrino-nucleus and
antineutrino-nucleus responses [34].
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APPENDIX: QUALITATIVE MODEL FOR THE MASS
DEPENDENCE OF NUCLEAR TRANSPARENCIES

In order to gain a qualitative understanding of the mass
dependence of the transparency in knockout reactions we
develop a toy model. In part A 1 we introduce several scenarios
each of which provides predictions for the mass dependence
of the nuclear transparency. We display the numerical results
in part A 2.

1. Model

We model the nucleus as a homogeneous sphere with radius
R = 1.20A

1
3 fm and constant density ρ(�r) = 0.138 fm−3.

Without attenuation the A(e,e′N ) cross section is proportional
to the integrated density

∫
d3�rρ(�r) = A. The attenuation with

the nuclear medium is calculated with the aid of a classical
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survival probability P (�r ). Given a nucleon brought into an
energy continuum state at the coordinate �r , P (�r ) is

P (�r ) = exp

[
−σ

∫ +∞

z

dz′ρ(�r ′)
]

. (A1)

Let �r = (x,y,z) and �r ′ = (x,y,z′). The integration variable z′
runs along the direction of the momentum �p of the outgoing
nucleon. The cross section describing the scattering of the

outgoing nucleon with the nuclear medium is denoted by σ . It
is a measure for the aggregated effect of the attenuation. For a
sphere with radius R and homogeneous density ρ the survival
probability of Eq. (A1) becomes

P (�r ) = exp[−σρ(
√

R2 − r2 sin2 ξ − r cos2 ξ )].

Here, ξ is the angle between �r and �ep = �p
p

. The A(e,e′N )

nuclear transparency T N
A , defined as the cross section including

attenuation divided by the cross section without attenuation, is

T N
A [single] ∝

∫
d2�p

∫
d3�rρ(�r)P (�r)∫

d2�p

∫
d3�rρ(�r)

= 8π2ρ
∫ R

0 dr r2
∫ 1
−1 dx exp[−σρ(

√
R2 − r2(1 − x2) − rx)]

4πA
. (A2)

The integration
∫

d2�p covers all possible outgoing-momentum directions.
For uncorrelated two-nucleon knockout the cross section is proportional to the total number of pairs

∫
d3�r1ρ(�r1)

∫
d3�r2ρ(�r2) =

A2. The attenuation-corrected cross section is obtained by including the survival probability for both nucleons, and one finds for
the two-nucleon knockout transparency T NN

A [double]

T NN
A [double] ∝

∫
d2�p1

∫
d3�r1ρ(�r1)P (�r1)

∫
d2�p2

∫
d3�r2ρ(�r2)P (�r2)∫

d2�p1

∫
d3�r1ρ(�r1)

∫
d2�p2

∫
d3�r2ρ(�r2)

= T N
A [single] × T N

A [single]. (A3)

Next we investigate two-nucleon knockout in the ZRA, which serves as a proxy for identifying SRC-prone nucleon pairs.
The ZRA is introduced by requiring that the initial nucleons are found at the same spatial coordinate. The cross section without
attenuation is proportional to∫

d2�p1

∫
d2�p2

∫
d3�r1ρ(�r1)

∫
d3�r2ρ(�r2)δ(�r1 − �r2) = (4π )2

∫
d3�rρ(�r)2 = (4π )3ρ2

∫ R

0
dr r2 = (4π )2ρA. (A4)

We find that in the ZRA the two-nucleon knockout cross section is proportional to A as opposed to A2 in the uncorrelated case.
Including attenuation gives∫

d3�rρ(�r)2
∫

d2�p1P1(�r)
∫

d2�p2P2(�r )

= 16π3ρ2
∫ R

0
dr r2

∫ 1

−1
dx exp[−σρ(

√
R2 − r2(1 − x2) − rx)]

∫ 1

−1
dy exp[−σρ(

√
R2 − r2(1 − y2) − ry)]. (A5)

The transparency mass dependence is then given by the ratio of Eqs. (A5) and (A4),

T NN
A [ZRA] ∝ πρ

A

∫ R

0
dr r2

∫ 1

−1
dx exp[−σρ(

√
R2 − r2(1 − x2) − rx)]

∫ 1

−1
dy exp[−σρ(

√
R2 − r2(1 − y2) − ry)]. (A6)

It is well established that SRC pairs prefer back-to-back motion with antiparallel momenta of the initial nucleon pair [16,27].
After introducing the following angular constraints in the ZRA cross sections of Eqs. (A4) and (A5),

δ(φ1 − φ2 + π )δ(θ1 + θ2 − π ),

the transparency becomes

T NN
A [ZRA + SRC] ∝ 2πρ

A

∫ R

0
dr r2

∫ 1

−1
d cos θ1 exp[−σρ(

√
R2 − r2(1 − cos2 θ1) − r cos θ1)] (A7)

×
∫ 1

−1
d cos θ2 exp[−σρ(

√
R2 − r2(1 − cos2 θ2) − r cos θ2)]δ(θ1 + θ2 − π ). (A8)

With the substitution (r, cos θ1) → (r,	 =
√

R2 − r2(1 − cos2 θ1)) and further manipulations, one finds

T NN
A [ZRA + SRC] ∝ 2πρ

A

∫ R

0
d	 	 exp(−2ρσ	)

√
R2 − 	2 ln

(
R + 	

R − 	

)
. (A9)
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FIG. 10. The exponents λ in T
N(N)
A ∝ Aλ as a function of the

nucleon-nucleus cross section σ . The gray band corresponds with the
σ of outgoing nucleon momenta 0.3 � p � 10 GeV/c. With “single”
we denote the T N

A [single] results of Eq. (A2). With “double” we refer
to the T NN

A [double] results obtained with Eq. (A3) which corresponds
to uncorrelated two-nucleon knockout. The “ZRA” (“ZRA+SRC”)
results for T NN

A [ZRA] (T NN
A [ZRA + SRC]) are obtained with the

expressions of Eq. (A6) [Eq. (A9)].

2. Results

The mass dependence of the T N
A ,T NN

A of Eqs. (A2), (A3),
(A6), and (A9) is investigated by varying the mass number A
in the range [12,208]. A power law is fitted to the numerical
results TA ∝ Aλ. Figure 10 displays the numerical results for
the exponent λ as a function of σ . In the limit of vanishing
attenuation (σ → 0), the cross section equals the plane-wave
one and one has TA ≈ A0.

For σ > 10 fm2 we find that the λ values approach a limit value
corresponding with an extremely opaque nucleus. In this limit
one expects that the single-nucleon knockout cross section
is surface dominated ∝A

2
3 , as no nucleons originating from

within the nucleus are able to escape. The mass dependence
of T N

A [single] then becomes

lim
σ→+∞ T N

A [single] ∝ A
2
3

A
= A− 1

3 , (A10)

which agrees with the measured value [25,33]. For
T NN

A [double], we have

lim
σ→+∞ T NN

A [double]

= lim
σ→+∞ T N

A [single] × T N
A [single] ∝ A− 2

3 . (A11)

In the case of two-nucleon knockout in the ZRA the two
nucleons originate from the same spatial coordinate. We again
expect a surface dominated cross section as in the single-
nucleon knockout case, leading to the exponent limσ→+∞ λ =
− 1

3 .
Including the additional constraint of back-to-back angles

(ZRA+SRC in Fig. 10) will strongly favor the situation
in which (�r ⊥ �ep1 ⇔ �r ⊥ �ep2 ) ∧ (r ≈ R). When investigating
the mass dependence of the transparency in the strong
attenuation limit, one finds (Fig. 10)

T NN
A [ZRA + SRC] ∝ A0

A1
= A−1. (A12)

The cross section in the strong attenuation limit becomes
independent of A.
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