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Probing surface distributions of α clusters in 20Ne via α-transfer reaction
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Background: Direct evidence of the α-cluster manifestation in bound states has not been obtained yet, although
a number of experimental studies were carried out to extract the information of the clustering. In particular in
conventional analyses of α-transfer reactions, there exist a few significant problems on reaction models, which
are insufficient to qualitatively discuss the cluster structure.
Purpose: We aim to verify the manifestation of the α-cluster structure from observables. As the first application,
we plan to extract the spatial information of the cluster structure of the 20Ne nucleus in its ground state through
the cross section of the α-transfer reaction 16O( 6Li, d) 20Ne.
Methods: For the analysis of the transfer reaction, we work with the coupled-channel Born approximation
(CCBA) approach, in which the breakup effect of 6Li is explicitly taken into account by means of the continuum-
discretized coupled-channel method based on the three-body α + d + 16O model. The two methods are adopted
to calculate the overlap function between 20Ne and α + 16O; one is the microscopic cluster model (MCM) with
the generator coordinate method, and the other is the phenomenological two-body potential model (PM).
Results: We show that the CCBA calculation with the MCM wave function gives a significant improvement
of the theoretical result on the angular distribution of the transfer cross section, which is consistent with the
experimental data. Employing the PM, it is discussed which region of the cluster wave function is probed on the
transfer cross section.
Conclusions: It is found that the surface region of the cluster wave function is sensitive to the cross section.
The present work is situated as the first step in obtaining important information to systematically investigate the
cluster structure.
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I. INTRODUCTION

It is common knowledge that nuclei are well described by
the “atomiclike picture” in which nucleons are considered as
independent particles moving in a mean potential, and the
shell model based on this picture has achieved great success.
On the other hand, the “molecularlike picture” can also be
one with important aspects of nuclei. It is the basic concept of
the cluster model in which nucleons are regarded as strongly
correlated particles forming clusters, for example, α particles,
and then the clusters in nuclei weakly interact with each other.
Theoretically, the cluster structure is predicted (for instance,
in Refs. [1–6] and references therein) to appear at the surface
of not only light-stable nuclei but also sd-shell or unstable
nuclei. At this moment, however, there is no direct evidence
from experimental studies of the nuclear cluster phenomena
except for the decay width of the resonance states.

So far, a large number of measurements of α-transfer
reactions such as ( 6Li, d), ( 7Li, t), and their inverses have
been made in order to verify the existence of α-cluster
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structure. For example, the α-cluster structure (α + 16O) of the
20Ne nucleus was experimentally studied from the α-transfer
reaction 16O( 6Li, d) 20Ne [7–9] and its inverse reaction
20Ne(d, 6Li) 16O [10] at several incident energies Ein. In their
works, the α-cluster structure of 20Ne at the j th excited state
is discussed by using the normalization factor Sj in the form
of the ratio Sj/S0. The factor Sj is the phenomenologically
adjusted normalization one conventionally called a “spec-
troscopic factor” (SF) in calculations with reaction models,
although it is not necessarily the physical SF. Here j = 0
stands for the ground state. The reason why the relative value
was used is that the absolute one is not able to be determined
from the analyses with the conventional distorted-wave Born
approximation (DWBA) calculation, some of which use a
normalization factor greatly exceeding unity on the calculated
cross section. This unphysical normalization, which strongly
depends on Ein, is mainly due to the ambiguities of, in the
DWBA analyses [7–10], the optical potential of 6Li and
the α- 16O relative wave function. The 6Li optical potentials
used in the DWBA analyses are not global ones, which have
inconsistent parameter sets depending on both Ein and target
nuclei. It is necessary to work with a global framework
regarding the optical potential in order to systematically
investigate the α-cluster structure.

In view of this situation, our goal is to extract the informa-
tion about the spatial distribution, the surface distribution in
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particular, of α clusters from observables. For this purpose, it
is important to clarify how the α-cluster structure is probed by
the reaction. Because the so-called SF is the inclusive quantity
defined as a norm of a cluster wave function, it is not suitable to
discuss the manifestation of the cluster at the surface. Indeed,
the SF can reach unity even if there is no spatial manifestation
of clusters because wave functions of the lowest allowed states
of the SU(3) shell model are equivalent to that of the cluster
model wave functions as stated by Bayman and Bohr [11].
This means that the SF is not appropriate for discussing
the clustering phenomena. Therefore direct comparison of
calculated cross sections with measured ones is important, and
it is necessary to construct a numerically reliable theoretical
framework.

In this paper, we analyze the α-transfer reaction 16O( 6Li,
d) 20Ne in order to probe the surface distribution of the
α-cluster structure of 20Ne in its ground state by means of
the coupled-channel Born approximation (CCBA) [12,13].
The CCBA framework is able to avoid the aforementioned
ambiguity of the 6Li optical potential by considering the three-
body (α + d + 16O) model, in which the breakup effect of 6Li
into α and d is explicitly taken into account by employing
the method of the continuum-discretized coupled-channel
(CDCC) [14–16]. As the cluster model for the calculation
of the α- 16O wave function, we adopt the microscopic cluster
model (MCM) with the generator coordinate method (GCM)
[17–19], which gives properties of 20Ne consistent with
experimental ones. Employing the MCM, in our framework,
the aforementioned ambiguity of the α- 16O wave function
does not matter. Through the CCBA approach with the MCM,
we show a significant improvement of the theoretical result,
which is then consistent with experimental data. Then, in
order to clarify which region of the cluster wave function
is probed on the cross section, we analyze the dependence
of the cross section on the cluster wave function using the
conventional potential model (PM), in which a phenomeno-
logical two-body potential is assumed as the interaction
between the clusters. The breakup effect of 6Li is also
discussed.

This article is outlined as follows. In Sec. II the formulation
of our framework involving both the reaction and structure
models is given. Section III contains the explanation of the
model setting. In Sec. IV the result of our calculation is given.
How the α- 16O wave function is probed on the cross section
is discussed. In Sec. V, we summarize this work.

II. THEORETICAL FRAMEWORK

A. Formulation of the CCBA model with CDCC

Here, for the stripping reaction 6Li(α + d) + A → d +
B(α + A), we formulate the CCBA model, in which the
channel couplings regarding the continuum states of the
projectile 6Li are taken into account by adopting the CDCC.
In this study we choose 16O as the target nucleus A, and hence
the residual nucleus B corresponds to 20Ne. We assume the
reaction system to be described by the three-body (α + d + A)
model shown in Fig. 1. The transition matrix (T matrix) TCCBA

FIG. 1. Illustration of the three-body system.

for the reaction is written as

TCCBA = 〈�(−)
f | Vtr | �(+)

i 〉, (1)

where �
(+)
i and �

(−)
f are the three-body wave functions in the

initial and final channels, respectively, and the transition from
the former to the latter is induced by the residual interaction
Vtr. Their explicit forms are given below.

The Schrödinger equation of the three-body wave function
�

(+)
i is given by

[Hi − E]�(+)
i (rαd,r i) = 0, (2)

Hi = hi + Tr i
+ V

(N)
αA (rαA) + V

(N)
dA (rdA) + V

(C)
LiA(r i), (3)

where E is the total energy of the system. In the three-body
Hamiltonian Hi , hi is the internal Hamiltonian of 6Li, and Tρ is
the kinetic-energy operator in relation to the coordinate ρ (ρ =
rαd,rαA,rdA,r i , or rf ). The interaction VXY is the nuclear
or Coulomb component between particles X and Y (X,Y =
α,d,A,6Li, or B). Note that the superscripts (N) and (C) stand
for the nuclear and Coulomb interactions, respectively. As one
can see, we disregard the Coulomb breakup, which is justified
[20] because the effective charge of the α-d system for the
electric dipole transition is almost zero.

In this work we express �
(+)
i by means of the CDCC as

�
(+)
i (rαd,r i) ≈

∑
c

ψc
αd (rαd )χcc0(+)

i (r i), (4)

where the internal wave function ψc
αd of 6Li satisfies

[
hi − εc

i

]
ψc

αd (rαd ) = 0, (5)

hi = Trαd
+ V

(N+C)
αd (rαd ), (6)

with the energy eigenvalue εc
i . Here the superscript (N+C)

expresses the interaction containing both the nuclear and
Coulomb parts. The index c represents the discretized-energy
states; c = c0 for the ground state, and c �= c0 for the
discretized-continuum (DC) states. In this work we disregard
the intrinsic spin of d. Multiplying Eq. (2) by ψc′

αd from the
left while inserting Eq. (4) and integrating over rαd , we obtain
the coupled-channel equation, the so-called CDCC equation
[14–16]. The distorted wave χ

cc0(+)
i can be obtained by solving

the CDCC equation under the standard boundary condition
[20].
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We adopt the residual interaction Vtr of the postform
representation given by

Vtr = V
(N+C)
αd (rαd ) + V

(N+C)
dA (rdA) + V

(N+C)
αA (rαA) − Uf . (7)

We choose the auxiliary potential Uf as

Uf = V
(C)
αd (rαd ) + V

(N+C)
dA (rdA) + V

(N+C)
αA (rαA), (8)

which trivially leads to Vtr = V
(N)
αd .

The three-body wave function �
(+)
f , which is the time-

reversal one of �
(−)
f , is described by Uf as

[Hf − E]�(+)
f (rαA,rf ) = 0, (9)

Hf = TrαA
+ Trf

+ Uf . (10)

In this paper we approximate �
(+)
f as

�
(+)
f (rαA,rf ) ≈ ψαA(rαA)χ (+)

f (rf ). (11)

The distorted wave χ
(+)
f is generated by the effective distorting

potential Ũf defined by

Ũf = V
(N)
dA (rf ) + V

(C)
dB (rf ), (12)

which corresponds to the no-recoil limit in the final channel.
The detail of the calculation of the wave function ψαA

describing the ground state of B is given in the next section.

B. Cluster-model wave function

We define the radial part φl of ψαA with the angular
momentum l as

ψαA(r) = φl(r)Ylm(r̂), (13)

where the coordinate r expresses the relative distance between
the clusters and m is the z component of the angular
momentum. In the following, how to prepare φl is explained.

In the MCM with the GCM, the total wave function of the
two-body cluster system between α and A is written as

|�GCM〉 = ∣∣M̃A[
φ

(GCM)
l (r)Yl0(r̂)ϕαϕAϕc.m.

]〉
, (14)

M̃ ≡
√

Mα!MA!

MB!
, (15)

where ϕα and ϕA are the internal wave functions of α and
A, respectively, and the wave function ϕc.m. represents the
motion of the total center of mass (c.m.). The operator A is
the antisymmetrizer which exchanges nucleons belonging to
different clusters, and Mα , MA, and MB stand for the mass
numbers of each particle. The wave function φ

(GCM)
l contains

Pauli forbidden (unphysical) states which are eliminated by
the antisymmetrizer and does not directly equal to φ

(MCM)
l , but

it can be transformed to φ
(MCM)
l by taking into account the

antisymmetrization effect between the clusters. Here φ
(MCM)
l

corresponds to φl in the MCM. We adopt a definition of φ
(MCM)
l ,

for which
∫ |φ(MCM)

l |2r2dr = 1. Note that this definition of
φ

(MCM)
l is different from that in a conventional MCM, in which

the norm is usually reduced to be smaller than unity by the
antisymmetrization effect. See the Appendix for more detail.

The PM is also used to investigate in detail what the reaction
probes. The radial part φ

(PM)
l , which corresponds to φl in the

PM, is obtained as a solution of the Schrödinger equation,[
− �

2

2μB

{
1

r

d2

dr2
r − l(l + 1)

r2

}
+ V

(N+C)
αA (r)

]
φ

(PM)
l (r)

= εf φ
(PM)
l (r), (16)

with the energy eigenvalue εf of B in its ground state and
the reduced mass μB = MαMA/(Mα + MA). We adopt the
α-A nuclear interaction V

(N)
αA with the standard Woods-Saxon

distribution

V
(N)
αA (r) = − V0

1 + exp
(

r−r0
a0

) . (17)

Pauli forbidden states are eliminated by confirming the
numbers of nodes of φ

(PM)
l .

It should be noted that, in general, these cluster-model wave
functions, φ(MCM)

l and φ
(PM)
l , are defined as φl in Eq. (13) with

a normalization factor:

φl(r) = (SMCM)1/2φ
(MCM)
l (r) (18)

for the MCM case, whereas for the PM case it is given by

φl(r) = (SPM)1/2φ
(PM)
l (r). (19)

Here SMCM expresses the probability of the total many-body
wave function of B contains the pure α-A cluster configuration
and is regarded as a quenching factor because of, for example,
the polarization effect of the core nucleus A. In principle, it
corresponds to the physical SF, and it should be unity for an
ideal α-A system without the polarization. On the other hand,
SPM is the phenomenological normalization factor usually
adjusted to fit the cross sections. It is not necessarily the
physical SF but can involve an artificial renormalization factor
in addition to the physical SF.

III. MODEL SETTING

For the CDCC calculation, we use the two-range Gaussian
interaction [21], labeled V

(N)
αd , which depends on the orbital

angular momentum li between α and d. The DC states of 6Li
are described by employing the pseudostate method with the
real-range Gaussian basis functions [22]. In this model we have
the spin-degenerate resonance state of 6Li in the li = 2 state at
2.00 MeV with a width of 0.46 MeV. The number of Gaussian
basis functions we take is 30, with a minimum (maximum)
value of 1.0 (35.0) fm for the Gaussian range parameters. The
partial waves of ψc

αd with respect to li = 0,1,2,3, and 4 are
taken into account with up to εc

i = 50,60,55,60, and 55 MeV,
respectively. We calculate ψc

αd with a maximum value of rαd

of 100.0 fm. A uniformly charged sphere potential is used
for the Coulomb interaction V

(C)
αd with a charge radius of 3.0

fm, as well as for V
(C)

LiA and V
(C)
dB with charge radii of 3.1 and

4.6 fm, respectively. Furthermore, this Coulomb potential is
also adopted for V

(C)
αA in the PM with a charge radius of 3.1 fm.
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In the calculation of the distorted wave χ
cc0(+)
i , we adopt

the global optical potential [23] V
(N)
αA . On the other hand, V

(N)
dA

is evaluated as the sum of the proton- and neutron-optical
potentials folded by the ground-state wave function of the
deuteron [24]. In Refs. [25,26] it is shown that this prescription
allows the three-body CDCC based on the d + α two-body
picture of 6Li to effectively reproduce 6Li elastic cross
sections calculated with the four-body CDCC based on the
p + n + α three-body picture of 6Li. We take the parameter
set of Dave and Gould [27] for the nucleon global optical
potential, whereas the one-range Gaussian interaction [28]
between p and n is adopted to evaluate the deuteron wave
function. We use the deuteron global optical potential [29] for
V

(N)
dA in the final channel.

To calculate the T matrix, the double integral over ri and
rf is done up to 25.0 fm for both variables. The maximum
value of the total angular momentum J regarding the partial
waves of χ

cc0(+)
i and χ

(−)
f is 35. In the present calculation, the

transition from the 6Li channels with li �= 0 into the d channel
is omitted. Note, however, that the channel couplings among
all the states with 0 � li � 4 are taken into account in solving
the CDCC equation. It is validated that the T -matrix elements
of the transfer process from the higher partial-wave states are
expected to be small [30] since, within the range of V

(N)
αd , the

product of V
(N)
αd and ψc

αd for li �= 0 is much smaller than that
for li = 0.

The GCM calculation for φ
(MCM)
l of the l = 0 ground state

of 20Ne is performed with the Volkov number 2 effective
interaction of the Majorana parameter m = 0.62 [31] and with
the width parameter ν = 0.16 fm−2 [32] for both α and 16O.
The Coulomb interaction between the clusters is explicitly
taken into account by expanding it with the multirange
Gaussian basis functions. To obtain φ

(MCM)
l , the number of

the Brink-Bloch (BB) cluster wave functions kmax is set to
10, and we take the α-A relative distance Sk = 1,2, . . . ,10
fm. As shown in Ref. [33], not only the energy spectra for
the ground-state band of 20Ne but also the root-mean-square
radius of 16O calculated with the present setups are consistent
with the measured ones.

IV. RESULTS AND DISCUSSION

A. Result of CCBA calculation with MCM

We compare in Fig. 2 the theoretical results with the
experimental data [7,8] for the cross section of the transfer
reaction 16O( 6Li, d) 20Ne as a function of the deuteron
emitting angle θ in the c.m. frame at Ein = 20.0 MeV (solid
line) and 42.1 MeV (dashed line). For the former the calculated
and measured cross sections are shown after being multiplied
by 10. The calculation is performed with the MCM wave
function. At each incident energy the line is normalized
by multiplying by SMCM, which is determined from the χ2

fit of the calculation to the experimental data within the
region 0◦ < θ < 80◦. The value of SMCM is given in the
legend.

One of the main consequences of this work is that our
calculation improves the coincidence of the theoretical result

FIG. 2. Calculated transfer cross section of 16O( 6Li, d) 20Ne at
20.0 MeV (solid line) and 42.1 MeV (dashed line) as a function of
the deuteron emitting angle θ in the c.m. frame by using the MCM
wave function. The value of SMCM, which is determined from the χ 2

fit of the calculation to the experimental data [7,8], is given in the
legend. At 20.0 MeV the line and the dots are multiplied by 10.

with the experimental data on the angular distribution of
the cross section compared to the previous DWBA analyses
[7,8] of the same reaction as that in the present analysis.
It is remarkable that the calculation faithfully describes the
diffraction pattern around the first peak of the cross section
at the angles θ � 10◦ and the second one in the region
15◦ � θ � 35◦.

Furthermore, we obtain the reasonable value of SMCM of
0.261 (0.769) for Ein = 20.0 (42.1) MeV compared to the
value of the normalization factor of 2.70 [8] (2.59 [7]) extracted
from the previous DWBA analysis, although the energy
dependence still remains. Note that the physical SF must not
be greater than unity, and therefore these factors reported in
the previous works are the phenomenological normalization
factors involving artificial renormalization factors. In Refs.
[7,8], the α- 16O wave function is calculated employing the
PM, i.e., the solution of Eq. (16) with a certain interaction V

(N)
αA

of Eq. (17). However, different parameters of V
(N)
αA are adopted

in each previous work. Thus it is found that the appearance
of the unphysical normalization factor in the DWBA analysis
mainly comes from the ambiguity of the α- 16O wave function.
That two different DWBA analyses have consistent values
of the phenomenological normalization factor is expected
to be accidental. The meaning of the phenomenological
normalization factor in the PM is discussed in the next
section.

Another important finding is that at 42.1 MeV the DWBA
calculation employing a 6Li optical potential provides an
unphysical value of SMCM, even if the MCM wave function
is adopted. As mentioned above, in this work we do not need
any 6Li optical potential. In order to obtain a physical value
of SMCM, therefore, the description of the 6Li scattering based
on a three-body model is found to be crucial.
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TABLE I. The potential parameters of V
(N)
αA . Its depth V0 is

determined so as to reproduce the binding energy 4.73 MeV.

r0 (fm) a0 (fm)

PM1 1.25 × (16)1/3 0.76
PM2 1.25 × (16)1/3 0.52
PM3 1.40 × (16)1/3 0.85

B. Discussion of the calculation with the PM

Here we introduce the PM in order to clarify which region of
the α- 16O wave function is probed on the transfer cross section
and to elucidate the physical meaning of the normalization
factor. For this purpose, we prepare three types of φ

(PM)
l as

trial α- 16O wave functions by varying the parameters r0 and
a0 as listed in Table I. Note that the depth V0 for each setup is
adjusted to reproduce the α- 16O binding energy of 4.73 MeV.
In Fig. 3, the MCM wave function φ

(MCM)
l is shown along

with φ
(PM)
l . The norm of each wave function is consistently

chosen to be unity. The PM1 parameters are chosen to fit the
behavior of the MCM wave function in the tail region, say,
r � 5.0 fm, whereas the PM2 (PM3) parameters are chosen
to shift the behavior to inside (outside), in particular at the
surface region.

In Figs. 4(a) and 4(b) we show the theoretical results
employing the MCM and PM wave functions with the χ2

fit to the measured angular distribution at 20.0 and 42.1 MeV,
respectively. The factors SMCM and SPM extracted from the
fit are listed in Table II. At both incident energies, the MCM
and the PM1 give consistent results for not only the angular
distribution in Fig. 4 but also SMCM and SPM in Table II.
Therefore we can regard the results of the MCM and PM1
as nearly identical. PM3 (PM2) at 20.0 (42.1) MeV gives an
angular distribution consistent with the experimental data at
the forward angles θ < 40◦. On the other hand, PM2 (PM3) at
20.0 (42.1) MeV underestimates the data at the second (first)
peak. Obviously, the angular distribution and SPM depend on

FIG. 3. The radial part of the α- 16O relative wave function:
φ

(MCM)
l of the MCM (solid line) and φ

(PM)
l of the PM, with the setups

PM1 (dashed lines), PM2 (dotted line), and PM3 (dash-dotted line).
Each wave function is normalized to have the norm one.

FIG. 4. Calculated cross section with the χ 2 fit to be consistent
with the experimental data at (a) 20.0 and (b) 42.1 MeV. Each line
corresponds to the cross section calculated with the α- 16O wave
function shown in Fig. 3.

the PM parameters at both energies. This fact indicates the
high sensitivity of the transfer cross section to the spatial
distribution of the α- 16O relative wave function.

Now, we introduce the wave functions φ̃
(MCM)
l ≡

(SMCM)1/2φ
(MCM)
l and φ̃

(PM)
l ≡ (SPM)1/2φ

(PM)
l , where the values

of (SMCM)1/2 and (SPM)1/2 are listed in Table II; they behave as
shown in Fig. 5. The normalization factors extracted from the
transfer reaction at Ein = 20.0 and 42.1 MeV are adopted in
Figs. 5(a) and 5(b), respectively. In each panel, the amplitudes
of the PM1 and PM3 wave functions at the surface region, r �
6 fm, are similar, while that of PM2 is smaller. At r ∼ 4 fm,
there is a large difference in the amplitude of each wave func-
tion. In the following, through Fig. 5, we discuss what region
of φ̃

(PM)
l is sensitive to the angular distribution shown in Fig. 4.

When we look at Fig. 4(a) for Ein = 20.0 MeV, we can
see that, in terms of how well the calculation describes the
behavior of the experimental cross section at the forward

TABLE II. Normalization factor extracted from the χ 2 fit of the
calculated cross section.

Ein (MeV) SMCM SPM (PM1) SPM (PM2) SPM (PM3)

20.0 0.261 0.258 0.407 0.156
42.1 0.769 0.667 1.276 0.297
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FIG. 5. φ̃
(MCM)
l = (SMCM)1/2φ

(MCM)
l of the MCM (solid line) and

φ̃
(PM)
l = (SPM)1/2φ

(PM)
l of PM1 (dashed line), PM2 (dotted line), and

PM3 (dash-dotted line). The values of SMCM and SPM are adopted
from Table II in the case of (a) Ein = 20.0 and (b) 42.1 MeV.

angles θ � 40◦, the results of PM1 and PM3 are consistent
with the measured one. In contrast, the diffraction pattern of
the calculation with PM2 is significantly different from the
experimental one. On the other hand, in Fig. 5(a), we can find
that the behaviors of φ̃

(PM)
l of PM1 and PM3 are similar in

the region of r � 5 fm, in which PM2 has a small amplitude.
These facts indicate that the cross section at Ein = 20.0 MeV
probes the surface region of φ̃

(PM)
l , and hence its interior of

r � 5 fm is insensitive to the cross section.
At 42.1 MeV, as shown in Fig. 4(b), PM2 has a reasonable

shape, but PM3 is inconsistent with the measured distribution.
In particular, for PM3, it is remarkable that the first peak
of the cross section at θ = 0◦ is significantly smaller than
the second one around θ ∼ 20◦. These can be interpreted as
follows. For PM1 and PM2, although each magnitude of φ̃

(PM)
l

at the surface region r � 4 fm is quite different, we find the
integrated values of φ̃

(PM)
l over r in this region are consistent

with each other. This fact leads to the coincidence of the cross
sections calculated with PM1 and PM2. On the other hand,
it can be seen that the integrated value of φ̃

(PM)
l for PM3 in

the region r � 4 fm is significantly smaller than that of other
PM setups. This yields the decrease of the cross section of
PM3 at the forward angles. Thus, for Ein = 42.1 MeV, we can
conclude that the surface region r � 4 fm is probed on the
cross section.

Next, we clarify the physical meaning of the normalization
factor. In Fig. 4(b), the results of both PM1 and PM2
are consistent with the experimental data. Nevertheless, for
Ein = 42.1 MeV, both PM parameters give inconsistent values
for SPM; one differs from the other by about a factor of 2.
Furthermore it should be especially mentioned that SPM of
PM2 exceeds unity. When SPM > 1, it is not the physical
SF, which expresses the probability of the α- 16O cluster
configuration in 20Ne. This unphysical value arises from the
fact that, in Fig. 3, the amplitude of φ

(PM)
l of PM2 in the

surface region that is sensitive to the reaction is considerably
smaller than that of φ

(PM)
l of PM1. Consequently, we need an

artificial enhancement of the amplitude. Similarly, both PM1
and PM3 describe well the angular distribution in Fig. 4(a),
while SPM of PM3 for Ein = 20.0 MeV is about 40% smaller
than that of PM1. Then an artificial reduction is necessary in
order to decrease the tail amplitude of φ

(PM)
l of PM3 in Fig. 3.

Hence the phenomenological normalization factor SPM, which
is conventionally adopted in DWBA analyses employing a PM,
involves an artificial renormalization factor originating from
the improper distribution of the α- 16O wave function, even
if it has correct asymptotic behavior. Only when we have a
reliable wave function such that it gives appropriate properties
for 20Ne, i.e., the MCM or PM1, does the normalization
have a physical meaning. It is equivalent to the SF because
the normalization factor determining the tail amplitude of the
MCM or PM wave function is consistent with that of the whole
amplitude. Thus we find that the α-transfer reaction probes not
the SF but the amplitude of the cluster wave function at the
surface region.

For a future work, a systematic analysis of the reaction
at other incident energies is desired in order to judge which
φ

(PM)
l is proper without relying on φ

(MCM)
l . This procedure

is expected to be important for the verification of the cluster
structure in sd-shell or unstable nuclei. Moreover, we hope this
kind of systematic analysis brings us knowledge that resolves
the Ein dependence of SMCM.

C. Break effect of 6Li

As mentioned above, one of the advantages of the present
framework is that, by adopting the three-body CCBA model,
we can avoid using the 6Li optical potential, for which there
is little reliability for the α-transfer reaction at several incident
energies. Here we show the breakup effect of 6Li on the
cross section and discuss the applicability of the conventional
DWBA model, in which the phenomenological 6Li optical
potential is used.

We decompose the T -matrix equation (1) into two terms by
using the CDCC wave-function equation (4):

TCCBA = TET + TBT, (20)

TET = 〈�(−)
f | Vtr | ψc0

αd (rαd )χc0c0(+)
i (r i)〉, (21)

TBT =
〈
�

(−)
f | Vtr |

∑
c �=c0

ψc
αd (rαd )χcc0(+)

i (r i)

〉
. (22)

TET describes the elastic transfer (ET), which is the transfer
process of the α particle from the ground state of 6Li to the
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FIG. 6. Transfer processes described by the ET (dashed line) and
the BT (dotted line) on the cross section at (a) 20.0 and (b) 42.1 MeV.
The solid line stands for the result involving both ET and BT, while
the dash-dotted line is that of the ET without the BC. (c) The intuitive
expression of the breakup effect. See the text for details.

ground state of 20Ne. Note that the ET involves the breakup
effect as the back coupling (BC), the channel couplings
between the ground state of 6Li and its DC states. On the
other hand, TBT expresses the breakup transfer (BT), in which
the α particle transfers from the DC states to the ground state
of 20Ne. In Fig. 6(c) we show the intuitive picture of these
processes.

Figures 6(a) and 6(b) show the results of the CCBA
calculation with TCCBA (solid line), TET (dashed line), and
TBT (dotted line) at Ein = 20.0 and 42.1 MeV, respectively.
The MCM wave function is employed for these results. The
dash-dotted line corresponds to the ET without the BC, that is,
the one-step calculation. At each incident energy, the solid and
dashed lines coincide with each other in the whole region of θ ,
while the dash-dotted line deviates from them. This indicates
that the breakup effect of 6Li, the BC effect in particular, is
significantly important. In contrast to that, the contribution of
the BT is negligibly small. These features were reported [20]
also for the 6Li -induced subbarrier α-transfer reaction [34].
This can intuitively be understood to be due to the hindrance
of the BT by the α-d Coulomb interaction [30].

It should also be noted that the importance of this breakup
effect does not mean the failure of the DWBA because the BC

is effectively taken into account as an “absorption” due to the
imaginary part of the 6Li optical potential. In general, however,
the optical potential is phenomenologically determined, and it
is difficult to properly evaluate the breakup effect in such a
way. Therefore the CCBA calculation should be performed
to systematically investigate the α-cluster structure through
6Li -induced α-transfer reactions.

V. SUMMARY

In order to make clear the spatial manifestation of the
α-cluster structure of 20Ne from observables, we have an-
alyzed the α-transfer reaction 16O( 6Li, d) 20Ne at 20.0 and
42.1 MeV by means of the CCBA approach based on the
three-body model. In the CCBA model the total wave function
of the system in the initial channel has been described by the
CDCC. This model enables us to use the optical potentials
of the subsystems α- and d- 16O instead of that of 6Li,
which involves a large ambiguity. As for the calculation of
the relative wave function between the α- 16O clusters, the
MCM with the GCM is adopted. It is a great advantage of our
procedure over the conventional approach in which the DWBA
calculation is performed with the 6Li optical potential and a
phenomenological PM for the α- 16O wave function.

We have shown that our framework greatly improves the
coincidence of the theoretical result with the experimental
data on the angular distribution of the transfer cross section.
Furthermore, we have obtained the physical value of SMCM,
for which unphysical values were reported in the previous
DWBA work [7,8]. These improvements of the result have
been brought about because we adopted the three-body CCBA
model with the reliable MCM wave function.

Next, the PM wave function has been employed in order to
reveal which region of the α- 16O wave function is probed
on the transfer cross section. Through the comparison of
the calculated cross section and the behavior of the PM
wave function, it has been concluded that the surface region
of the wave function is probed on the cross section; the
region r � 4 and 5 fm has been found to be sensitive to
the reaction at Ein = 42.1 and 20.0 MeV, respectively. We
have also clarified the physical meaning of the normalization
factor. As a consequence, it has been found that DWBA
analyses employing a PM can have a normalization factor
involving an unphysical component originating from the
improper distribution of the α- 16O wave function, even if
it has correct asymptotic behavior. Only when we have a
reliable wave function, the normalization is equivalent to
the SF. For future work, in order to judge which φ

(PM)
l is

proper, it is necessary to systematically analyze the reaction
at several incident energies. The present work can provide
useful knowledge for the verification of the cluster structure
in sd-shell or unstable nuclei.

We have investigated in detail the breakup effect of 6Li. It
has been found to play an important role as the BC. Since it
is difficult to properly include the BC effect in the imaginary
part of the 6Li optical potential used in a conventional DWBA,
we need to carry out the three-body CCBA calculation for
the systematic investigation of the α-cluster structure through
α-transfer reaction.
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APPENDIX: FORMULATION OF MCM WITH GCM

In the GCM model, the total wave function of the two-body
cluster system, which consists of spinless particles α and A,
can be written as

|�GCM〉 =
∑

k

ck |�BB(Sk)〉 , (A1)

where |�BB(Sk)〉 is the Brink-Bloch (BB) cluster-model wave
function [19] defined by

|�BB(S)〉 =
∣∣∣∣M̃A

{
ψα

(
−MA

MB

S

)
ψA

(
Mα

MB

S

)}〉
. (A2)

The wave function ψα (ψA) of α (A) is expressed by the
harmonic oscillator (HO) shell-model wave function with
a shifted center at S = (0,0,S). The width parameters of
the HO wave functions for α and A are assumed to be
common. The expansion coefficient ck is obtained by solving
the discretized Hill-Wheeler equation for the spin-parity
eigenstates projected from |�BB(S)〉, and it is normalized to
satisfy 〈�GCM |�GCM〉 = 1.

Since the relative wave function between α and A can be
expressed by a localized Gaussian wave packet, |�GCM〉 is
written as

|�GCM〉 = ∣∣M̃A[
φ

(GCM)
l (r)Yl0(r̂)ϕαϕAϕc.m.

]〉
, (A3)

φ
(GCM)
l (r) =

∑
k

√
2l + 1

4π
ckl(r,Sk,ν

′), (A4)

where the function l is the relative wave function with its

partial wave expansion [35] defined by

l

(
r,S,ν ′) ≡ 4π

(
2ν ′

π

) 3
4

il(2ν ′Sr)e−ν ′(r2+S2). (A5)

Here il is the modified spherical Bessel function, and ν ′ =
MαMAν/MB .

By taking into account the antisymmetrization effect, we
can obtain two kinds of relative wave functions ul and yl from
φ

(GCM)
l as

ul(r) =
∑

n

en

√
μ2n+lRnl(r,ν

′), (A6)

yl(r) =
∑

n

enμ2n+lRnl(r,ν
′), (A7)

where μN (N = 2n + l) is the eigenvalue of the norm kernel,
Rnl is the radial part of the HO wave function, and en is the
coefficient for the Rnl expansion of φ

(GCM)
l ,

φ
(GCM)
l =

∑
n

enRnl(r,ν
′). (A8)

Note that, in the asymptotic region where the antisymmetriza-
tion effect between clusters vanishes, three functions, φ

(GCM)
l ,

ul , and yl , are identical to each other. The wave function ul

is constructed by multiplying φ
(GCM)
l by the square root of the

norm kernel matrix and is a normalized wave function,∫
|ul(r)|2r2dr = 1, (A9)

which can be regarded as a cluster wave function. We adopt
ul as an input of the reaction calculation, φ

(MCM)
l = ul . The

so-called reduced-width amplitude yl is defined as

yl(a) ≡ 1

M̃

〈
δ(r − a)

r2
Yl0(r̂)ϕαϕAϕc.m. | �GCM

〉
(A10)

at a certain point a. In microscopic cluster models, the so-called
S factor is usually defined by the reduced-width amplitude as

S =
∫

|yl(r)|2r2dr. (A11)

The S factor can be less than 1 even for the normalized GCM
wave function because of the antisymmetrization effect. For
details, the reader is referred to Ref. [35].
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