
PHYSICAL REVIEW C 93, 034605 (2016)

Extended optical model for fission

M. Sin,1,* R. Capote,2,† M. W. Herman,3 and A. Trkov2

1University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania
2NAPC–Nuclear Data Section, International Atomic Energy Agency, A-1400 Vienna, Austria

3National Nuclear Data Center, Brookhaven National Laboratory, New York, USA
(Received 10 December 2015; published 7 March 2016)

A comprehensive formalism to calculate fission cross sections based on the extension of the optical model
for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped
fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission
channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational
resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical
model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu
targets. A triple-humped fission barrier is used for 234,235U(n,f ), while a double-humped fission barrier is used
for 238U(n,f ) and 239Pu(n,f ) reactions as predicted by theoretical barrier calculations. The impact of partial
damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is
shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f ) reactions.
The 239Pu(n,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for
235,238U(n,f ) and 239Pu(n,f ) reactions agree within 3% with the corresponding cross sections derived within
the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission
can be used for both theoretical fission studies and nuclear data evaluation.
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I. INTRODUCTION

Recently, the Nuclear Energy Agency started a new interna-
tional collaboration called CIELO (Collaborative International
Evaluated Library Organisation) with the main goal to improve
our understanding of neutron reactions on key isotopes that
are important in nuclear applications, especially in the area
of criticality safety and reactors [1,2]. Among the six nuclei
selected for the pilot CIELO project, a prominent role is played
by the three major actinides, 235,238U and 239Pu, for which
fission is the single most important reaction to be studied.

Fission cross sections for neutron induced reactions on
major actinides represent the largest amount of experimental
data compiled in the EXFOR database [3]. The abundance
of high-quality measurements allowed the least-squares eval-
uation of fission cross sections of major actinides for fast
neutron induced fission to be based exclusively on the available
experimental data. The latest least-squares evaluation was
undertaken within the Neutron Standards project [4,5] and
resulted in evaluated fission cross sections of major actinides
with tight uncertainties. However, a consistent evaluation of
all reaction channels in the whole energy range of interest
studied in the CIELO project [2,6] requires reaction models
that describe the evaluated fission cross sections (Neutron
Standards) within the evaluated uncertainty. Such description
allows proper modeling not only of the fission channel but also
of the main competing channels: neutron capture, elastic and
inelastic scattering, and multiple neutron emission [7,8].

In spite of great efforts devoted to the study of the fission
phenomena since its discovery in 1938 [9,10], our capabilities
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to predict fission cross sections for fast neutron induced
reactions remain limited (e.g., see Ref. [11] and references
therein). An extension of the R-matrix theory to the fission
deformation variable as outlined by Bjørnholm and Lynn
[12] has been recently suggested by Bouland et al. [13]. The
new model has been successfully applied to study neutron
induced fission of double-humped barrier plutonium isotopes,
and some predictive capability was achieved [13]. Further
theoretical studies are needed to meet the needs of nuclear
data evaluation of many actinide nuclei, as well as for a better
understanding of the observed fission cross sections in the fast
neutron range.

One of most successful approaches used to calculate the
fission cross section is the optical model for fission, which
has a history of more than four decades. It was realized by
Lynn in 1966 [14] that the treatment of the fission process
can be extended to consider other degrees of freedom by
treating excitation of the latter as simple absorption out of the
fission mode. A similar assumption is the basis of the highly
successful nuclear optical model describing nuclear particle
scattering [15]. Soon after the discovery of the secondary
minimum in the fission barrier by Strutinsky [16,17] it was
noted that the sub-barrier resonances in the fission probability
of different actinides, identified as vibrational excitations in the
second well (class-II states), were broader than the expected
penetrability of the two peaks [18–20]. This was similarly
explained by the coupling between the fission mode and the
internal degrees of freedom in the second well; in other words
by the damping of the class-II vibrational strength [20–22].
The damping was phenomenologically simulated by adding to
the real part of the deformation potential an imaginary term
in the region of the second well to absorb out flux from the
fission mode and to redistribute it into internal excitations
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[20–24]. The damping is expected to increase dramatically
when the vibrational energy of the fission mode is above
the fission barrier, because the effective excitation energy of
the fission mode rises to that of the compound nucleus [20].
The optical model for fission is applicable starting at those
energies for which all the excited states acquire fission widths.
Approximately at the same limit the statistical hypothesis
regarding the nuclear resonances becomes valid. Initially, the
optical model for fission was used mostly for calculating the
fission probability in direct reactions with incident charged
particles in a narrow range of incident particle energies
[25–28].

Fast neutron induced fission cross sections for nuclear data
evaluation were calculated for a long time using the classi-
cal expression for the penetrability through double-humped
barriers corresponding to the complete (full) damping limit;
i.e., all the incoming flux is absorbed in the secondary well,
and later re-emitted into the fission channel. In this way the
fission competition was approximately considered above the
barrier. However, within the full damping limit, the sub-barrier
vibrational resonance structure in the fission cross sections of
fertile nuclei could not be described, and experimental fission
data at low incident energies were usually overestimated. A
poor description of the fission channel resulted in correspond-
ingly poor calculation of cross sections of competing channels.
The poor description of channels competing with fission was
reflected in the large discrepancies observed among evaluated
data for reactions with poor experimental data, e.g., for neutron
capture of fissile actinides and especially for neutron inelastic
scattering [29].

To address these problems, the concept of the optical model
for fission was included in the statistical model. To the best
of our knowledge STATIS [30] was the first statistical reaction
code in which the optical model for fission was implemented.
However, the descriptive power of the optical model for fission
was fully exploited only after it was implemented in the
EMPIRE code [31]. Since then, it has been continuously updated
by incorporating fundamental features of the fission process
confirmed or revealed by the experimental data and further
theoretical studies. A significant step forward in the description
of measured fission cross sections was the use of transmission
coefficients through triple-humped barrier with absorption in
the secondary well [32,33]. This version was used for the
evaluation of neutron reaction data on 232Th and 231,233Pa
[34] targets, which were later adopted by the U.S. national
data library [35]. The optical model for fission to treat more
than two fission barriers was simplified, and at the same time
generalized, when a recursive method to calculate transmission
through n-humped barriers with absorption in all wells was
suggested in Ref. [36]. Because the model was designed to
consider only the damping of the discrete vibrational states
accommodated by the minima of the fission barrier (wells), an
approximate method to consider the partial absorption through
the fission continuum channels was added later [37].

This paper provides a complete and comprehensive de-
scription of an extended formalism based on the optical model
for fission for cross-section calculations within the statistical
model in Sec. II. Fission cross-section calculations for four
representative test cases are undertaken for 234,235,238U(n,f )

and 239Pu(n,f ) reactions using the updated optical model for
fission described in Sec. III. Finally, conclusions are given.

II. OPTICAL MODEL FOR FISSION

The transmission through a multi-humped fission barrier
depends on the degree of damping of the vibrational states in
the potential minima. The two extreme cases for a transmission
through a real fission potential with Nh humps are

(1) zero damping (no absorption) valid at low excita-
tion energies where fission occurs directly, without
involving other internal degrees of freedom; in this
case the fission coefficient is equal to the direct
transmission coefficient Tf = Td(0) representing the
barrier transmission probability [defined generically by
Eq. (8)];

(2) complete damping (full absorption) valid for excitation
energies close to or above the top of the highest barrier,
where all transmitted flux is absorbed in the wells, and
later re-emitted into the fission channel; in this case the
humps can be considered decoupled (independent) and
the fission coefficient becomes

Tf =
[ Nh∑

h=1

1

Th

]−1

, (1)

where Th represents the penetrability through the
individual hump h.

A complex fission potential is used in the optical model
for fission to describe the partial damping of the class-II/III
vibrational states in the wells, allowing a smooth transition
between the two extreme situations described above. Within
this model, fission occurs by direct transmission across the
barrier(s) and by re-emission into the fission channel after
absorption into the isomeric well(s). The fission transmission
coefficients associated to these two mechanisms are the
direct transmission coefficient (Td ) and the indirect (Ti) one,
respectively, the sum of their contributions representing the
total fission coefficient Tf ≡ Td + Ti .

A recursive method to calculate the fission transmission
coefficients through a barrier with Nh humps and Nw wells
was proposed in Ref. [36]. Using the notation appropriate
for recursive derivation, the general expression for the fission
coefficient is

Tf = T
(1,Nh)
d + R

Nw∑
w=2

T
(w)
i , (2)

where T
(1,Nh)
d represents the direct transmission coefficient

through all humps (starting with hump 1 and ending with
hump Nh), T (w)

i stands for the indirect transmission coefficient
associated with the well w, and R is a normalization factor
[36].1

1Direct T
(1,Nh)
d and indirect T

(w)
i transmission coefficients were

denoted as Td (1,Nh) and Ti(w) respectively in Ref. [36].
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FIG. 1. A triple-humped fission barrier and associated parameters.

A. Transmission coefficients

The transmission calculation requires a definition of the
barrier. The barriers can be defined numerically or analytically.
For this paper we chose for simplicity (without any loss of
generality) a classical barrier parametrization as a function of
the quadrupole deformation β by smoothly joined parabolas
as shown in Fig. 1:

Edef
h (β) = Vh − 1

2μ(�ωh)2(β − βh)2, h = [1,Nh],
(3)

Edef
w (β) = Vw + 1

2μ(�ωw)2(β − βw)2, w = [2,Nw],

where h is the barrier index that runs from 1 to Nh; w is
the well index that runs from 2 to Nw because the first well,
corresponding to equilibrium deformation, is not included in
the parametrization (as the model assumes the full damping of
the class-I vibrational states).

The energies Vh (Vw) correspond to the maxima (minima)
of the potential in the hump (well) region, βh (βw) are
the corresponding deformations (abscissae), the harmonic
oscillator frequencies �ωh (�ωw) define the curvature of
each parabola for barriers (h) and wells (w), and μ is the
inertial mass parameter, assumed to be independent of the
deformation β. The numerical integration method used below
to calculate the penetrability makes it easy to remove the
latter approximation if desired. The fission barrier just defined
would correspond to the lowest excitation state of the nucleus
along the fission path; i.e., it is the so-called fundamental
barrier. There are additional barriers built on both discrete and
continuum transition states above it. The same method used
to calculate the fission cross section through the fundamental
barrier can be used for those barriers built on transition states,
as will be shown in Sec. II B.

The damping of the class-II/III vibrational states within
wells is simulated by introducing negative imaginary po-
tentials, iWw, in the corresponding deformation ranges,
which causes absorption of the incoming flux in these wells
[14,20,22,23,26]. The imaginary potential strengths Ww are
assumed to be quadratic functions of the deformation β, like
the real part, but the excitation energy dependence is also

included in the potential strength [factor αw(E)]:

Ww(β) = −αw(E)
[
E − Edef

w (β)
]
, w = [2,Nw], (4)

where E is the excitation energy of the fissioning nucleus.
The factors αw(E) help control the strength of the imaginary
parts of the fission potential. These factors are chosen to allow
the fit of the resonances in sub-barrier fission cross section
and to guarantee a proper asymptotic behavior of transmission
coefficients at higher excitation energies.

1. Single-humped barrier

The transmission coefficient Th is expressed in the first-
order Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approxi-
mation in term of the momentum integral Kh for the hump
[38,39]:

Th = 1

1 + exp(2Kh)
, (5)

with the momentum integral given by

Kh = ±
∣∣∣∣∣
∫ bh

ah

[
2μ

�2

(
E − Edef

h (β)
)]1/2

dβ

∣∣∣∣∣, (6)

where ah,bh stand for the intercepts (see Fig. 1), the plus sign
is taken when the excitation energy is lower than the hump
under consideration, and the minus when it is higher. In the
latter case, the intercepts are complex conjugate (bh = a∗

h),
and the JWKB approximation is valid when their imaginary
parts are small, i.e., for energies slightly higher than the hump.
For a single parabolic barrier with height V and curvature
�ω, Eqs. (5) and (6) yield the well-known Hill-Wheeler
transmission coefficient [12,40], which is an exact result:

THW = 1

1 + exp
[

2π
�ω

(V − E)
] . (7)

2. Double-humped barrier

For a real double-humped barrier the direct transmission co-
efficient calculated in JWKB approximation reads [32,41,42]

T
(1,2)
d(0)

= T1T2

1 + 2A1/2 cos(2ν2) + A
, (8)

where ν2 represents the momentum integral for the secondary
well; A = (1 − T1)(1 − T2), with T1,T2 being the transmission
coefficients through humps 1 and 2 respectively, given by
Eq. (5). The momentum integral depending on the real part
of the potential for an intermediate well w is approximated as

νw =
∫ bw

aw

[
2μ

�2

(
E − Edef

w (β)
)]1/2

dβ, w = 2. (9)

where aw,bw stand for the intercepts with the potential well
(see Fig. 1).

When an imaginary potential Ww(β) in the deformation
range corresponding to the secondary well (w = 2) given by
Eq. (4) is added to the real barrier defined by Eq. (3), then
part of the initial flux is transmitted directly, the rest is being
absorbed in the secondary well. The expressions for the direct
transmission coefficient and for the absorption coefficient are
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taken from Bhandari [32,41]. The definition of the direct
transmission coefficient through a double-humped barrier in
the presence of absorption is a generalization of Eq. (8). It
is obtained by adding the real momentum integral ν2 to the
contribution δ2 corresponding to the imaginary potential in the
second well as shown by Bhandari [32,41]:

δw = −
(

μ

2�2

)1/2 ∫ bw

aw

Ww(β)[
E − Edef

w (β)
]1/2 dβ, w = 2. (10)

T
(1,2)
d = T1T2

e2δ2 + 2A1/2 cos(2ν2) + Ae−2δ2
, (11)

where A = (1 − T1)(1 − T2) as before.
The absorption coefficient associated to the shape transition

from the equilibrium deformation (w = 1) to the superde-
formed isomeric well (w′ = 2) reads

T (1,2)
a = T

(1,2)
d

[
e2δ2 − [1 − T2]e−2δ2 − T2

T2

]
. (12)

If the imaginary potential is zero, then the phase δ2 ≡ 0, and
T (1,2)

a → 0 as expected. The fraction of the incoming flux
absorbed in the secondary (isomeric) well can (i) be re-emitted
in the fission channel (indirect prompt fission), (ii) return
back to a class I state, or (iii) undergo γ transition to the
isomeric state. The isomeric state, in turn, can decay by delayed
(isomeric) fission or by shape transition to class-I states. The
general expression of the fission coefficient Tf given in Eq.
(2) becomes for a double-humped barrier

Tf = T
(1,2)
d + RT

(2)
i , R ≡ 1. (13)

Neglecting the delayed (isomeric) fission, the indirect trans-
mission coefficient representing emission in the fission channel
after absorption in the isomeric well is defined as

T
(2)
i = T (1,2)

a

T2∑
T (2)

, (14)

where the denominator stands for the sum of the transmission
coefficients for the competing channels specific to the second
well, ∑

T (2) = T1 + T2 + T (2)
γ . (15)

The γ -transition coefficient to the isomeric state Tγ (2) (within
the secondary well) might be important, becoming comparable
to the transmissions through the inner and outer humps,
when the compound nucleus is populated in states with
small excitation energies with respect to the bottom of
the isomeric well. This could happen in photofission, after
direct transfer reactions, and in special cases of neutron
induced fission. To account for the delayed fission, the term
T (1,2)

a Tγ (2)Riso/
∑

T (2), has to be added to the indirect fission
coefficient T

(2)
i defined by Eq. (14). The factor Riso represents

the ratio of the decay widths for fission and for the shape

T a(1,2) T d(2,3)

T d(1,3)

T a(2,3)T d(1,1)

T d(3,3)T a(3,2)

T d(2,1)

T a(1,3)

T a(2,3)

w=1 h=1 w=2 w=3h=2 h=3

FIG. 2. Schematic representation of the transmission flux for a
triple-humped fission barrier. w (h) values indicated below the figure
represent the well (barrier) index. The coefficients Ta(w,w′) that
represents the absorption in a well w of the flux coming from the well
w′ are shown as bent arrows (in red), the coefficients Td (h,h′) that
represent the transmission through the humps h and h′ are shown as
straight arrows (in blue), and the coefficients Td (h,h) ≡ Th represent
the transmission through a single hump h. Arrows pointing to the
right (left) represent the forward (backward) directions. Isomeric
gamma decay (within the wells) and delayed (isomeric) fission are
not included in the scheme.

transition back to the equilibrium deformation of the isomeric
state. The isomeric fission is neglected in this work.

3. Triple-humped barrier

For barriers with more than two humps, the transmission
coefficients can be calculated recursively, using as a reference
the double-humped equations given in the previous section
as shown in Ref. [36]. It was demonstrated in Ref. [36]
that the results of recursive calculation agree exactly with
those independently obtained for transmission through real
potentials by Martinelli et al. [43] and Bhandari [44,45],
as well as with the transmission coefficients through a
triple-humped barrier that consider absorption in the second
well [33].

The direct and absorption transmission coefficients associ-
ated to a triple-humped fission barrier are represented in Fig. 2.
The required forward (h < h′) and backward (h > h′) direct
transmission coefficients T

(1,3)
d , T (2,3)

d , and T
(2,1)
d , respectively,

can be calculated with the general expression

T
(h,h′)
d = ThT

(h+1,h′)
d

e2δw + 2A1/2 cos(2νw) + Ae−2δw
, h �= h′,

(16)

where A = (1 − Th)(1 − T
(h+1,h′)
d ), T

(h,h)
d ≡ Th, the transmis-

sion coefficients Th through one hump h are given by Eq. (5),
and the required index combinations shown in Fig. 2 are

h′ = 2,3, h = [1,h′ − 1], w = h + 1, forward transmission (1,2), (2,3), (1,3);
h′ = 1, h = 2, w = 2, backward transmission (2,1).
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The forward absorption coefficients T (1,2)
a , T (1,3)

a , and T (2,3)
a

between the wells w and w′ (w < w′)

T (w,w′)
a = T

(h,3)
d

[
e2δw′ − [

1 − T
(h′,3)
d

]
e−2δw′ − T

(h′,3)
d

T
(h′,3)
d

]
,

(17)
where h = w and h′ = w′.

The required backward absorption coefficient from the third
to the second well reads

T (3,2)
a = T

(2,1)
d

[
e2δ2 − [1 − T1]e−2δ2 − T1

T1

]
. (18)

The general expression of the fission coefficient given in
Eq. (2) becomes in the case of a triple-humped barrier

Tf = T
(1,3)
d + R

[
T

(2)
i + T

(3)
i

]
. (19)

The indirect transmission coefficients T
(w)
i corresponding to

the transmission through the outer humps after absorption in
the second and third wells read

T
(w)
i = T (1,w)

a

[
T

(h,3)
d∑
T (w)

+ T (w,w′)
a∑
T (w)

T
(h′,3)
d∑
T (w′)

]
, (20)

where w = (2,3), w′ = (2,3), w′ �= w, and h = w,h′ = w′,
respectively. The normalization factor R takes into account the
effect of the infinite number of shape transitions and guarantees
the flux conservation. It can be calculated as given in
Ref. [36]:

R =
[

1 − T (2,3)
a∑
T (2)

T (3,2)
a∑
T (3)

]−1

. (21)

The sums of the transmission coefficients for the
competing channels specific to the second and third
wells are

∑
T (2) = T1 + T

(2,3)
d + T (2,3)

a + T (2)
γ , (22)∑

T (3) = T
(2,1)
d + T3 + T (3,2)

a + T (3)
γ . (23)

B. Effective fission coefficients

The fission coefficients presented before correspond to
transmission through only one barrier associated to a single
fission path defined by the angular momentum J , parity π ,
and angular momentum projection on the nuclear symmetry
axis K . However, the fission coefficients used in the statistical
models correspond to the transmission through all barriers
associated with the discrete transition states, and to the contin-
uous spectrum of the transition states having the same quantum
numbers Jπ ; see Eq. (41). The calculation of effective fission
coefficients is presented after a brief description of the barriers
associated with the excited states of the nucleus along the
fission path.

The discrete excited states are rotational levels built on
vibrational or single-particle band heads characterized by a
given set of quantum numbers (K,Jπ ). The excitation energies
at the deformation corresponding to the hump h (or well w) of

such a state are

Ei(KJπ ) = Vi + εi(K,π ) + �
2

2�i

[J (J + 1)

− K(K + 1)], i runs over all humps and wells,
(24)

where Vi is the top of the barrier i = h or the bottom of the
well i = w, respectively; εi(K,π ) are the rotational band-head
energies of the transitional or class-II/class-III band with
quantum numbers Kπ , and �

2/2�i are the inertial parameters
of the same band (the decoupling parameter for K = 1/2
bands was neglected). A parabolic barrier (or well) with height
(depth) Eh(J,K,π ) (Ew(J,K,π )) and curvature �ωh (�ωw)
is associated with each transition or class-II/class-III state.
Usually, these are free parameters and their values are extracted
from systematics or are obtained from the fit of the experimen-
tal fission cross section. It should be noted that, for nonaxial
shapes at the inner saddle, additional 2J + 1 rotational levels
for each J should be assumed. On the other hand, the rotational
bands (e.g., with K = 1/2,3/2,5/2, . . . ) at the outer saddle do
not have a parity, and an additional factor of 2 is assumed due
to the mass asymmetry. This factor is taken into account at the
level of transmission coefficients as described later.

The transitional state spectrum has a discrete component
up to certain energies Ech, above which it is continuous and
described by the level density function ρfh

(EJπ ), accounting
for collective enhancements specific to the nuclear shape
asymmetry at each saddle point (see next section).

In principle, the excited states in the continuum for the
equilibrium deformation (normal states) and above the saddle
points (transitional states) should be described by the same
type of level density function ρ(EJπ ), which can be defined
numerically or analytically. The parameters of the level density
functions, such as the shell corrections and their damping
parameters, the pairing energy, or the asymptotic values of
the a parameter, are strongly interrelated, and depend on
their corresponding values for the equilibrium deformation.
Therefore, it is difficult to provide a general prescription
for their calculation. Another impediment is the lack of
experimental information such as the cumulative number of
low-lying levels and the mean level distance at the neutron
separation energy usually used to constrain the density of the
normal states. Potentially, we could do systematic Strutinsky
type calculations to extract those parameters; this work is
planned, but it is outside the scope of the present paper.
We adopt RIPL recommendations [46,47] where available
(e.g., shell corrections, pairing energy), replace the equilibrium
deformation with the deformations corresponding to the wells
and saddle points (e.g., moments of inertia), and deduce other
parameters, such as the asymptotic value of the transition level
density or the collective enhancement, from the fit of the
experimental fission cross sections for a significant number
of actinides. Another feature with an important impact on
the transition state spectrum is the order of symmetry of
the nuclear shape at saddles. This is taken into account by
multiplying the level density with an enhancement factor
fsym(h) associated with the nuclear shape symmetry at each
saddle, as shown in Ref. [48].
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For a single-humped barrier h, the transmission coefficient
is the sum of two contributions corresponding to the discrete
and continuous parts of the transition state spectrum,

Th(EJπ ) = Th,dis(EJπ ) + Th,cont(EJπ ),

Th(EJπ ) =
∑
K�J

Th(EKJπ )

+
∫ ∞

Ech

ρh(εJπ )dε

1 + exp
[ − 2π

�ωh
(E − Vh − ε)

] , (25)

where Th(EKJπ ) ≡ T
(h,h)
d = Th is given by Eq. (5) and

ρh(εJπ ) is the level density at the saddle h, with ε representing
the excitation energy with respect to the top of the hump. In the
same way, the direct transmission coefficients through barriers
h and h′ and the absorption coefficients from well w to well w′
considering the discrete and continuum spectrum are expressed
as

T
(h,h′)

dir (EJπ ) = T
(h,h′)

dir,dis(EJπ ) + T
(h,h′)

dir,cont(EJπ ), (26)

T
(w,w′)

abs (EJπ ) = T
(w,w′)

abs,dis (EJπ ) + T
(w,w′)

abs,cont(EJπ ). (27)

1. Transmission through discrete barriers

The structure of the saddle transition states is very complex,
and it is still difficult to predict it accurately. It depends on
the odd-even-A type and on the asymmetries of the nuclear
shape at saddle deformation. For consistency, enhancement
factors d (h)

sym equal to the same enhancement factors applied
for the level density functions which describe the transition
states in the continuum fsym(h) should be applied to the
discrete transition states. Obviously, due to the spin-parity
selection rules, this method is not equivalent to taking into
account properly the double degeneracy of the K bands at the
outer saddle(s), but our tests indicated that the impact of this
assumption on the calculated fission cross section is small.

In the present formalism we attempt to keep both the
spirit of the optical model for fission and a manageable
fission input, but to consider at the same time the partial
lift of degeneracy associated to the nuclear shape asymmetry.
Therefore, the symmetry enhancements are applied on the
transmission coefficients and not on the discrete levels.

For the transmission coefficient through a single hump h,
things are straightforward: the first term (transmission through
discrete fission channels) in Eq. (25) is replaced with

Th,dis(EJπ ) =
∑
K�J

d (h)
symTh(EKJπ ), h = [1,Nh]. (28)

The calculation of direct transmission coefficients through
humps h and h′ in the optical model for fission requires a
full fission path along the deformation variable. That is why
the enhancement applied to these coefficients dmin

sym represents
the minimum among the enhancements of the transition states
at the humps crossed:

T
(h,h′)

dir,dis(EJπ ) =
∑
K�J

dmin
symT

(h,h′)
d (EKJπ ), (29)

where T
(h,h′)
d (EKJπ ) are given by Eq. (16), and dmin

sym =
min(d (h)

sym,d (h′)
sym) for h = [1,Nh], h′ = [1,Nh], h �= h′.

For the indirect fission coefficients through the well(s),
the way the sum rule applies depends on the assumptions
concerning the preservation of the quantum number K in the
isomeric well(s). In the description of fission cross sections,
one can consider two extreme cases: the first case assumes
that fission mainly proceeds through discrete transition states
characterized by well-defined values of K and is known as
“no K mixing” approximation; the second case considers that
the excitation of internal degrees of freedom in the second
well makes it possible for the nucleus to change its K value
during the time the energy is bound in internal motions and
this effect is referred to as “full K mixing.” The effect of
these approximations on the fission probability is very small,
but they can affect significantly the angular correlations of
the fission fragments [26]. The appropriate choice for the
purpose of nuclear data evaluation is the “full K mixing”
approximation, not only for physical reasons, but also because
it can be applied at any excitation energy. Formally, “full K
mixing” is described by adding the absorption from different
transition states irrespective of the associated K value into a
quantity preserving the spin and parity. The main consequence
is that the absorption coefficient for a certain Jπ that appears
in Eq. (27) is

T
(w,w′)

abs,dis (EJπ ) =
∑
K�J

d (h)
symT (w,w′)

a (EKJπ ), (30)

with T (w,w′)
a (EKJπ ) given by Eqs. (17) and (18).

2. Transmission through double-humped continuum barriers

In the case of double-humped barriers the contribution of
the fission channels in the continuum increases with excitation
energy, and it becomes significant only at those excitation
energies for which the class-II vibrational states become
completely damped. Formally, for these energies the strength
of the imaginary potential is high enough to consider that the
entire flux transmitted through the inner hump is absorbed in
the second well as discussed, e.g., by Lynn [20]. Therefore,
the direct transmission through the continuum for all barriers
disappears:

T
(1,2)

dir,cont(EJπ ) = 0,
(31)

T
(1,2)

abs,cont(EJπ ) =
∫ ∞

Ec1

ρ1(εJπ )dε

1 + exp
[ − 2π

�ω1
(E − V1 − ε)

] .

There are cases when a simpler approach to calculate the
fission coefficient may be used that does not involve infor-
mation about the discrete (transitional and class-II) states or
the imaginary potential, as discussed in Ref. [37]. Considering
the case where the transitional state spectrum is exclusively
continuous and applying the above Eq. (31), the fission
coefficient that corresponds to the full damping limit defined
by Eq. (1) is obtained. This might lead to an overestimation of
the fission cross section at sub-barrier energies. To overcome
this problem, still using a simplified approach, we developed
an alternative method to consider the partial absorption appro-
priate for the fission channels described by the level densities
at saddles. As the method does not involve an imaginary
potential, we refer to it as a surrogate of the optical model for
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fission [37]. In this model, the degree of damping is taken into
account by defining the total fission coefficient as a weighted
sum of the two extreme cases previously discussed: a direct
transmission coefficient corresponding to the zero-damping
limit, and an indirect coefficient corresponding to the full
damping of the vibrational states in the well:

Tf (EJπ ) = [1 − p2(E)]T (1,2)
d(0),cont(EJπ )

+p2(E)T (2)
i(f ),cont(EJπ ). (32)

The direct coefficient corresponding to the zero-damping limit
T

(1,2)
d(0),cont is given by Eq. (8), which defines transmission through

a real potential averaged to avoid fluctuations [ cos(2ν2) → 0],
and adapted for transmission in the continuum:

T
(1,2)
d(0),cont(EJπ ) =

∫ ∞

Ec

T
(1,2)
d(0)

(E − ε,Jπ )ρmin(εJπ )dε, (33)

where

T
(1,2)
d(0)

= T1T2

1 + A
, (34)

with A = (1 − T1)(1 − T2), and ρmin(εJπ ) is the minimum
of the level density at corresponding saddle points that is
supposed to control the direct transmission.

The indirect coefficient in the full damping limit T
(2)
i(f ),cont

is defined by Eq. (14), which is equivalent to Eq. (1). For
transmission in the continuum it reads

T
(2)
i(f ),cont(EJπ ) = T

(1,2)
abs,cont(EJπ )

× T2,cont(EJπ )

T1,cont(EJπ ) + T2,cont(EJπ )
, (35)

with

T
(1,2)

abs(f ),cont(EJπ ) = T1,cont(EJπ ). (36)

where T1,cont(EJπ ) was defined in Eq. (25). The weight pw(E)
rises from 0 for excitation energies close to the bottom of the
second well V2 to 1 for the excitation energy Vd where full
damping is supposed to be reached:

pw(E) =
(
E2 − V 2

w

)
(
V 2

d − V 2
w

)
exp[−(E − Vd )/bw]

, w = 2, (37)

with bw representing an input parameter which defines the
weight’s behavior.

3. Transmission through triple-humped continuum barriers

Typical triple-humped barriers feature a low thick first
barrier with a deep second (superdeformed) well, plus a high
and relatively thin double-humped outer barrier with a shallow
third (hyperdeformed) well. The role of the fission channels
in continuum is quite different for the triple-humped barriers
compared to the double-humped ones for two reasons:

(1) The transmission through discrete barriers is low,
therefore the transmission through the barriers in
continuum is relatively important even at low excitation
energies.

(2) The third well may be shallow, and the condition of
full damping for the class-III vibrational states could
be reached at higher excitation energies, so that direct
transmission could occur not only across the discrete
barriers [as considered in Eq. (31)], but also across
those in continuum (see the next section).

Formally, in a statistical model where the level densities are
(EJπ ) dependent while the transitional states are (EKJπ )
dependent, it is not possible to have a unitary treatment of
both discrete and continuous channels within the optical model
for fission. Therefore, we propose to treat partial absorption
for the fission channels in the continuum with the surrogate
optical model for fission by adopting the following generic
expressions based on the generalization of Eqs. (33)–(36):

T
(h,h′)

dir,cont(EJπ ) = (1 − pw(E))T (h,h′)
d(0),cont(EJπ ), (38)

T
(w,w′)

abs,cont(EJπ ) = pw(E)T (w,w′)
i(f ),cont(EJπ ). (39)

The particular expressions for the direct T
(h,h′)
d(0),cont(EJπ ) and

indirect T
(w,w′)
i(f ),cont(EJπ ) coefficients in the limit of zero and

full damping, respectively, are obtained by replacing the
corresponding indexes in Eq. (33) for the direct transmission,
and in Eqs. (35)–(36) for the indirect transmission. The
weighting factor pw(E) is defined according to Eq. (37)
for superdeformed w = 2 and hyperdeformed w = 3 wells,
respectively.

C. Fission probability

If fission is assumed to be a compound nucleus (CN)
reaction induced by the projectile p with the incident energy
Ein, its cross section reads

σp,f (Ein) =
∑
Jπ

σCN
p (EinJπ )Pf (EinJπ ), (40)

where σCN
p (EinJπ ) is the cross section of the compound nu-

cleus formation in a state of spin and parity Jπ associated with
the incident channel p, and Pf (EinJπ ) represents the fission
probability of the compound nucleus with the excitation energy
E = ECM

in + Sp (Sp stands for the separation energy of the
particle p in the compound nucleus). The fission probability
is defined in terms of the transmission coefficients as

Pf (EinJπ ) = Tf (EJπ )∑
c Tc(EJπ ) + Tf (EJπ )

, (41)

where Tf is the fission coefficient and Tc are the transmission
coefficients associated to the competing reaction channels.
Width fluctuation corrections were not considered in the above
equation.

The fission probability proposed in Ref. [26] for a double-
humped fission barrier and adopted in many studies, including
Ref. [33], has a more elaborate expression because it includes
an energy dependent weight function which simulates the
coupling between the states from different wells and an average
over class-II states. Neglecting the contribution of the delayed
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fission, the fission probability reads

Pf (EinJπ ) = T
(1,2)

dir (EJπ )∑
c Tc(EJπ ) + T

(1,2)
dir (EJπ )

(
1 − 1

a

)
+ 1

a
,

(42)
with

a =
[

1 + b2 + 2b coth

(
T1(EJπ ) + T2(EJπ )

2

)]1/2

, (43)

b =
(
T

(1,2)
dir (EJπ ) + ∑

c Tc(EJπ )
)
[T1(EJπ ) + T2(EJπ )]

T
(1,2)

abs (EJπ )T2(EJπ )
.

(44)

When using this expression, the decay probabilities for
the competing channels have to be modified accordingly, to
conserve the compound nucleus cross section. This becomes
more problematic when transmission through triple-humped
barriers with absorption in all wells is involved. The only
difference between the fission probability formulations given
by Eqs. (41) and (42) is the hyperbolic cotangent factor
in Eq. (43) which has as argument the average value of
the transmission coefficients through the individual humps
(gamma decay to the isomeric state and delayed fission
contribution were not considered in the original proposal).
Our extended tests confirmed that the effect of this factor on
the fission cross section is visible only for fertile nuclei at
excitation energies deep below the barrier where transmission
coefficients are very small. For these energies the fission cross
section is much more sensitive to the width of the barrier than to
its height, and one can easily compensate the neglected weight
function by slightly increasing the barrier width (within a few
tens of keV).

For these reasons, we replaced the fission probability
defined by Eq. (42) with the simplified expression given by
Eq. (41), which is typical of any decay probability of the
compound nucleus. The fission probability given by Eq. (41)
does not require modification of the decay probabilities of
competing channels. Therefore, the new fission formalism can
be easily implemented in existing statistical model codes. We
are aware of the approximations of the present model, but it has
a good descriptive power of the experimental data, confirms
most of the theoretical predictions regarding the fission barrier,
and can be used both for fundamental studies and nuclear data
evaluation practice.

III. RESULTS AND DISCUSSIONS

The impact of the optical model for fission is significant
at excitation energies below and slightly above the barriers.
Therefore, the best way to test it would be by fission induced
by photons or by direct transfer reactions. However, we chose
to present neutron induced fission cross section calculations as
they are very important for applications, there are many good-
quality experimental data available, and the population cross
sections of the resulting compound fissioning nuclei are much
better studied. Four representative cases have been selected:
two fertile targets, 234U and 238U, and two fissile targets, 235U
and 239Pu, whose compound (fissioning) nuclei are supposed

TABLE I. Derived fission barrier parameters (in MeV) for
fissioning compound nuclei (CN). Values in parentheses correspond
to RIPL-3 [47] estimates for double-humped barriers.

CN Vh1 Vw2 Vh2 Vw3 Vh3 Sn

240Pu 5.97 (6.05) 2.00 5.30 (5.15) 6.53
239U 6.39 (6.45) 2.21 5.82 (6.00) 4.80
236U 4.60 1.60 5.90 4.90 5.64 6.54
235U 4.80 1.60 6.10 5.30 5.78 5.29

to have triple-humped ( 235U and 236U) and double-humped
( 239U and 240Pu) fission barriers, accordingly.

The calculations in the fast energy region of the first
fission chance (up to En ∼ 5 MeV) are performed with the
code EMPIRE 3.2 MALTA [31,49]. The direct cross sections and
the particle transmission coefficients are calculated with the
ECIS [50] code incorporated into the EMPIRE system using a
dispersive optical model potential RIPL 2408 [51,52]. Pre-
equilibrium emission at those incident energies is a minor ef-
fect. It has been considered by a one-component exciton model
with gamma, nucleon, and cluster emissions. The compound
nucleus mechanism is described by Hauser-Feshbach [53] and
Hoffmann-Richert-Tepel-Weidenmüller (HRTW) [54] statis-
tical models which account for the multiple-particle emission,
width fluctuation corrections, and the full gamma cascade. The
enhanced generalized superfluid model (EGSM) is employed
for the level densities both at equilibrium deformation and at
saddle points [47]. The E1 γ -strength function is computed
using the modified Lorentzian model (MLO1) [47]. With
these models and using recommended parameters retrieved
from RIPL-3 [47] or from EMPIRES’s internal systematics
[31,49] a fair description of the available experimental data
have been obtained for the total, elastic, inelastic, and capture
cross sections in the studied energy range. More details and
complete information about all calculated reaction channels
will be given elsewhere, the focus in this paper being on the
fission formalism.

The derived humps’ and wells’ energies of the fundamental
fission barriers for fissioning nuclei 240Pu , 239U , 236U, and
235U are given in Table I together with the corresponding
neutron separation energies, as needed for the subsequent
discussion. These barrier parameters and those defining the
transitional states, the class-II/III states, and the level densities
at saddles are obtained from the analysis of the fission exper-
imental data, the microscopic predictions, and the empirical
systematics as briefly discussed below.

For the fertile targets 234,238U the experimental neutron
induced fission cross sections from EXFOR [3] were the
most reliable source of information in establishing the starting
values for the fission parameters. As shown below for each
nucleus, the fission threshold, the slope below the threshold,
the absolute value on the plateau, and the presence of resonance
structure below and/or above the threshold suggested the shape
of the barrier (double or triple humped), the height of the
highest hump, the depth of the wells, the energies of the class II
(III) states, etc. Other data such as the lifetime of the isomeric
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state(s) or the moments of inertia associated with the wells
proved to be also very useful as complementary information.

For the fissile targets 239Pu and 235U, the experimental
fission cross sections do not provide as much information,
therefore the starting values for the fission parameters were
extracted from the empirical systematics (mainly for the 240Pu
double-humped barrier) and from microscopic calculations
(mainly for the 236U triple-humped barrier).

For all studied nuclei, the final values for the fission
parameters have been deduced by fitting the experimental
cross sections. The double-humped fission barriers for 240Pu
and 239U fissioning nuclei are in good agreement with the
empirical values tabulated in RIPL-3 that were proposed by
Maslov [47], as well as with those proposed by Vladuca and
collaborators [55–57]. The fission barriers deduced for 240Pu
fissioning nucleus are also in excellent agreement with those
obtained by Britt from the analysis of fission isomers [58].

It is presently accepted that there is no unique set of models
and parameters which can describe accurately the experimental
reaction data, especially the fission cross section. A consistent
and reliable set of fission parameters as model independent as
possible is the one which provides simultaneously a reasonable
description of multiple fission chances induced by neutrons,
photons, protons, or direct transfer reactions leading to the
same fissionable nucleus. The maximum deviation of the fis-
sion parameters needed to describe accurately each type of data
may be considered the uncertainty of the corresponding fission
parameter. From this type of studies we conclude that the
uncertainties of the extrema of a multi-humped fission barrier
are around 5%. For a typical barrier height of 6 MeV, that
gives about 300 keV of uncertainty, which is still lower than
the mass uncertainty estimated in microscopic calculations
(e.g., a 500 keV uncertainty of the calculated Hartree-Fock-
Bogoliubov masses is estimated in Ref. [59]). However, for a
given fissioning nucleus populated in a given reaction with all
the other parameters fixed, correlated changes of the extrema
of the barrier should be less than 100–150 keV, otherwise the
calculated fission cross sections disagree with experimental
data.

The measured fission cross section for 239Pu(n,f ) and
238U(n,f ) reactions retrieved from EXFOR [3] are shown
in Figs. 3 and 4. The experimental 239Pu(n,f ) cross section is
rather smooth in the studied energy range with no vibrational
resonances, indicating a full damping of the class-II vibrational
states. The 238U(n,f ) cross section has a resonant structure
only below the fission threshold (En ∼ 1.4 MeV), which is
typical for transmission through a double-humped barrier and
partially damped class-II vibrational states. In an even-even
nucleus such as 240Pu the degree of damping is expected to
be lower than in an odd nucleus such as 239U for the same
excitation energy in the secondary well. The different degrees
of damping suggested by the experimental data are explained
by the difference in the neutron separation energies, hence in
the different excitation energies in the secondary wells of the
two nuclei.

The fission cross section calculation results for 239Pu(n,f )
and 238U(n,f ) reactions are compared with experimental data

FIG. 3. 239Pu(n,f ) cross section calculated considering different
degrees of damping for class-II vibrational states: partial damping
(full line) and full damping (dotted line). Experimental data are taken
from EXFOR [3].

in the same figures. Both partial damping [Eq. (13), solid line]
and full damping [Eq. (1), dashed line] assumptions have been
used in those calculations. The model calculations support
the interpretation given above of the experimental data. For
239Pu(n,f ) the solid and dashed curves in Fig. 3 are practically
identical, showing that the complete damping limit can be
used. This is true for most of the fissile targets with neutron
number N > 146. For 238U(n,f ) the solid curve in Fig. 4
describes the subthreshold resonances, while the dashed curve
averages them. Partially damped vibrational resonances are
clearly seen below the fission threshold.

FIG. 4. 238U(n,f ) cross section calculated considering different
degrees of damping for class-II vibrational states: partial damping
(full line) and full damping (dotted line). Experimental data are taken
from EXFOR [3].
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A third shallow hyperdeformed (HD) minimum in the
potential energy of light actinides was predicted more than 40
years ago by Möller et al. [60–62] to explain the so called
“thorium” anomaly, and it was experimentally confirmed
(e.g., see Refs. [63–69]). However, deeper HD minima were
found in some works [63–69]. Our own reaction modeling of
Ref. [33] supported a shallow depth of the HD minimum for
both 232Th and 231Pa targets. Recent theoretical calculations
[70–72] confirmed that light uranium and thorium isotopes
(among even-Z nuclei) appear to be the best candidates for
triple-humped fission barriers with shallow HD minima. This
theoretical prediction is also supported by the experimental
data on fission cross sections in neutron induced reactions. For
example, the experimental 234U(n,f ) cross section reveals
a resonance structure below and above the threshold (En ∼
0.8 MeV) as shown in Fig. 5. The fact that there is no change
of slope of the fission cross section below the threshold (which
is present for example in 233Th and 232Pa cases [33]) indicates
that the height of the first hump (V1 = 4.8 MeV) should be
lower than the neutron separation energy Sn = 5.3 MeV in
235U; therefore, the class-II vibrational states are completely
damped.

The resonance energies with respect to the fission threshold
suggest that the difference between the highest hump and the
third well is several hundred keV, confirming the hypothesis
of triple-humped fission barriers with a shallow third well.
As a result, the transmission across the intermediary and
the outer barriers in the lower part of the continuum have
also a direct component. In other words, the flux reaching
the third well through fission channels in the lower part of
continuum is not fully absorbed. Therefore, we have to use
for the discrete fission channels the transmission coefficients
defined in Sec. II B 1 within the optical model for fission, and

FIG. 5. 234U(n,f ) cross section calculated considering complete
damping for class-II vibrational states and different degrees of damp-
ing for class-III vibrational states associated with partial absorption
for discrete and continuum fission channel spectrum (full black line),
partial absorption for discrete and full absorption for continuum
fission channel spectrum (dashed blue line), and total absorption for
discrete and continuum fission channel spectrum (dotted red line).
Experimental data are taken from EXFOR [3].

the partial absorption for the fission channels in the continuum
above the outer barrier should be treated with the surrogate
optical model for fission described in Sec. II B 3.

The fission cross section calculated considering a full
damping of class-II states (full absorption in the secondary
well) and different degrees of damping of the class-III
vibrational states (partial absorption for discrete channels and
for those in lower part of continuum, and partial absorption
only for the discrete channels and total absorption for those
in continuum) is compared with selected experimental data in
Fig. 5.

As mentioned before, there is no unique set of models and
parameters which can describe accurately the fission cross sec-
tion. The 235U(n,f ) cross section has been typically modeled
using a double-humped fission barrier with parameters chosen
to reproduce measured data [47] and Eq. (1) for the fission
transmission coefficient. The main assumption is that the
class-II states are completely damped at the excitation energies
populated in the compound nucleus. However, according to
theory [70], the 236U fissioning nucleus should also have
a triple-humped barrier with an even shallower third well
than 235U.

For this even-even fissioning nucleus, there are collective
excited states along the fission path which fill the pairing gap,
whose excitation energies at the outer saddle points could
exceed the neutron separation energy, and in the third well
could be only partially damped. The degree of damping must
be higher than in 235U, therefore the damping is reflected only
in a decrease of the fission cross section at low energies and not
in a resonance structure. Because the third well is so shallow,
partial absorption in the third well is also expected for the
fission channels in the lower part of continuum, which more
significantly decreases the fission cross section. Following for

FIG. 6. 235U(n,f ) cross section calculated considering full
damping for class-II vibrational states and different degrees of damp-
ing for class-III vibrational states associated with partial absorption
for discrete and continuum fission channel spectrum (full black line),
partial absorption for discrete and full absorption for continuum
fission channel spectrum (dashed blue line), and total absorption for
discrete and continuum fission channel spectrum (dotted red line).
Experimental data are taken from EXFOR [3].
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235U(n,f ) the same procedure used for the 234U(n,f ) reac-
tion, the fission cross sections presented in Fig. 6 are obtained.
These results show that if the triple-humped barrier is used,
then taking into account the partial absorption for all fission
channels is mandatory to avoid overestimating the measured
fission cross section below 1 MeV of neutron incident energy.
The presented 235U(n,f ) calculation is, to our knowledge,
the first published attempt of using a triple-humped barrier to
describe the fission cross section for the 235U(n,f ) reaction,
which is of utmost importance for nuclear applications.

The results obtained for 234,235U(n,f ) cross sections prove
that, using a proper fission reaction model and barriers pre-
dicted by theory [70], we can achieve a very good agreement
with experimental data.

It was mentioned in the Sec. I that the neutron induced
fission cross sections of 235,238U are Neutron Standards [4,5],
and that the 239Pu(n,f ) cross section is a reference cross
section fitted within the Neutron Standards project [4,5]. These
reference cross sections represent our best (experimental)
knowledge. The calculated results of this work agree with neu-
tron reference cross sections of 235,238U(n,f ) and 239Pu(n,f )
reactions within 3%, which is very important for producing
accurate nuclear data evaluations.

IV. CONCLUSIONS

The optical model for fission proposed about 50 years ago
has been extended to consider both absorption in wells and

partial direct transmission through discrete and continuous
fission channels. The corresponding transmission coefficients
through multi-humped fission barriers were derived within the
JWKB approximation and fission probabilities were defined.
The way those fission probabilities are incorporated in the
statistical model is comprehensively described. The impact
on the calculated fission cross sections of considering partial
damping of the vibrational states in the wells, and partial direct
transmission through both discrete and continuous fission
channels, has been studied. The actual impact depends on
the nucleus type, on the incident particle inducing fission,
and on the fission barriers’ structure. The studied targets
have been selected to emphasize the role of the presented
formalism in validating and determining the fission barrier
parameters, but also in producing accurate, consistent reaction
data evaluations. These aspects are of great interest for ongoing
international projects such as CIELO [1] and CHANDA [73].
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[38] N. Fröman and P. O. Fröman, JWKB Approximation, Contribu-
tions to the Theory (North-Holland, Amsterdam, 1965).
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