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Background: Heavy-ion fusion reactions at energies near the Coulomb barrier are influenced by couplings
between the relative motion and nuclear intrinsic degrees of freedom of the colliding nuclei. The time-dependent
Hartree-Fock (TDHF) theory, incorporating the couplings at the mean-field level, as well as the coupled-channels
(CC) method are standard approaches to describe low energy nuclear reactions.
Purpose: To investigate the effect of couplings to inelastic and transfer channels on the fusion cross sections for
the reactions 40Ca + 58Ni and 40Ca + 64Ni.
Methods: Fusion cross sections around and below the Coulomb barrier have been obtained from CC calculations,
using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock method and coupling parameters
taken from known nuclear structure data. The fusion thresholds and neutron transfer probabilities have been
calculated with the TDHF method.
Results: For 40Ca + 58Ni, the TDHF fusion threshold is in agreement with the most probable barrier obtained
in the CC calculations including the couplings to the low-lying octupole 3−

1 state for 40Ca and to the low-lying
quadrupole 2+

1 state for 58Ni. This indicates that the octupole and quadrupole states are the dominant excitations
while neutron transfer is shown to be weak. For 40Ca + 64Ni, the TDHF barrier is lower than predicted by the
CC calculations including the same inelastic couplings as those for 40Ca + 58Ni. TDHF calculations show large
neutron transfer probabilities in 40Ca + 64Ni which could result in a lowering of the fusion threshold.
Conclusions: Inelastic channels play an important role in 40Ca + 58Ni and 40Ca + 64Ni reactions. The role of
neutron transfer channels has been highlighted in 40Ca + 64Ni.
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I. INTRODUCTION

Heavy-ion fusion cross sections near the Coulomb barrier
are influenced by couplings of the relative motion to nuclear
shape deformations and vibrations [1–3]. The effects of
these couplings can be investigated by coupled-channels (CC)
calculations [4–11] and time-dependent Hartree-Fock (TDHF)
calculations [12–14].

Nucleon transfer channels have also been shown to affect
the fusion process [15–19]. However, a deep understanding of
the interplay between fusion and transfer is still needed. This
is partly due to the difficulty to construct predictive theoretical
models of fusion incorporating the dissipation and Q-value
effects of transfer. Transfer channels are indeed incorporated
within CC models in a simplified fashion [20]. In addition,
recent progresses of the microscopic description of transfer
reactions are mostly limited to the mean-field approxima-
tion [21–25], to small [26–28] and semi-classical [29–31]
fluctuations. Nevertheless, comparison between experimental
data and theoretical calculations of fusion properties, such as
barriers and cross sections, is expected to shed light on the
importance of coupling to transfer channels.

On the one hand, CC calculations treat the couplings to
inelastic channels in a fully quantum mechanical approach.
However, they require input parameters for the nuclear poten-
tial as well as coupling parameters of collective states in the
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colliding nuclei. The TDHF approach, on the other hand, often
uses Skyrme energy density functionals [32] which are fitted
on basic nuclear structure properties [33] as a unique input.
It also naturally incorporates both coupling to inelastic and
transfer channels. However, these couplings are only treated
at the mean-field level. A new approach has been proposed to
combine these two complementary theories in Ref. [14]. Other
works have also incorporated microscopic ingredients in CC
calculations [11].

Recently, the fusion excitation functions of 40Ca + 58Ni
and 40Ca + 64Ni [34] have been measured at energies around
and below the Coulomb barrier to study the influence of
the projectile and target nuclear structures on the fusion
process. CC calculations were performed with the CCFULL

code [35], using the Akyüz-Winther nuclear potential [36,37]
and including the most relevant inelastic channels, i.e., the
octupole-phonon excitation (0+

gs → 3−
1 ) for 40Ca and the

quadrupole-phonon excitation (0+
gs → 2+

1 ) for both 58Ni and
64Ni. The effect of the positive Q value two-neutron transfer
channel in 40Ca + 64Ni was also schematically taken into
account. The 40Ca + 64Ni system has positive nucleon transfer
Q values, whereas 40Ca + 58Ni has only negative nucleon
transfer Q values. The fusion cross sections for 40Ca + 58Ni
are well reproduced at sub-barrier energies by including
couplings to inelastic channels in the CC calculations. For
40Ca + 64Ni, the fusion cross sections are underestimated by
including only couplings to inelastic channels. The additional
coupling to the two-neutron transfer channel turned out to
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be essential to describe the large fusion cross sections at
sub-barrier energies for this system [34].

In this work, we have analyzed the two fusion reactions
40Ca + 58Ni and 40Ca + 64Ni with microscopic calculations,
employing the Skyrme-functionnal SLy4d [38]. The method
is described in Sec. II. Results of the calculations are presented
in Sec. III and compared with experimental data. In Sec. IV,
we summarize our conclusions.

II. THEORETICAL APPROACH

The TDHF theory is a mean-field approximation of the
many-body dynamics. It was initially proposed by Dirac [39]
to describe electrons in atoms, in which case the particles
interact via the Coulomb interaction. Direct computation of
the Hartree-Fock mean field in nuclei remains a problem as
the interaction between nucleons in the nuclear medium is still
unknown. However, the development of phenomenological
Skyrme effective interactions [32] allowed one to bypass
the problem by using the resulting energy density functional
(instead of the nucleon-nucleon interaction) to express the
mean-field potential [33].

Many parametrizations of the Skyrme functional have
been developed over the past. However, most of the Skyrme
parametrizations have been fitted assuming a one-body center-
of-mass correction to describe the nuclei in their intrinsic
frame. This is implemented by replacing the nucleon mass
m with Am/(A − 1), where A is the number of nucleons.
Although this usually improves the structure of light nuclei,
such a correction should not be applied when studying
collisions as it induces a spurious dependence on the initial
number of nucleons of the collision partners. Therefore, we
use the SLy4d parametrization [38] which has been derived
without the center-of-mass correction. Note that other recent
parametrizations have been derived without this correction,
such as the quark-meson coupling 700 [40] and the universal
nuclear energy density functional [41] parametrizations. A
comparison with these interactions will be the subject of a
future work.

The TDHF approach has become a standard tool to describe
nuclear reactions (see Refs. [42,43] for a review). This has
been made possible thanks to calculations in three dimensions
including the spin-orbit interaction [38,44–48]. In particular,
TDHF predictions of barriers and fusion cross sections are
in good agreement with experimental data [12–14,21,49,50].
Importantly, it incorporates dynamical effects such as vibration
[45,51] and particle transfer [22,23,28] which are crucial at
near-barrier energies [12,50].

An important drawback of mean-field calculations, how-
ever, is the impossibility to describe tunneling of the many-
body wave function. As a result, sub-barrier fusion cannot
be directly investigated in the TDHF method. Nevertheless,
TDHF codes can be used to compute fusion thresholds
including dynamical effects [12,21,50,52–54].

To estimate sub-barrier fusion cross sections, one has to
determine a nucleus-nucleus potential and to compute the
sub-barrier transmission with a barrier penetration model.
Microscopic potentials can be calculated directly from TDHF
dynamics [12,55]. Alternatively, one can start with the bare

potential computed from a frozen Hartree-Fock approach
[12,21] and use a CC code to incorporate the dynamical
couplings to collective modes following the approach proposed
in Ref. [14]. The properties of the collective phonons are either
known experimentally or computed theoretically, for instance
in the linear response theory with a TDHF code [46–48,56–60].
Therefore, the approach of Ref. [14] allows one to use the same
Skyrme functional to compute both the bare potential and the
deformation parameters of the collective excited states.

In the present work, we follow the approach of Ref. [14] to
extract various information on the fusion dynamics:

(i) The bare potential is computed with the frozen
Hartree-Fock approach.

(ii) Fusion cross sections incorporating couplings to low-
lying vibrational states are computed with the CC
approach using the CCFULL code [35] with the above
potential and experimental properties of low-lying vi-
brational states (energy and deformation parameters).

(iii) The resulting barrier distributions are compared with
fusion thresholds computed directly from the TDHF
method, and incorporating dynamical effects at the
mean-field level, such as couplings to vibrational
states and to transfer channels.

(iv) The importance of transfer channels is estimated with
near-barrier TDHF calculations of transfer probabil-
ities using the particle number projection technique
developed in Ref. [23].

Combining this information for 40Ca + 58,64Ni reactions
and comparing it with experimental data will then allow one
to identify the impact of transfer mechanisms on fusion in
these reactions.

The HF and TDHF calculations are performed with the
EV8 [61] and TDHF3D [38] codes, respectively. The Sly4d
interaction [38] is used. Unless specified, pairing is included
in static calculations at the BCS level, and single-particle
occupation numbers are kept constant during the dynamics.
The surface pairing interaction is used [62]. All calculations
are preformed with a mesh space of 0.8 fm and a time step of
1.5 × 10−24 s.

In our calculations, all nuclei are spherical, except for 64Ni
which exhibits a very small triaxial quadrupole deformation
with a maximum quadrupole moment of 1.0 fm2. We thus
treat it as spherical. Note that other functionals could result in
slightly deformed ground states [63–66].

III. RESULTS

A. Fusion excitation functions

The frozen Hartree-Fock potential is computed from the
HF ground-state one-body density matrices ρ1,2 of the two
colliding nuclei at a distance R between their centers of mass.
The total energy E[ρ1 + ρ2](R) of the system is given by
the energy density functional including the Coulomb energy.
The nucleus-nucleus potential is then obtained by removing
the HF energy of the ground states: V (R) = E[ρ1 + ρ2](R) −
EHF [ρ1] − EHF [ρ2].
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TABLE I. Bare potential barrier characteristics from the frozen
HF method and from the Bass model [67] as well as TDHF fusion
thresholds for 40Ca + 58,64Ni.

Barrier characteristics 40Ca + 58Ni 40Ca + 64Ni

V Frozen
b [MeV] 74.15 72.26

RFrozen
b [fm] 10.11 10.40

V Bass
b [MeV] 75.73 74.66

RBass
b [fm] 10.65 10.80

V TDHF
b [MeV] 71.70 69.06

The resulting bare potential barrier radii Rb and heights
Vb are listed in Table I. As expected, the bare potential barrier
radius is larger, and the height smaller, for 40Ca + 64Ni than for
40Ca + 58Ni due to the larger size of 64Ni. As a comparison, the
bare potential barriers calculated from the frozen HF method
and from the Bass model [67] are also reported in Table I.
The frozen HF method predicts barriers which are noticeably
smaller than the more phenomenological parametrization by
Bass.

A Saxon-Woods parametrization of the nuclear potential
was extracted from the frozen potential to be used in CC
calculations. The potential well depths V0, nuclear radii r0,
and surface diffuseness a parameters are listed in Table II.
The resulting fusion cross sections σf were computed with
the CCFULL code and are plotted with dashed lines in Fig. 1.
The experimental data are taken from Ref. [34]. For the two
studied systems, the CC calculations with no couplings to
inelastic and transfer channels underestimate the measured
fusion cross sections at sub-barrier energies by about two
orders of magnitude.

The intensity of the couplings to low-lying vibrations is
determined by the energy and deformation parameter of the
phonons. The latter can be obtained from nuclear structure
experimental data or theoretical calculations. For the present
systems, the main effect is expected from the coupling to
low-lying octupole modes in 40Ca and quadrupole modes in
58,64Ni [68,69]. The energies and deformation parameters of
the associated first phonons are experimentally well known for
these isotopes and are summarized in Table III.

Coupled-channels calculations have been performed in-
cluding couplings to the low-lying 2+

1 and 3−
1 states with

the CCFULL code [35]. The resulting fusion cross sections
are shown with solid lines in Fig. 1. For 40Ca + 58Ni, the
measured fusion cross sections are well reproduced over
the energy range, especially at sub-barrier energies where the
fusion process occurs by quantum tunneling. The couplings
to the 3−

1 state for 40Ca and 2+
1 state for 58Ni explain the

enhancement of the fusion cross sections in this energy range.

TABLE II. Saxon-Woods parametrization of the nuclear potential
extracted from the frozen potential for 40Ca + 58,64Ni.

System V0 [MeV] r0 [fm] a [fm]

40Ca + 58Ni 87.16 1.16 0.62
40Ca + 64Ni 106.12 1.15 0.64
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FIG. 1. Experimental and calculated fusion excitation functions
for (a) 40Ca + 58Ni and (b) 40Ca + 64Ni. The coupled-channels
calculations were performed with the frozen HF potential and the
coupling parameters of the low-lying octupole state for 40Ca and of
the low-lying quadrupole states for 58,64Ni.

For 40Ca + 64Ni, the CC calculations with couplings to
inelastic channels still underestimate the measured fusion
cross sections at sub-barrier energies. These couplings are the
same as those for 40Ca + 58Ni since 58Ni and 64Ni have similar
nuclear properties. Similar results were obtained in Ref. [34],
using the Akyüz-Winther nuclear potential and including the
same inelastic couplings. However, the diffuseness parameter
of the Akyüz-Winther nuclear potential was slightly increased
for 40Ca + 64Ni to fit the fusion cross sections around the
Coulomb barrier, whereas the only input parameters in the
frozen Hartree-Fock method are those of the Skyrme energy
density functional.

TABLE III. Excitation energies E as well as quadrupole and
octupole deformation parameters β2,3 of the low-lying vibrational
states included in the CC calculations. For references, see the caption
of Table I in Ref. [34].

Nucleus J π E [keV] β2,3

40Ca 3−
1 3736 0.40

58Ni 2+
1 1454 0.18

64Ni 2+
1 1346 0.16

034604-3



D. BOURGIN, C. SIMENEL, S. COURTIN, AND F. HAAS PHYSICAL REVIEW C 93, 034604 (2016)

TABLE IV. Corrected-Q values in MeV of transfer reactions
for 40Ca + 58,64Ni (Qcorr = Qtr + V in

b − V out
b ) [70]. The indicated

+ signs corresponds to neutron pick-up and the − signs to proton
stripping.

System +1n +2n +3n −1p −2p −3p

40Ca + 58Ni −3.80 −2.52 −11.19 −3.75 −3.60 −11.95
40Ca + 64Ni −1.23 3.47 0.86 0.26 4.19 0.88

Couplings to nucleon transfer channels could also play an
important role in the fusion process [19]. The 40Ca + 64Ni
fusion reaction has a negative Q value for the +1n transfer
channel, positive Q values for the +2n and +3n transfer
channels (neutron pick-up) and positive Q values for the −1p,
−2p, and −3p transfer channels (proton stripping), whereas
40Ca + 58Ni has only negative nucleon transfer Q values.
Corresponding Q values are listed in Table IV. The importance
of neutron transfer in 40Ca + 64Ni will be confirmed with
TDHF calculations in Sec. III C.

B. TDHF fusion thresholds and experimental
fusion barrier distributions

Based on a deterministic mean-field approximation, the
TDHF theory can only give fusion probabilities which are
either 0 or 1 for a given initial energy and impact parameter
[49], and for an initial orientation in the case of deformed
nuclei [52]. As a result, it can be used to compute fusion
thresholds including dynamical effects due to internal excita-
tions, deformation to all orders, neck formation, and nucleon
exchange.

Examples of time evolutions of the distance between the
colliding nuclei in 40Ca + 58,64Ni are plotted in Fig. 2. This
distance is defined as the distance between the centers of
masses computed on each side of the neck. The energies are
chosen to be just above and below the fusion threshold with a
difference of only 50 keV.

Interestingly, both systems exhibit similar behaviors. In
particular, the fragments are in contact during ∼1 zs (10−21 s)
before fusion is decided. Similar times were obtained for
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FIG. 2. Time evolutions of the distance between the colliding
nuclei in 40Ca + 58,64Ni just above (solid lines) and below (dashed
lines) the fusion threshold.

near-barrier collisions in lighter [38,71] and similar [14,28]
mass regions. These times are relatively short in comparison
with heavier systems computed with the TDHF method where
typical contact times of few zeptoseconds [72] or more in case
of quasi-fission reactions [43,53,73–75] are often obtained,
leading to possible large mass transfer [76,77]. Nevertheless,
contact times of ∼1 zs are long enough to allow transfer of
one or more nucleons [23,30,31,78], in particular in the case
of positive Q value reactions as will be seen in Sec. III C.

The resulting fusion thresholds are listed in Table I.
These thresholds are lower than the bare potential barrier
heights computed with the frozen HF method (2.45 for
40Ca + 58Ni and 3.20 MeV for 40Ca + 64Ni). This lowering
of the fusion barrier height is induced by dynamical effects
such as couplings to inelastic and nucleon transfer channels.
These couplings are also responsible for the enhancement of
sub-barrier fusion cross sections with respect to the uncoupled
case (see Fig. 1).

The fusion and bare potential barrier heights can be
compared to the centroids of the measured and calculated
barrier distributions which are plotted in Fig. 3. These barrier
distributions D(Ec.m.) [79] were derived from the second
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FIG. 3. Experimental and calculated barrier distributions for
(a) 40Ca + 58Ni and (b) 40Ca + 64Ni. The coupled-channels calcula-
tions were performed with the CCFULL code, using the frozen potential
and the coupling parameters of the low-lying octupole state for 40Ca
and of the low-lying quadrupole states for 58,64Ni given in Table III.
The Bass, frozen HF, and TDHF barriers are shown with arrows on
the Ec.m. axis.
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derivative of the center-of-mass energy Ec.m. times the fusion
cross section σf with respect to Ec.m., using the three-point
difference formula [2], with an energy step of �Ec.m. � 1.5
below the Coulomb barrier and 3 MeV above the Coulomb
barrier.

We see in Fig. 3 that the TDHF fusion threshold for
40Ca + 58Ni is in good agreement with the large structure of
the measured barrier distribution as well as the maximum of
the CC barrier distribution (solid line). As the TDHF result
includes all types of couplings, this indicates that most of
the lowering of the fusion threshold is accounted for by the
coupling to the 3−

1 state in 40Ca and to the 2+
1 state in 58Ni.

For 40Ca + 64Ni, the TDHF barrier is also in agreement with
the large structure of the measured barrier distribution but it is
lower than the maximum of the CC barrier distribution (solid
line). This indicates that the couplings to transfer channels,
which are included in TDHF dynamics but not in the CC
calculations, could play a role in the lowering of the fusion
threshold.

C. Sub-barrier transfer probabilities

Neutron transfer probabilities were computed using the
particle number projection technique developed in Ref. [23].
For simplicity, these calculations were performed without
pairing correlations. This is sufficient to provide a reasonable
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FIG. 4. TDHF calculations of the Ca quasiprojectile neutron
number distributions in the exit channel of (a) 40Ca + 58Ni at
Ec.m. = 71.65 and (b) 40Ca + 64Ni at Ec.m. = 69.01 MeV.

estimate of the overall importance of transfer. More predictive
transfer probabilities for individual transfer channels would
require the inclusion of dynamical pairing correlations [80,81].

Neutron number distributions of the Ca projectile-like
fragment in the exit channel were calculated at Ec.m. = 71.65
for 40Ca + 58Ni and at Ec.m. = 69.01 MeV for 40Ca + 64Ni.
These energies are located just below the TDHF fusion
thresholds.

As can be seen in Fig. 4, the sum of the transfer probabilities
does not exceed 0.04 in 40Ca + 58Ni near-barrier collisions.
This confirms our previous conclusion that the impact of
transfer channels on fusion is small in this reaction. This was
expected due to negative Q values for transfer reactions in this
system.

Transfer probabilities are much larger in the 40Ca + 64Ni
system, with a total transfer probability of ∼0.7. In this case,
the dominant channel is the transfer of one neutron from
64Ni to 40Ca, followed by the two-neutron transfer channel.
However, the relative weighting between individual channels
could be strongly modified with the inclusion of dynamical
pairing [81] favoring pair transfer channels [82,83].

Quantitatively, the couplings to the vibrational states
accounts for a lowering of the barrier by ∼2 MeV in
40Ca + 64Ni, while TDHF calculations predicts that the fusion
thresholds should be lowered by more than 3 MeV. It is
likely that the transfer channels are responsible for this
difference. Indeed, they could easily affect the fusion process
by, e.g., facilitating the formation of a neck between the
fragments.

IV. SUMMARY

Microscopic and coupled-channels calculations have been
performed for the 40Ca + 58,64Ni reactions near the fusion bar-
rier. The only input parameters are those of the Skyrme energy
density functional. Fusion cross sections around and below
the Coulomb barrier were obtained from CC calculations,
using the bare nucleus-nucleus potential computed with the
frozen Hartree-Fock method and coupling parameters taken
from known nuclear structure data. Couplings to the 3−

1 state
in 40Ca and to the 2+

1 states in 58,64Ni were included in the CC
calculations. The resulting fusion barrier distributions were
compared with experimental data as well as TDHF fusion
thresholds which include automatically all types of couplings
(inelastic and nucleon transfer channels) at the mean-field
level.

The lowering of the fusion threshold due to dynamical
effects is explained in 40Ca + 58Ni without invoking transfer
channels which are shown to be weak. The case of 40Ca + 64Ni
is different as inelastic couplings to low-lying phonons only
account for about two-thirds of the lowering of the fusion
thresholds. Transfer channels, which are shown to be important
near-barrier, could result in a further lowering of the fusion
thresholds, possibly via neck formation.

Experimental measurement of the nucleon transfer cross
section around the fusion barrier for these two systems was
recently performed to investigate directly this effect. It would
also be interesting to extend the measurement of fusion cross
sections at lower energies for these systems in order to better
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understand the role of transfer reactions on the deep sub-barrier
fusion hindrance recently observed [84,85].

Further theoretical investigations are also required to better
understand the mechanisms of the couplings between transfer
channels and fusion. In particular, transfer could favor neck
formation and, thus, diffusion towards a compound nucleus.
It has also been argued that transfer could be a doorway to
dissipation hindering fusion [17].
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