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Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear
energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct
measurements are often not feasible, indirect methods, e.g., (d,p) reactions, should be used. Those (d,p) reactions
may be viewed as three-body reactions and described with Faddeev techniques.
Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in
order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective
interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent.
Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity
theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex,
energy-dependent optical potentials that fulfill reciprocity exactly.
Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to
obtain the form factors for the separable representation.
Results: Starting from a separable, energy-independent representation of global optical potentials based on a
generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account
the energy dependence. Applications to n + 48Ca, n + 208Pb, and p + 208Pb are investigated for energies from
0 to 50 MeV with special emphasis on fulfilling reciprocity.
Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent
phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit
energy dependence slightly improves the description of the S matrix elements.
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I. INTRODUCTION

Deuteron-induced nuclear reactions are attractive from
experimental as well as theoretical points of view to probe
the structure of exotic nuclei. For example, carried out in
inverse kinematics, (d,p) or (d,n) reactions prove useful
for extracting neutron or proton capture rates for unstable
nuclei of astrophysical relevance (see, e.g., Ref. [1]). From a
theoretical perspective (d,p) and (d,n) reactions are attractive,
since the scattering problem may be viewed as an effective
three-body problem [2]. One of the most challenging aspects
of solving the three-body problem for nuclear reactions is
the repulsive Coulomb interaction between the nucleus and
the proton. While for very light nuclei, exact calculations of
(d,p) reactions based on momentum-space Faddeev equations
in the Alt-Grassberger-Sandhas (AGS) [3] formulation can
be carried out [4] by using a screening and renormalization
procedure [5,6], this technique leads to increasing technical
difficulties when moving to computing (d,p) reactions with
heavier nuclei [7]. Therefore, a new formulation of the
Faddeev-AGS equations, which does not rely on a screening
procedure, was presented in Ref. [8]. Here the Faddeev-AGS
equations are cast in a momentum-space Coulomb-distorted
partial-wave representation instead of the plane-wave basis.
Thus all operators, specifically the interactions in the two-body
subsystems, must be evaluated in the Coulomb basis, which is
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a nontrivial task (performed recently for the neutron-nucleus
interaction [9]). The formulation of Ref. [8] requires the
interactions in the subsystems to be of separable form.

Separable representations of the forces between con-
stituents forming the subsystems in a Faddeev approach
have a long tradition, specifically when considering the
nucleon-nucleon (NN ) interaction (see, e.g., Refs. [10–12])
or meson-nucleon interactions [13,14]. Here the underlying
potentials are Hermitian, and a scheme for deriving separable
representations suggested by Ernst-Shakin-Thaler [15] (EST)
is well suited, specifically when working in momentum space.
It has the nice property that the on-shell and half-off-shell
transition matrix elements of the separable representation are
exact at predetermined energies, the so-called EST support
points. However, when dealing with neutron-nucleus (nA)
or proton-nucleus (pA) phenomenological optical potentials,
which are in general complex to account for absorptive
channels that are not explicitly treated, as well as en-
ergy dependent, extensions of the EST scheme have to be
made.

The generalization to non-Hermitian potentials which
ensures that the potential as well as the transition matrix
elements fulfill the reciprocity theorem is given in Ref. [16].
Essential for this extension is the use of incoming as well
as outgoing scattering wave functions when setting up the
EST scheme. For a separable representation of pA optical
potentials an EST construction has to be carried out in the
basis of momentum space Coulomb functions instead of plane
waves [17]. References [16] and [17] show that separable
representations of phenomenological global optical potentials
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of Woods-Saxon type can readily be obtained for light ( 12C)
as well as heavy ( 208Pb) nuclei.

Strictly speaking, the EST representation of Ref. [15] has
the drawback that its underlying assumptions rely on the
energy independence of the original potential. Unfortunately,
today’s phenomenological global optical potentials are all en-
ergy dependent. This drawback has been recognized by Pearce
[18], who showed how the energy dependence of Hermitian
potentials can be accommodated in the EST scheme. Those
suggestions were implemented for pion-nucleon interactions
in Refs. [19,20].

In Sec. II we concentrate on nucleon-nucleus scattering
and show how the extension of Pearce [18] to explicitly
accommodate energy dependence in the EST scheme can
be combined with our previous extension to non-Hermitian
potentials [16]. Here we specifically give the additional
momentum-space terms that need to be calculated. In Sec. II B
we show that those additional terms mainly affect the off-
shell behavior of partial-wave transition matrix elements, and
that only when taking into account the energy dependence
reciprocity is fulfilled exactly. We also study select partial-
wave S-matrix elements for n + 48Ca and n + 208Pb, where
we show that for on-shell quantities the explicit energy
dependence has very little effect. In Sec. III we show how this
energy-dependent formulation of a separable representation
can be employed for proton-nucleus scattering, and present
results for p + 208Pb, a case where the Coulomb interaction
is strong. Since taking into account the energy dependence
explicitly may considerably increase the computational effort
when using this separable representation, we also study the
possibility of interpolating on the energy dependence of
the optical potential. Finally, we summarize our findings in
Sec. IV.

II. ENERGY-DEPENDENT NEUTRON-NUCLEUS
OPTICAL POTENTIALS

A. Formal considerations

While the pioneering work by Ernst, Shakin, and Thaler
[15] constructed separable representations of Hermitian poten-
tials, optical potentials that describe the scattering of neutrons
and protons from nuclei are in general complex as well as
energy dependent. In Ref. [16] the EST scheme was extended
to complex potentials. We briefly recall the most important
features, namely that a separable representation for a complex,
energy-independent potential Ul in a fixed partial wave of
orbital angular momentum l is given by [16]

ul =
∑
ij

Ul|ψ+
l,i〉λ(l)

ij 〈ψ−
l,j |Ul, (1)

where |ψ+
l,i〉 is a solution of the Hamiltonian H = H0 + Ul

with outgoing boundary conditions at energy Ei , and |ψ−
l,i〉 is

a solution of the Hamiltonian H = H0 + U ∗
l with incoming

boundary conditions. We refer to the energies Ei as EST
support points. The free Hamiltonian H0 has eigenstates
|ki〉 with k2

i = 2μEi , μ being the reduced mass of the
neutron-nucleus system. The matrix λ

(l)
ij is constrained by the

conditions

δkj =
∑

i

〈ψ−
l,k|Ul|ψ+

l,i〉λ(l)
ij ,

δik =
∑

j

λ
(l)
ij 〈ψ−

l,j |Ul|ψ+
l,k〉, (2)

where the subscript i = 1 . . . N indicates the rank of the
separable potential. The two constraints of Eq. (2) on λ

(l)
ij

ensure that at the EST support points Ei , both the original U
and the separable potential u, yield identical wave functions
or half-shell t matrices. The corresponding separable t matrix
takes the form

tl(E) =
∑
ij

Ul|ψ+
l,i〉τ (l)

ij (E)〈ψ−
l,j |Ul (3)

with (
τ

(l)
ij (E)

)−1 = 〈ψ−
l,i |Ul − Ulg0(E)Ul|ψ+

l,j 〉. (4)

Here g0(E) = (E − H0 + iε)−1 is the free propagator. The
form factors are given as half-shell t matrices

Tl(Ei)|ki〉 ≡ Ul|ψ+
l,i〉, (5)

and are obtained through solving a momentum space
Lippmann-Schwinger (LS) equation.

Given a time-reversal operator K, the optical potential U
satisfies

KUK−1 = U †, (6)

so that the corresponding t matrix fulfills reciprocity. We
therefore require that its EST separable representation u
preserves this property. A proof that the separable potential
defined in Eqs. (1) and (3) obeys the relation KuK−1 = u† is
provided in Ref. [16] for the rank 1 case. Generalization of the
proof to a higher rank requires that the matrix λ

(l)
ij be symmetric

in the indices (i,j ). If the potential is energy independent this
symmetry of λ

(l)
ij is evident when examining the constraints of

Eq. (2).
However, when applying the same formulation to an

energy-dependent potential U (E), one obtains

ul =
∑
ij

Ul(Ei)|ψ+
l,i〉λ(l)

ij 〈ψ−
l,j |Ul(Ej ), (7)

with the constraints

δkj =
∑

i

〈ψ−
l,k|Ul(Ei)|ψ+

l,i〉λ(l)
ij ,

δik =
∑

j

λ
(l)
ij 〈ψ−

l,j |Ul(Ej )|ψ+
l,k〉. (8)

When omitting the partial wave index l the two constraints on
λ can be written in matrix form

U t λ = 1 = λ U , (9)

with

Uij = 〈ψ−
i |U (Ei)|ψ+

j 〉. (10)

For a separable potential of rank N > 1 the matrix Uij is
not symmetric in the indices i and j , which leads to an
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asymmetric matrix λ and thus a t matrix which violates
reciprocity. Therefore, a different approach must be taken
in order to construct separable representations for energy-
dependent potentials. Here we note that although the potential
u contains some of the energy dependence of U (E) through the
form factors, it has no explicit energy dependence. Henceforth
we will refer to this separable construction as the energy-
independent EST representation.

A separable expansion for energy-dependent Hermitian
potentials was suggested by Pearce [18]. This suggestion
can also be applied to complex potentials by using the
insights already gained in Ref. [16]. In analogy, we define the
EST separable representation for complex energy-dependent
potentials (eEST) by allowing an explicit energy dependence
of the coupling matrix elements λij :

u(E) =
∑
ij

U (Ei)|ψ+
i 〉λij (E)〈ψ−

j |U (Ej ), (11)

where the partial wave index l has been omitted for simplicity.
In order to obtain a constraint on the matrix λ(E), we require
that the matrix elements of the potential U (E) and its separable
form u(E) between the states |ψ+

i 〉 be the same at all energies
E. This condition ensures that the potentials U (E) and u(E)
yield identical wave functions at the EST support points, just
like in the energy-independent EST scheme. The constraints

on λij (E) become

〈ψ−
m |U (E)|ψ+

n 〉
= 〈ψ−

m |u(E)|ψ+
n 〉

=
∑

i

〈ψ−
m |U (Ei)|ψ+

i 〉λij (E)〈ψ−
j |U (Ej )|ψ+

n 〉. (12)

The corresponding separable t matrix then takes the form

t(E) =
∑
ij

U (Ei)|ψ+
i 〉τij (E)〈ψ−

j |U (Ej ). (13)

Substituting Eqs. (11)−(13) into the LS equation leads to the
constraint on the matrix τ (E) such that

R(E)τ (E) ≡ M(E), (14)

where

Rij (E) = 〈ψ−
i |U (Ei)|ψ+

j 〉 −
∑

n

Min(E)〈ψ−
n |U (En)

× g0(E) U (Ej )|ψ+
j 〉, (15)

with

Min(E) ≡ [U e(E)U−1]in, (16)

where the matrix elements of U are defined in Eq. (10). We
want to point out that, for energy-independent potentials, the
matrix M(E) simply is the unit matrix. For further evaluating
these matrix elements in momentum space, we express

U e
ij (E) ≡ 〈ψ−

i |U (E)|ψ+
j 〉, (17)

in terms of the potential and the half-shell t matrix so that

U e
ij (E) = 〈ki |U (E)|kj 〉 + 〈ψ−

i |U (Ei) g0(Ei) U (E)|kj 〉 + 〈ki |U (E) g0(Ej ) U (Ej )|ψ+
j 〉

+ 〈ψ−
i |U (Ei) g0(Ei) U (E)g0(Ej )U (Ej )|ψ+

j 〉,
= 〈ki |U (E)|kj 〉 + 〈ki |T (Ei) g0(Ei) U (E)|kj 〉 + 〈ki |U (E) g0(Ej ) T (Ej )|kj 〉

+ 〈ki |T (Ei) g0(Ei) U (E) g0(Ej ) T (Ej )|kj 〉. (18)

Inserting a complete set of momentum eigenstates leads to the explicit expression for U e
ij (E),

U e
ij (E) = U (ki,kj ,E) +

∫ ∞

0
dpp2 T (p,ki ; Ei) g0(Ei,p) U (p,kj ,E) +

∫ ∞

0
dpp2 U (ki,p,E) g0(Ej ,p) T (p,kj ; Ej )

+
∫ ∞

0
dpp2

∫ ∞

0
dp′p′2 T (p,ki ; Ei) g0(Ei,p) U (p,p′,E) g0(Ej ,p

′) T (p′,kj ; Ej ), (19)

where g0(E,p) = [E − p2/2μ + iε]−1. For the evaluation of
U e

ij (E) for all energies E within the relevant energy regime,
we need the form factors T (p′,kj ; Ej ) at the specified EST
support points as well as the matrix elements of the potential
U (p′,p,E) at all energies.

B. Energy-independent EST Scheme vs eEST
separable representation

For studying the properties of the energy-dependent sep-
arable representation eEST, we consider elastic scattering of
neutrons off 48Ca and 208Pb from 0 to 50 MeV. We employ the

Chapel Hill (CH89) phenomenological global optical potential
[21] in all calculations. First, we investigate the symmetry
properties of the off-shell partial wave t matrix t

j
l (k′,k; E)

in the eEST separable representation and contrast them with
the ones obtained via the energy-independent EST scheme.
To do so, we adopt the same energy support points for both
EST separable representations. Figure 1 shows the off-shell t

matrix t
j=13/2
l=6 (k′,k; E) as function of the off-shell momenta

k and k′ for the n + 48Ca system at Elab = 16 MeV. The
real and imaginary parts of the off-shell t matrix evaluated
with the CH89 optical potential are shown in Figs. 1(a) and
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FIG. 1. The l = 6,j = 13/2 partial wave off-shell t-matrix elements, t6(k′,k; E) in units fm2 for the n + 48Ca system computed at Elab =
16 MeV as function of the off-shell momenta k′ and k. This energy corresponds to an on-shell momentum of 0.86 fm−1. The real and imaginary
parts of the off-shell t matrix calculated from the CH89 [21] phenomenological optical potential are shown in panels (a) and (d). The real
and imaginary parts of the t matrix calculated from its energy-independent EST separable representation are shown in panels (b) and (e),
while panels (c) and (f) depict the energy-dependent eEST separable representations. The support points for the separable representation are at
Elab = 16, 29, and 47 MeV.

1(d). The energy-independent EST calculation is given in
Figs. 1(b) and 1(e), while the eEST separable representation
is depicted in in Figs. 1(c) and 1(f). We observe that the
structure of the off-shell separable t matrix appears to be the
same for both the energy-dependent and energy-independent
representations. The high-momentum components which are

visible in the CH89 off-shell t matrix are projected out
by both separable representations. This is a general feature
of the EST separable representation. As further example,
we consider neutron scattering off the much heavier 208Pb
nucleus as depicted in Fig. 2 for the l = 0 partial wave.
In both figures the separable off-shell t matrices appear to

FIG. 2. Same as Fig. 1 but for the l = 0, j = 1/2 partial wave of the n + 208Pb system at 21 MeV corresponding to an on-shell momentum
of 1.00 fm−1. The support points for the separable representation are at Elab = 5, 11, 15, 21, and 47 MeV.
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FIG. 3. The asymmetry �t
j=13/2
l=6 (k′,k; E) for the energy-

independent separable representation of the t matrix obtained from
the CH89 [21] phenomenological optical potential as function of the
off-shell momenta k′ and k for the n + 48Ca system. Panel (a) shows
the asymmetry at Elab = 16 MeV and panel (b) at 40 MeV. The
support points are Elab = 16, 29, and 47 MeV. The on-shell momenta
are 0.86 and 1.36 fm−1.

be symmetric around the k = k′ line. However, we know
from the formal considerations in the previous section that
the energy-independent EST scheme does not fully satisfy
reciprocity and therefore should yield an asymmetric off-shell
t matrix in k and k′. In order to carry out a more careful
analysis of the symmetry properties of the t matrix we define
an asymmetry

�t
j
l (k′,k; E) =

∣∣t jl (k′,k; E) − t
j
l (k,k′; E)

∣∣
1
2

∣∣t jl (k′,k; E) + t
j
l (k,k′; E)

∣∣ , (20)

representing the relative difference between the off-shell t
matrix and its transpose. For a completely symmetric off-shell
t matrix this asymmetry should be exactly zero. In Fig. 3 we
show the asymmetry �t

j=13/2
l=6 (k′,k; E) for n + 48Ca scattering

for the energy-independent EST separable representation at
Elab = 16 MeV [Fig. 3(a)] and 40 MeV [Fig. 3(b)]. The
asymmetry is either zero or very small close to the k = k′ axis
and at small momenta. However, away from this region it can
become quite large. For the eEST separable representation the
asymmetry is exactly zero everywhere as expected, and thus is
not shown. This shows that in order to exactly fulfill reciprocity
the eEST separable representation must be employed.

So far we only considered off-shell properties of the eEST
separable representation. The next question is whether there
is an on-shell difference between the energy-dependent and
energy-independent schemes. As a measure of the quality of
the eEST separable representation, we define the relative error
of the real part of the S matrix as

relative error =
∣∣∣∣∣
Re S

j
l (E)

orig − Re S
j
l (E)

sep

S
j
l (E)

orig

∣∣∣∣∣, (21)

where S
j
l (E)

orig
is the partial wave S matrix calculated from

the CH89 potential and S
j
l (E)

sep
is the one obtained from

the separable representation. The real part of the n + 48Ca S
matrix for l = 6 and j = 13/2 together with the corresponding
relative error is depicted in Figs. 4(a) and 4(b). The S matrix
obtained from the CH89 phenomenological optical potential
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FIG. 4. The S matrix elements S
j=13/2
l=6 (E) for elastic scattering

of neutrons from 48Ca in l = 6, j = 13/2 partial wave as function
of the laboratory energy. The top panel (a) shows the real part of
the S matrix while the bottom panel (b) gives the relative error of
the separable representations as defined in Eq. (20). The S matrix
calculated with the CH89 optical potential is represented by a (black)
dash-dotted line, the (red) solid line shows the energy-dependent EST
(eEST) separable representation of the S matrix, while the energy-
independent EST separable representation is indicated by a (green)
dashed line. The relative error is depicted by (red) circles for the
eEST separable representation and by (green) upward triangles for
the energy-independent EST construction. The EST support points
are at Elab = 16, 29, and 47 MeV.

is shown by the dash-dotted line while the energy-independent
and eEST separable representations are depicted by dashed and
solid lines. The relative error is indicated by upward triangles
for the EST separable representation and by circles for the
eEST scheme. There is good agreement between the CH89 S
matrix and both separable representations. However, the eEST
separable representation describes the S matrix slightly better
than its energy-independent counterpart since it incorporates
more of the energy dependence of the original potential. This is
visible for energies around Elab = 37 MeV, where the relative
error is dominated by the separable approximation. However,
the energy-independent EST representation can always be
improved by adding an extra support point, i.e., increasing
the rank. This means that the observations made in Ref. [16]
concerning on-shell properties of the energy-independent EST
representation apply to the eEST separable representation
as well. The main reason for adopting the eEST separable
representation is that it yields exact reciprocity.

III. APPLICATION TO PROTON-NUCLEUS
OPTICAL POTENTIALS

A. Formal considerations

The proton-nucleus potential consists of the point Coulomb
force, V c, together with a short-ranged nuclear as well as
a short-ranged Coulomb interaction representing the charge
distribution of the nucleus, which we refer to as Us(E). While
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the point Coulomb potential has a simple analytical form, an
optical potential is employed to model the short-range nuclear
potential. The extension of the energy-independent EST
separable representation to proton-nucleus optical potentials
was carried out in Ref. [17]. In that work it was shown that the
form factors of the separable representation are solutions of the
LS equation in the Coulomb basis and that they are obtained
using methods introduced in Refs. [22,23]. It was also demon-
strated that the extension of the energy-independent EST
separable representation scheme to proton-nucleus scattering
involves two steps. First, the nuclear wave functions |ψ (+)

l,i 〉
are replaced by Coulomb-distorted nuclear wave functions
|ψsc(+)

l,i 〉. Second, the free resolvent g0(E) is replaced by the
Coulomb Green’s function, gc(E) = (E − H0 − V c + iε)−1.
As demonstrated in Sec. II, in order to fulfill reciprocity, an
energy-dependent separable representation must be adopted.
This is accomplished by generalizing the eEST scheme to
proton-nucleus scattering analogous to the extension of the
energy-independent EST scheme presented in Ref. [17]. Thus
applying the two steps outlined above to the eEST scheme
yields the separable Coulomb-distorted nuclear t matrix

t scl (E) =
∑
i,j

Us
l (Ei)

∣∣ψsc(+)
l,i

〉
τ

c, l
ij (E)

〈
ψ

sc(−)
l,j

∣∣Us
l (Ej ). (22)

Here |ψsc(+)
l,i 〉 are solutions corresponding to Us

l (Ei) in
the Coulomb basis with outgoing boundary conditions, and
|ψsc(−)

l,i 〉 are solutions corresponding to (Us
l )∗(Ei) with incom-

ing boundary conditions. Upon suppressing the index l we
obtain a constraint similar to Eq. (14),

Rc(E)τ c(E) = Mc
ij (E), (23)

with the matrix elements of Rc(E) satisfying

Rc
ij (E) = 〈

ψ
sc(−)
i

∣∣Us(Ei)
∣∣ψsc(+)

j

〉 − ∑
i

Mc
in(E)

〈
ψsc(−)

n

∣∣

×Us(En)gc(E)Us(Ej )
∣∣ψsc(+)

j

〉
. (24)

The matrix Mc(E) is the Coulomb distorted counterpart of
M(E) of Eq. (16), and is defined as

Mc
in(E) = [U e,sc(E)(U sc)−1]in, (25)

with

U sc
ij ≡ 〈

ψ
sc(−)
i

∣∣Us(Ei)
∣∣ψsc(+)

j

〉
,

U e,sc
ij (E) ≡ 〈

ψ
sc(−)
ki

∣∣Us(E)
∣∣ψsc(+)

kj

〉
. (26)

If the potential is energy independent the matrix Mc(E)
becomes a unit matrix just like M(E).

For evaluating U e,sc
ij (E) one can proceed analogously to

Eq. (18) and finally arrive at an expression similar to Eq. (19),
namely

U e,sc
ij (E) = Usc(ki,kj ,E)

+
∫ ∞

0
dpp2 T sc(p,ki ; Ei)gc(Ei,p)Usc(p,kj ,E)

+
∫ ∞

0
dpp2 Usc(ki,p,E)gc(Ej ,p)T sc(p,kj ; Ej )

+
∫ ∞

0
dpp2

∫ ∞

0
dp′p′2 T sc(p,ki ; Ei)gc(Ei,p)

×Usc(p,p′,E)gc(Ej ,p
′)T sc(p′,kj ; Ej ). (27)

Since all matrix elements are evaluated in the Coulomb basis,
the Coulomb Green’s function has the same form as the free
Green’s function in the calculations. The matrix elements of
the short-ranged potential in the basis of Coulomb scattering
states Usc(ki,kj ,E) ≡ 〈φc(+)

ki
|Us |φc(+)

kj
〉 are calculated in the

same fashion as the ones in Eq. (9) of Ref. [17]. The Coulomb
distorted short-ranged half-shell t matrix T sc(p,ki,Ei) is then
evaluated using Eq. (6) of the same reference.

B. Energy-independent EST scheme vs eEST
separable representation

In this section the generalization of the eEST separable
representation is applied to elastic scattering of protons off
208Pb. The short-range interaction Us(E) is comprised of
the CH89 global optical potential [21] and a short-ranged
Coulomb potential, representing the charge distribution of the
208Pb nucleus as used for the calculations of Ref. [17]. As
in Sec. II B, we first concentrate on the off-shell t matrices
to verify that the energy-dependent eEST representation
for charged particles fulfills reciprocity exactly. Since the
Coulomb distortion of plane wave states is most pronounced
in low partial waves, the s-wave off-shell t matrix is examined.
Figures 5(a) and 5(d) depict the real and imaginary parts of
the off-shell t matrix for the p + 208Pb system calculated
with the CH89 potential. Comparing those panels to the
corresponding ones in Fig. 2 shows that the attractive part of
the n + 208Pb t matrix at low momenta k and k′ is absent in the
p + 208Pb t matrix, indicating that the Coulomb interaction
dominates here. Since we already showed in Figs. 1 and 2 that
there is no visual difference in the off-shell t matrices when
comparing the energy-independent and energy-dependent
separable representation, we only show the eEST separable
representation in Figs. 5(b) and 5(d). As already observed for
the neutron off-shell t matrices of Figs. 1 and 2, the separable
representation projects out the high-momentum components.

The asymmetry calculated according to Eq. (20) for the
energy-independent separable representation is illustrated in
Fig. 5(c) while Fig. 5(f) depicts the asymmetry for the eEST
separable representation. The latter shows an exact zero.
As was the case for the n + 208Pb and n + 48Ca off-shell
t matrices, the eEST representation generalized for proton
scattering is completely symmetric in the momenta k and k′,
leading to a zero asymmetry. This is not the case for the
energy-independent EST generalization of Ref. [17], which
is shown in Fig. 5(c). This demonstrates that also the eEST
representation of proton-nucleus optical potentials fulfills
reciprocity exactly.

Next we examine the on-shell properties for proton scatter-
ing from 208Pb, and concentrate on the l = 0, j = 1/2 partial
wave. To keep the relative error defined in Eq. (21) below
2% in the energy range from 0 to 50 MeV it is necessary to
employ a rank 5 representation of the CH89 optical potential
in the lower partial waves [17] even in the eEST scheme. In
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FIG. 5. The l = 0,j = 1/2 partial wave off-shell t-matrix elements, t0(k′,k; E) in units fm2 for the p + 208Pb system computed at Elab =
21 MeV as function of the off-shell momenta k′ and k. This energy corresponds to an on-shell momentum of 1.00 fm−1. The real and imaginary
parts of the off-shell t matrix calculated from the CH89 phenomenological optical potential are shown in panels (a) and (d). The real and
imaginary parts of its eEST separable representation are depicted in panels (b) and (e). Panels (c) and (f) depict the asymmetry for the
energy-independent EST and eEST separable representations. The calculated numbers in panel (f) are numerically zero, thus below the plot
threshold and shown as white surface. The support points for the separable representation are at Elab = 5, 11, 21, 36, and 47 MeV.

this case the error is dominated by numerical interpolation
when calculating the separable representation. To compare
the eEST scheme to its energy-independent counterpart, we
artificially lower the accuracy of the separable expansion to
rank 4. This leads to a relative error that is dominated by
the quality of the separable representation over a the energy
range under consideration. In Fig. 6(a) the S matrix elements
obtained from the CH89 potential are depicted together with
their EST and eEST rank 4 separable representations in the
energy range from 0 to 50 MeV. The relative errors with
respect to the CH89 result give a more detailed insight and
are shown for the two different schemes in Fig. 6(b) as filled
circles for eEST and upward triangles for EST scheme. As
already observed in Sec. II B, the eEST scheme yields a better
representation of the S matrix between 20 and 35 MeV than
the EST representation. By increasing the rank to a rank 5
representation, both representations can be improved for this
energy interval.

C. Approximation to the energy dependence

The matrix elements U e,sc
ij (E) are evaluated according to

Eq. (27). Additional numerical work is required to compute
the Coulomb distorted short-ranged potential Usc(k′,k,E)
at each energy E. This makes the implementation of the
eEST separable representation computationally more involved
compared to the energy-independent scheme. In cases where
calculating the potential Us(E) in the plane-wave basis is
already time-consuming, employing the eEST scheme may
become prohibitively costly. Therefore, it is worthwhile

exploring if the eEST can be modified in such a way that
the potential Us(E) is calculated only at a specified fixed set
of energies.

In general the energy dependence of optical potentials is
smooth and thus one may think of interpolating U e,sc(E) on
the energy variable. We tested such an interpolation scheme
starting by adopting the energies of the support points at
which the potential Us(E) is already calculated as grid points
for an interpolation with cubic Hermite splines [24]. The S
matrix elements evaluated using the interpolated eEST scheme
are shown by a dash-dot-dotted line in Fig. 6(a), while the
relative error is indicated by crosses in Fig. 6(b). As the figure
illustrates, using an interpolation to approximate the energy
dependence of the CH89 potential yields the same relative
error as the exact eEST calculation. This means that the EST
support points can already provide a good interpolation grid.
However, in cases with a more intricate energy dependence or
if the distance between support points is much larger, it may
turn out to be necessary to add a few more energy points.

The use of an energy interpolation greatly reduces the
numerical effort needed to evaluate U e,sc(E) on the energy
grid from 0 to 50 MeV. The gain in computation time decreases
with the number of interpolation points but increases with the
density of the energy grid. In the calculations presented here,
there are four interpolation points and the energy grid consists
of 100 points. Employing an interpolation to approximate the
matrix elements U e,sc

ij (E) reduces the computational effort
by a factor of 23. As pointed out in Sec. III B, a more
accurate separable representation of the s-wave S matrix for
the p + 208Pb system requires five EST support points. For
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FIG. 6. The S matrix elements S
j=1/2
l=0 (E) for elastic scattering of

protons from 208Pb in the l = 0, j = 1/2 partial wave as function
of the laboratory energy. The top panel (a) shows the real part of
the S matrix while the bottom panel (b) shows the relative error of
the separable representations as defined in Eq. (21). The S matrix
calculated from the CH89 phenomenological optical potential [21] is
represented by a (black) dash-dotted line. The (red) solid line shows
the energy-dependent EST (eEST-c) separable representation of the S

matrix. The energy-independent EST separable representation (EST-
c) is indicated by a (green) dashed line. The relative error is depicted
by (red) circles for the eEST separable representation and by (green)
upper triangles for the energy-independent EST construction. The
EST support points for this case are Elab = 5, 11, 36, and 47 MeV.
The interpolated eEST separable representation (eEST(intp)-c) is
shown by a (blue) dash-dot-dotted line. The corresponding relative
error is shown by (blue) crosses. Cubic splines were employed for the
interpolation of Mc(E) on the grid Elab = 5,11, 36, and 47 MeV.

this case there are five interpolation points and the computation
time is decreased by a factor of 18.

IV. SUMMARY AND CONCLUSIONS

In this work we introduce an explicit energy dependence
into our previously developed separable representation of
two-body transition matrix elements as well as potentials for
nucleon-nucleus [16] and proton-nucleus [17] phenomenolog-
ical global optical potentials. Those potentials are in general
complex and energy dependent. While on-shell properties
like scattering amplitudes and cross sections can be well
reproduced by an energy-independent separable representa-
tion, for which we generalized the Ernst-Shakin-Thaler [15]
(EST) scheme to complex potentials [16], the so-obtained
fully of-shell separable transition matrix elements fulfill the
reciprocity theorem only approximately, specifically when
going far off the energy shell. The reason for this behavior
lies in the energy dependence of the optical potential for
which we construct the separable representation. Specifically,
the conditions for the coupling constants posed by the EST
construction, Eqs. (2), cannot be fulfilled simultaneously when
the potential is energy dependent. This insight had already
been pointed out in Ref. [18] and the EST scheme was

corrected for Hermitian energy-dependent potentials. Picking
up these suggestions and applying them to non-Hermitian,
energy-dependent optical potentials leads to an explicitly
energy-dependent separable expansion, eEST, which fulfills
reciprocity exactly.

As specific examples we consider neutron scattering from
48Ca and 208Pb described by the Chapel Hill global phe-
nomenological optical potential [21], and demonstrate for
two different partial wave channels that the fully off-shell
transition matrix is exactly symmetric under the exchange of
the off-shell momenta k′ and k, and thus fulfills reciprocity.
For the on-shell condition, we show that an energy-dependent
eEST representation of a partial wave S matrix is slightly
superior to its energy-independent EST counterpart. However,
one needs to note that any separable representation can
always be improved on shell by increasing its rank, while
the symmetry property of the off-shell transition amplitude is
not affected by the rank.

Since in a (d,p) reaction calculation one needs the effective
interactions in the neutron-nucleus as well as the proton-
nucleus subsystem, we extended the energy-independent EST
representation from Ref. [17] to an energy-dependent one.
The separable representation of the proton-nucleus transition
elements is carried out in the basis of Coulomb scattering
states. The calculation of required potential matrix elements
follows the approach suggested in Refs. [22,23]. As a test case
we presented the separable, energy-dependent representation
of an l = 0 partial wave off-shell transition amplitude for
proton scattering off 208Pb and demonstrated that it is exactly
symmetric under the exchange of the off-shell momenta k′ and
k, thus fulfilling reciprocity. Similar to the neutron case we also
show that the energy-dependent separable representation of the
corresponding S matrix elements are slightly superior to the
energy-independent representation for the same rank.

The numerical evaluation of an energy-dependent separable
representation is more involved compared to its energy-
independent counterpart, since the coupling matrices are now
energy dependent and thus need to be evaluated at each
energy, not only at the EST support points. Though this is
not a particular issue for the phenomenological global optical
potentials, it may become computationally expensive for
microscopic optical potentials. Therefore we investigated if it
is possible to interpolate on the energy variable, which usually
exhibits a relatively smooth behavior for optical potentials. We
found that, when using the EST support points as interpolation
points for an interpolation on the energy with cubic splines, we
obtained a separable, energy-dependent representation of iden-
tical quality, while considerably reducing the computational
effort. Even for cases exhibiting a strong energy dependence of
the potential, it will be possible to use an energy interpolation
by making the energy grid finer.

Summarizing, by constructing an energy-dependent sepa-
rable representation of neutron- and proton-optical potentials,
one can obtain off-shell transition matrix elements which
fulfill the reciprocity theorem exactly. Since off-shell matrix
elements are not observables, only reaction calculations can
show how severe any consequences, e.g., for three-body
observables, small violations of the reciprocity theorem turn
out to be.
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