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Extending our earlier work, a new family of three Hartree-Fock-Bogoliubov (HFB) mass models, labeled
HFB-30, HFB-31, and HFB-32, is presented, along with their underlying interactions, BSk30, BSk31, and
BSk32, respectively. The principle new feature is a purely phenomenological pairing term that depends on the
density gradient. This enables us to have a bulk pairing term that is fitted to realistic nuclear-matter calculations in
which for the first time the self-energy corrections are included, while the behavior of the nucleon effective masses
in asymmetric homogeneous nuclear matter is significantly improved. Furthermore, in the particle-hole channel
all the highly realistic constraints of our earlier work are retained. In particular, the unconventional Skyrme forces
containing t4 and t5 terms are still constrained to fit realistic equations of state of neutron matter stiff enough
to support the massive neutron stars PSR J1614–2230 and PSR J0348+0432. All unphysical long-wavelength
spin and spin-isospin instabilities of nuclear matter, including the unphysical transition to a polarized state in
neutron-star matter, are eliminated. Our three interactions are characterized by values of the symmetry coefficient
J of 30, 31, and 32 MeV, respectively. The best fit to the database of 2353 nuclear masses is found for model
HFB-31 (J = 31 MeV) with a model error of 0.561 MeV. This model also fits the charge-radius data with an
root-mean-square error of 0.027 fm.

DOI: 10.1103/PhysRevC.93.034337

I. INTRODUCTION

We have for some years been constructing semimicroscopic
mass models based on the Hartree-Fock-Bogoliubov (HFB)
method with Skyrme-type forces in the particle-hole channel
and contact pairing forces in the particle-particle channel,
together with phenomenological Wigner terms and correction
terms for the spurious collective energy. While our model pa-
rameters are fitted to the mass data (and to some other measured
quantities), our interest throughout this project has always
been with the extrapolation out to the highly neutron-rich
environments encountered in various astrophysical situations.
Thus we were concerned in the first instance with predicting
the masses of the experimentally inaccessible nuclei that are
involved in the r-process of nucleosynthesis [1] and the outer
crust of neutron stars (see, e.g., Refs. [2–5]).

An advantage of microscopic mass models over those
based on the liquid-drop model is the fact that the underlying
interactions can be used to calculate the equation of state (EOS)
of both the inhomogeneous inner crust of neutron stars and the
homogeneous core, effectively extrapolating the mass data to
beyond the neutron drip line, and thereby making possible the
sort of unified treatment of all regions of neutron stars that
was presented in Ref. [6]. Given the applicability of our mass
models to the elucidation of the r-process, both in supernova
explosions and neutron-star mergers, it might be said that our
models are relevant to a wide range of phenomena associated
with the birth, life, and death of neutron stars.

Some of these phenomena are generally believed to be
related to the existence of superfluids in the interior of neutron
stars (for a recent review, see, e.g., Ref. [7]). In particular,
the inner crust of a neutron star is thus expected to be
permeated by a neutron superfluid. Although superfluidity in

pure neutron matter (NeuM) has been extensively studied,
the properties of the neutron superfluid in the neutron-star
crust still remain very uncertain due to the presence of
neutron-proton clusters. Because of strongly attractive bare
nucleon-nucleon interactions in the spin-singlet channel, both
bound and unbound neutrons contribute to pairing and must
therefore be treated consistently (see, e.g., Refs. [8–11]). For
this reason, effective pairing forces that have been fitted only
to pairing gaps in finite nuclei or only to pairing gaps in
homogeneous nuclear matter are unlikely to yield reliable
predictions in neutron-star crusts.

In this paper we are concerned with an improved treatment
of the pairing channel of our models taking self-energy effects
into account, but first we recall some general features of our
earlier models. Up to and including model HFB-26 [12] our
Skyrme force had the generalized 16-parameter form
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where rrrij = rrri − rrrj , rrr = (rrri + rrrj )/2, pppij = −i�(∇∇∇ i − ∇∇∇j )/2
(this is the relative momentum), Pσ is the two-body spin-
exchange operator, and n(rrr) = nn(rrr) + np(rrr) is the total local
density, nn(rrr) and np(rrr) being the neutron and proton densities,
respectively. The t4 and t5 terms are unconventional, being
density-dependent generalizations of the t1 and t2 terms,
respectively; they were introduced [13] in order to facilitate
the fitting of a large amount of data, subject to several rather
severe constraints. The full formalism for this generalization
to the Skyrme force is presented in the Appendix of Ref. [13],
but note that in all later papers we drop all the spin-current
terms in J 2 and J 2

q from the Hamiltonian density, where
JqJqJq represents the nucleon spin-current densities (q = n,p for
neutron, proton respectively), and JJJ = JnJnJn + JpJpJp, as discussed
in Refs. [14,15].

The parameters of this force, along with those associated
with the pairing channel, the Wigner terms and the collective-
energy correction, were fitted to all the 2353 measured masses
of nuclei having N and Z � 8 given in the latest Atomic Mass
Evaluation, AME 2012 [16] (or earlier versions). However,
since all the astrophysical applications that we planned involve
a long-range extrapolation from experimentally accessible
environments to highly neutron-rich environments it is es-
sential that our models incorporate as much well established
theoretical knowledge of neutron-rich systems as possible.
The most significant such constraint that we impose is to
require that our mass fits be consistent, up to the densities
prevailing in neutron-star cores, with the zero-temperature
EOS of homogeneous pure NeuM, as calculated by many-body
theory from realistic two- and three-nucleon forces. Several
such EOSs have been published, but in Ref. [12] we settled
on the one we refer to as LS2, corresponding to V18 in
Ref. [17]. Almost as acceptable is the slightly softer one we
label APR [18], but it led to slightly inferior mass fits. Although
quantum Monte Carlo calculations [19] allow for EOSs that
are still softer up to a density of about 0.5 fm−3, such EOSs
cannot support the heaviest observed neutron stars [20]. As
discussed in Ref. [21], these astrophysical observations do
not necessarily rule out a soft NeuM EOS since the core of
a neutron star may consist of non-nucleonic matter. On the
other hand, a NeuM EOS referred to as LS3 in Ref. [12],
or to BOB in Ref. [17], while stiffer than LS2 at high
densities, has to be rejected as too soft at low densities. This
point was not made clear in Ref. [12], and we return to it
below.

Requiring a high degree of stiffness for the high-density
NeuM EOS comes at a considerable cost to the precision of
the atomic mass fit, as shown in Ref. [22]. There we found
that removing this constraint reduced the root-mean-square
(rms) error from 0.549 MeV in the case of model HFB-24
to 0.512 MeV for a model having only a conventional 10-
parameter Skyrme force (HFB-27∗). Had we kept the same
number of adjustable parameters the improvement in the fit on
removing the NeuM constraint would have been still greater.
Nevertheless, we regard the maintenance of this constraint as
essential for the astrophysical applications that we have in
mind. The ease with which such a constraint can be built into
microscopic mass models represents another advantage over
mass models based on the liquid-drop model.

In the mass fits of Ref. [12] we reduced the number of
free parameters by imposing different fixed values of the
nuclear-matter symmetry coefficient J . Of the five models
thereby generated, characterized by various combinations of
the two NeuM EOSs, LS2, and APR, and different values of J ,
the best overall fit was obtained for model HFB-24, for which
J = 30 MeV. Complete mass tables, running from one drip
line to the other, were computed. The HFB-24 mass tables,
along with the corresponding interactions (labeled BSk24,
in accordance with our usual procedure), were used in the
neutron-star calculations of Refs. [6,23,24], and also in a
r-process calculation [25].

Our most recent mass model [26], HFB-29, is very similar
to HFB-24, being based on the same 16-parameter form of
Skyrme force, but an extra spin-orbit degree of freedom is
introduced at the level of the energy-density functional, which
becomes

Eso = 1

2
W0

[
JJJ · ∇∇∇n + (1 + yw)

∑
q

JqJqJq · ∇∇∇nq

]
(2)

Setting yw = 0 leads to the functional corresponding to the
spin-orbit term in Eq. (1); other values of this parameter
have no Skyrme equivalent, although yw = −1 approximates
closely the spin-orbit field given by relativistic mean-field
theory. Fitting to the same mass data as for HFB-24, Ref. [26]
led to an optimum value of 2.0 for yw, with the rms error of
the mass fit falling from 0.549 Mev for HFB-24 to 0.529 MeV.

II. THE PAIRING CHANNEL

In all our recent models published so far, including HFB-24
and HFB-29, we have attempted to impose on our pairing
force realistic constraints comparable to those placed on the
Skyrme force, our approach being essentially as described
in Refs. [27–29]. That is, our pairing force, which acts only
between like nucleons has the form

vpair,q(ririri ,rjrjrj ) = f ±
q vπ q[nn(rrr),np(rrr)]δ(rrrij ), (3)

where vπ q[nn,np] is a functional of both the neutron and
proton densities. The force is calculated analytically at each
point in the nucleus (or, more generally, at each point in
the inhomogeneous nuclear system) in question in such
a way as to reproduce the 1

S0 pairing gaps of infinite
nuclear matter (INM) of the appropriate density and charge
asymmetry, as determined by many-body calculations with
realistic two- and three-nucleon forces. This nuclear-matter
constraint determines the strength of the pairing force almost
completely, but we introduce some fine-tuning of the strengths
in the form of the four global renormalization parameters f ±

q ,
which allow the overall strength to be slightly different for
neutrons than for protons, and which also permit each of these
strengths to depend on whether there is an even (f +

q ) or odd
(f −

q ) number of nucleons of the charge type in question. In
this way we take into account Coulomb effects as well as the
slight violation of time-reversibility implicit in our use of the
equal-filling approximation for odd nuclei.

The realistic pairing gaps �q(nn,np) to which we fit our
pairing force are those given by the Brueckner calculations of
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Cao et al. [30] in pure NeuM and in charge symmetric nuclear
matter. The pairing gaps for arbitrary charge asymmetry
were interpolated as in Ref. [27]. Solving the nuclear-matter
BCS equations (to which the HFB equations reduce in a
homogeneous system) then gives for the strength of our pairing
force at the given densities (nn, np) [28]

vπ q[nn,np] = − 8π2

Iq(nn,np)

(
�

2

2M∗
q (nn,np)

)3/2

(4)

with

Iq =
∫ μq+ε


0
dξ

√
ξ√

(ξ − μq)2 + �2
q

, (5)

where M∗
q (nn,np) is the nucleon effective mass and ε
 is the

same cutoff as that used with vπ q[nn,np] in the finite-nucleus
HFB calculations (note that the cut-off is taken above the
chemical potential μq only, all states below being included).
The chemical potential μq is approximated by

μq = �
2k2

Fq

2M∗
q

, (6)

where kFq = (3π2nq)1/3 is the Fermi wave number (see
Section 3 of Ref. [28] for a discussion of this approximation).
A further approximation that reduces significantly the compu-
tational load consists in using the analytic expression [31]
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where


(x) = log(16x) + 2
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1 + x − 2 log(1 + √
1 + x) − 4 .

(8)

Actually, Cao et al. [30] calculated gaps both with and
without self-energy corrections. Now the excellent mass fits
that we found in Ref. [27] and all our subsequent papers were
obtained with the latter choice, the inclusion of self-energy
corrections leading to gaps that are much smaller, too small to
obtain a good mass fit (see Fig. 1). For internal consistency,
we also set M∗

q (nn,np) = M in Eq. (4) in all our latest
models. But gaps calculated with self-energy corrections are
more realistic and thus more appropriate for the study of
superfluidity in neutron stars. Thus in the present paper, with
a view to extending the scope of our models to include the
latter phenomenon, we modify our pairing functional (4) by
fitting it to the gaps of Ref. [30] that were calculated with
the inclusion of self-energy. Moreover, the effective mass
M∗

q (nn,np) appearing in Eq. (4) is now taken as the one
obtained from the Skyrme force. Then, in the attempt to
simultaneously maintain the excellent mass fits that we have
been obtaining, we add to the pairing force given by Eqs. (3)
and (4) a phenomenological surface term, i.e., one dependent
on the local density gradients. Thus in place of Eq. (3) we
write

vpair,q(ririri ,rjrjrj ) = f ±
q

[
vπ q[nn(rrr),np(rrr)] + κq |∇ n|2

]
δ(rrrij ) ,(9)

giving us thereby two extra parameters κp and κn.
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FIG. 1. 1S0 pairing gaps in NeuM (a) and symmetric nuclear
matter (b), as obtained by Cao et al. [30] with (filled symbols) and
without (empty symbols) self-energy effects. In all cases, medium
polarization effects are included. The curves represent our fits to their
calculations.

III. CONSTRUCTION OF THE NEW MASS MODELS

Aside from the new form of pairing, the construction of the
new models proceeds in much the same way as in the past: see
in particular Sec. II of Ref. [12]. In particular both the form
of the Wigner terms and that of the correction for the spurious
collective energy are as in that paper. Thus the Wigner term
to be added to the HFB energy calculated for the Skyrme and
pairing forces is still written as

EW = VW exp

{
−λ

(
N − Z

A

)2}

+V ′
W |N − Z| exp

{
−

(
A

A0

)2}
, (10)

while our estimate for the spurious collective energy again
takes the form

Ecoll = Ecrank
rot

[
b tanh(c|β2|) + d|β2| exp

{−l
(|β2| − β0

2

)2}]
,

(11)

in which Ecrank
rot denotes the cranking-model value of the

rotational correction and β2 the quadrupole deformation, while
all other parameters are determined as before. While the first
term represents the rotational correction (see Ref. [12]), the
second term takes account of the deformation dependence of
the vibrational correction [since Ecoll as given by Eq. (11)
vanishes for spherical nuclei we must suppose that the
vibrational correction for such nuclei is absorbed into the fitted
force parameters].

Also as in Ref. [12], for nuclei with an odd number of
nucleons we adopt the equal-filling approximation. Likewise,
we drop the Coulomb exchange term for protons, a device that
leads to a significant improvement in the mass fits, especially
mirror-nucleus differences.
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TABLE I. Parameters of the new interactions of this paper; for convenience we also show interaction BSk29 [26]. The first 17 lines show
the Skyrme parameters, and the remaining lines the pairing parameters. Note that it is more convenient to show the x2 parameter in the form
t2x2, the only way in which x2 enters into the formalism.

BSk30 BSk31 BSk32 BSk29

t0 [MeV fm3] −2299.92 −2302.01 −2305.89 −3970.40
t1 [MeV fm5] 760.62 762.99 768.802 394.880
t2 [MeV fm5] 0 0 0 0
t3 [MeV fm3+3α] 13782.7 13797.83 13828.2 22649.3
t4 [MeV fm5+3β ] −500.000 −500.000 −500.000 −100.000
t5 [MeV fm5+3γ ] −40.000 −40.000 −40.000 −150.000
x0 0.821058 0.676655 0.528518 0.964850
x1 2.675188 2.658109 2.608577 −0.0047741
t2x2 [MeV fm5] −420.51 −422.29 −426.49 −1388.95
x3 1.06250 0.83982 0.61796 1.14453
x4 5.00 5.00 5.00 2.00
x5 −12.00 −12.00 −12.00 −11.00
α 1/5 1/5 1/5 1/12
β 1/12 1/12 1/12 1/2
γ 1/4 1/4 1/4 1/12
W0 [MeV fm5] 62.466 62.174 63.700 64.600
yw 2 2 2 2
f +

n 1.00 1.00 1.00 1.00
f −

n 1.07 1.06 1.06 1.05
f +

p 1.00 1.00 1.00 1.01
f −

p 1.06 1.04 1.06 1.07
κn [MeV fm8] −37425.8 −36630.4 −40184.7 0.0
κp [MeV fm8] −41876.7 −45207.2 −44933.1 0.0
ε
 [MeV] 6.5 6.5 6.5 16.0

In addition to the NeuM constraints already discussed in
Secs. I and II, our fits to the 2353 experimental masses [16] are
constrained to three discrete values of the symmetry coefficient
J , namely 30, 31, and 32 MeV, generating thereby three
different interactions, labeled BSk30, BSk31, and BSk32,
respectively, along with the corresponding parameters of the
Wigner terms and collective corrections; it will be seen that this
range of values of J is sufficient to pick out an optimal value.
Each of these three fits was also subjected to the following
supplementary constraints:

(i) An optimal fit to the charge-radii data [32].
(ii) A value of 0.84M for the isoscalar effective mass M∗

s

in charge-symmetric infinite nuclear matter (INM) at
the appropriate equilibrium density n0. This value of
M∗

s is the value indicated by the INM calculations of
Ref. [30] used here to constrain the bulk component of
the pairing, i.e., the first term of Eq. (9); it is slightly
larger than the value of 0.8 used for our previous
interactions.

(iii) The density dependence of the neutron and proton
effective masses at different asymmetries to conform
to the realistic extended Brueckner-Hartree-Fock
(EBHF) calculations of Refs. [30,33,34].

(iv) An incompressibility Kv of charge-symmetric INM
falling in the experimental range 240 ± 10 MeV [35].

(v) The stability of NeuM and of β-equilibrated neutron-
star matter (N*M), i.e., the homogeneous nucleon-
lepton mixture of which neutron-star cores are

comprised, against an unphysical long-wavelength
polarization at any density relevant to neutron-star
cores [13,15].

(vi) An EOS of charge-symmetric INM that is consistent
with measurements in heavy-ion collisions of nuclear-
matter flow over the density range 1.5–4.5n0 [36,37].

(vii) A qualitatively acceptable distribution of potential
energy among the four different spin-isospin channels
in INM.

The resulting sets of interaction parameters (Skyrme and
pairing), BSk30, BSk31, and BSk32, are given in Table I,
the Wigner parameters in Table II, and those of the collective
correction in Table III. For each interaction complete mass
tables, labeled HFB-30, HFB-31, and HFB-32, respectively,
have been constructed, running from one drip line to the other.

The quality of the mass fits, as measured by the deviations
between the measured and calculated masses, is shown in

TABLE II. The Wigner parameters of the new models of this
paper; for convenience we also show model BSk29 [26].

HFB-30 HFB-31 HFB-32 HFB-29

VW [MeV] −1.90 −2.00 −2.20 −1.70
λ 300 450 300 440
V ′

W [MeV] 0.70 0.70 0.60 0.94
A0 30 32 35 26
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TABLE III. Parameters of Eq.(11) for the collective correction.

HFB-30 HFB-31 HFB-32 HFB-29

b (MeV) 0.74 0.73 0.73 0.80
c 10 10 10 10
d (MeV) 3.3 3.3 3.3 3.9
l 13 13 14 16
β0

2 0.1 0.1 0.1 0.1

Table IV. The first line gives the model error σmod, as defined by
Eqs. (42) and (43) of Ref. [38], for the complete data set of 2353
nuclei. The usual rms and mean (experimental-calculated)
deviations are shown in the next two lines; the difference
between lines 1 and 2 lies in the fact that σmod is defined to
remove at least partially the experimental errors that contribute
to the rms error, thereby giving a better estimate of the intrinsic
error of the model. In any case, both the model and rms
errors are minimal for model HFB-31, although the differences
between HFB-30 and HFB-31 are arguably insignificant. Lines
4 and 5 give the rms and mean deviations for a subset consisting
of the most neutron-rich measured nuclei, here taken as the 257
nuclei with neutron-separation energies Sn � 5 MeV. In this
region of the nuclear chart, one of particular interest from
the standpoint of our intended applications, the superiority of
model HFB-31 is much more striking. The next two pairs of
lines show the rms and mean deviations for the Sn and the
β-decay energies Qβ of all measured nuclei; these differential

TABLE IV. The first line gives the model error [38] on all the 2353
measured masses [16]. The following four pairs of lines give the rms
(σ ) and mean (ε̄) deviations between experiment and predictions for
the three models of this paper as well as for the HFB-29 model. The
first pair of lines refers to all the 2353 measured masses M that were
fitted [16], the second pair to the masses Mnr of the subset of 257
neutron-rich nuclei with Sn � 5.0 MeV, the third pair to the neutron
separation energies Sn (2199 measured values), the fourth pair to
β-decay energies Qβ (2065 measured values), the fifth pair to charge
radii (884 measured values [32]), and the fifth pair to the model error
on the 26 experimental neutron skin thicknesses from Ref. [47] or the
10 thicknesses with experimental error smaller than 0.04 fm. The last
line gives the predicted 208Pb charge radius.

HFB-30 HFB-31 HFB-32 HFB-29

σmod(M) [MeV] 0.564 0.561 0.576 0.521
σ (M) [MeV] 0.573 0.571 0.586 0.529
ε̄(M) [MeV] 0.003 −0.004 −0.007 −0.0252
σ (Mnr ) [MeV] 0.683 0.659 0.700 0.671
ε̄(Mnr ) [MeV] 0.038 −0.015 0.137 0.000
σ (Sn) [MeV] 0.474 0.464 0.489 0.438
ε̄(Sn) [MeV] −0.008 0.000 −0.007 −0.008
σ (Qβ ) [MeV] 0.589 0.578 0.601 0.540
ε̄(Qβ ) [MeV] 0.009 0.006 −0.004 0.006
σ (Rc) [fm] 0.026 0.027 0.027 0.026
ε̄(Rc) [fm] 0.001 0.002 0.000 0.001
σmod(26 θ )[fm] 0.009 0.005 0.012 0.013
σmod(10 θ )[fm] 0.012 0.005 0.016 0.016
θ ( 208Pb)[fm] 0.133 0.151 0.170 0.134
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FIG. 2. Difference between measured [16] and HFB-31 masses
as a function of the neutron number N .

quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the outer crust
of neutron stars, and are also found to be better described by
the HFB-31 model than the other two new ones. The last five
lines in Table IV show that all models give essentially identical
high-quality fits to the charge-radius data, but that neutron-skin
thicknesses differ significantly and favor the HFB-31 model,
despite the large uncertainties still affecting such experiments.

We illustrate in Fig. 2 the quality of the HFB-31 fit by
plotting against N the difference Mexp − Mcalc for all the
2353 fitted nuclei. Qualitatively similar figures are obtained
for HFB-30 and HFB-32.

Although the global rms deviation for the HFB-31 mass
model is not quite as good as for each of the models from HFB-
23 to HFB-29 [12,22,26], it is more realistic than any of these
models in that it is the only one whose pairing takes account
of self-energy and has a density-gradient term. Moreover, the
measured neutron-rich nuclei are better fitted by HFB-31 than
by any other of our models except HFB-27∗, whose under-
lying pairing interaction is purely phenomenological, and the
resulting EOS of N*M is too soft to support the two massive
pulsars PSR J1614–2230 and PSR J0348+0432. Therefore,
this model is less appropriate for astrophysical applications.

We see from Table I that the strength parameter κq of our
density-gradient pairing term is always negative, i.e., it is
attractive. The presence of such a term can be understood
physically as originating in the two nucleons in question
tending to form a Cooper pairs through coupling with surface
vibrations, just as Cooper pairs in a metallic superconductor are
formed through coupling with lattice vibrations. Nevertheless,
we stress that the form we have adopted for the gradient term
in Eq. (9) is purely phenomenological, having been chosen for
simplicity, there being just one parameter for neutron pairing,
and one for proton pairing; also only the gradient of the total
density is involved. Such a pairing force should be appropriate
not only for the limiting case of finite nuclei and homogeneous
nuclear matter, but also for the intermediate case of the inho-
mogeneous nuclear matter of the inner crust of neutron stars.

Our attractive density-gradient term is to be contrasted with
the work of Ref. [39], which invoked a repulsive density-
gradient term to account for various kinks in isotopic chains
of measured charge radii. Not surprisingly, our models are
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TABLE V. Parameters of infinite nuclear matter for the models
of this paper.

BSk30 BSk31 BSk32 BSk29

av [MeV] −16.089 −16.110 −16.126 −16.049
n0 [fm−3] 0.1586 0.1586 0.1584 0.1578
J [MeV] 30.0 31.0 32.0 30.0
L [MeV] 41.5 53.1 65.5 45.2
Ksym[MeV] −47.2 −15.8 19.3 −38.5
Kv [MeV] 243.8 244.0 244.1 245.5
K ′ [MeV] 302.4 303.0 303.6 274.5
M∗

s /M 0.84 0.84 0.84 0.80
M∗

v /M 0.73 0.73 0.74 0.73
G0 0.42 0.37 0.33 0.62
G′

0 0.97 0.97 0.97 0.95
nc(N*M) [fm−3] 0.99 1.01 1.03 0.99
nc(NeuM) [fm−3] 0.67 0.66 0.65 0.69

unable to reproduce the observed kinks, but if we had taken a
positive value of κq in order to do so the mass fits would have
deteriorated.

It should also be noted that the fit is found to be optimum
for a pairing cut-off energy ε
 = 6.5 MeV above the Fermi
energy, a value significantly lower than the usual 16 MeV
obtained in all our previous forces. Such a low value of the
cut-off also ensures a good fit of the pairing strength to the
experimental 1S0 nucleon-nucleon phase shifts in the dilute
limit nq → 0 [40].

IV. PROPERTIES OF THE NEW MODELS

The most important parameters of INM are given in
Table V; they are defined as in Ref. [14]. except that we now
denote by nc(N*M) and nc(NeuM) the average baryon number
densities above which causality is violated in N*M and in pure
NeuM, respectively. Let us recall that causality is violated if
the speed of sound exceeds the speed of light.

It should be noted that the energy per nucleon av of
symmetric INM at the equilibrium density, n0, is large in
comparison to previously obtained values. This leads to a
rather stiff mass parabola that could affect the extrapolation
far away from stability, as discussed in Sect. IV H.

A. NeuM

As discussed in Sec. I, our new Skyrme forces were
adjusted to reproduce realistic NeuM EOSs. As shown in
Fig. 3, the resulting NeuM EOSs at subsaturation densities
are compatible with the quantum Monte Carlo calculations
of Ref. [19], as well as with the predictions of Ref. [41]
based on chiral effective field theory. Moreover, increasing
the symmetry coefficient significantly improves the EOS. This
figure also shows that the EOS that we refer to as LS3 appears
to be too soft in this density regime. At higher densities, Fig. 4
shows that the NeuM EOS obtained with our new forces are
consistent with realistic calculations.

As can be seen from Table V, causality in pure NeuM
is violated at densities above ∼0.65–0.67 fm−3 due to the

FIG. 3. Low-density zero-temperature EOS in NeuM for models
BSk30 (solid line), BSk31 (dashed line), and BSk32 (dotted line).
LS2 and LS3 correspond to the realistic EOSs referred to as V18
and BOB in Ref. [17], respectively. The shaded areas represent the
constraints of Ref. [19] (dark) and of Ref. [41] (light).

neglect of relativistic effects at those densities in the underlying
realistic EOSs of NeuM to which we have fitted our forces.
However, the EOS of N*M remains causal even in the most
massive stars, as we discuss in Sec. IV E.

B. Symmetry energy

The parameters J and L shown in Table V for each of the
models of this paper relate to the symmetry energy of INM: the
former is the value of this energy at the saturation density n0,
while the latter is defined by the density gradient of this energy
at the same density (see Ref. [14]). While the mass models of
this paper and of our Ref. [12] do not arrive at unique values
of J and L, they do show the usual correlation between these
two parameters, L increasing monotonically with J .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n [fm-3]
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100

200

300
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FIG. 4. Same as Fig. 3 for the high densities. The shaded area
represents the constraints obtained in Ref. [19].
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FIG. 5. Experimental constraints on the symmetry energy pa-
rameters (see text for details), taken from [43]. The stars indicate the
values of J and L for BSk30, BSk31, and BSk32. The area within
the dashed curve corresponds to the (L,J ) values obtained in our
previous fits.

Besides mass measurements several other types of ex-
periment impose constraints on the values of J and L;
we summarize the analyses of Refs. [42,43] in Fig. 5.
This figure shows the constraint deduced in Ref. [44] from
heavy-ion collisions (HIC), the one derived in Ref. [45] from
measurements of the neutron-skin thickness in tin isotopes, and
the one obtained from the analysis of the giant dipole resonance
(GDR) [43,46]. The zone of intersection of the corresponding
three bands is denoted by the white lozenge-shaped figure,
although it should be noted that the widths of the different
bands displayed in Fig. 5 represent only the statistical error
bars, and since the associated constraints are not directly
derived from raw experimental data but rather are model
dependent, it follows that the bands could be considerably
wider than we have shown, making their zone of intersection
larger. In any case, it will be seen that our best mass fit of this
paper, BSk31, falls well within the permitted zone, while the
other two lie close to it. Also, the best mass fit of Ref. [14],
BSk24, lies within the permitted zone.

Concerning the predictions of our own models for neutron-
skin thickness θ , we show in the last line of Table IV our
values for the case of 208Pb. For each given value of J our
results are essentially the same as for Ref. [12]. However,
when considering the antiproton scattering data [47] for
the determination of neutron-skin thicknesses θ , we see in
Table IV that for both the set of 26 values or the reduced set
of ten values for which experimental errors are smaller than
0.04 fm the optimum predictions are found for HFB-31, i.e.,
J = 31 MeV. This result is in agreement with the comparison
with nuclear masses which also favors J = 31 MeV in the
present framework

Even though our objective is to provide interactions and
mass models appropriate to astrophysical applications, rather
than to determine the value of J , it is natural to ask how well
our different mass fits determine J . The best mass fit of this
paper, BSk31, has J = 31 MeV, while the best fit of our 2013
paper [12], BSk24, has J = 30 MeV. However, it has to be
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FIG. 6. Density dependence of the symmetry energy for BSk31.
The EBHF calculation of [30] is shown for comparison. The blue
curve is shifted by �n = 0.016 fm−3 corresponding to the different
saturation densities of the EBHF calculation and the one of BSk31.

noted that with its more realistic pairing and a two-parameter
spin-orbit coupling, model BSk31 has a somewhat stronger
physical basis than does model BSk24, and the quality of its
mass fit is comparable to that of BSk24, if not unequivocally
better. All in all, we regard interaction BSk31 to be the most
reliable model we have generated for astrophysical purposes,
but we refrain from expressing a preference for the value
J = 31 MeV over 30 or even 32 MeV. Performing the sort of
covariance analysis made by Mondal et al. [48] would hardly
resolve the problem, since the error bars for all three models
would almost certainly overlap strongly.

The density dependence of the symmetry energy is also in
excellent agreement with the EBHF calculations of Ref. [30],
as shown in Fig. 6. It should however be noted that the satura-
tion of symmetric INM obtained by the EBHF calculations is
found at a somewhat higher density, namely n0 = 0.175 fm−3,
a value that does not lead to an optimum description of nuclei,
as shown by the poor nuclear mass prediction of the LNS
Skyrme force fitted to reproduce the EBHF calculations in
INM [30] (in particular, the LNS interaction underestimates
the 208Pb binding energy by some 80 MeV, see their Fig. 6
with �E/A � −0.5 MeV). We attempt to compensate this
discrepancy by shifting the curve labeled BSk31 in Fig. 6
0.016 fm−3 to the right, this shift corresponding to the density
difference in the saturation density between LNS and BSk31
force.

C. Effective masses

As shown in Table V, we impose on our interactions the
realistic value of M∗

s = 0.84M for the isoscalar effective mass
at the saturation density n0 of charge-symmetric INM, this
being the value found by the EBHF calculations [30,33,34] at
the density n = 0.16 fm−3, the approximate value of n0 for
all our interactions. On the other hand, the isovector effective
mass, M∗

v , was left as a free parameter whose value emerged
from the fits; the values shown in Table V are again calculated
at the appropriate value of n0. Experimental estimates of
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M∗
v vary widely: measurements of the isovector giant dipole

resonance (IVGDR) in heavy nuclei, as summarized in Fig. 47
of Ref. [49], indicate that the value of M∗

v /M can range
from 0.7 to 1 (this figure in effect plots M/M∗

v ). However,
the subsequent discussion in Ref. [49] points out that lower
values are possible, which means that none of our models is
in clear conflict with experiment. Moreover, all three models
have, like all our previous models, M∗

v < M∗
s , which implies

that the neutron effective mass M∗
n is larger than the proton

effective mass M∗
p in neutron-rich matter, since the effective

mass of a nucleon of charge type q in nuclear matter at density
n = nn + np and asymmetry η = (nn − np)/n is given by

M

M∗
q

= M

M∗
s

± η

[
M

M∗
s

− M

M∗
v

]
, (12)

where the upper (lower) sign is for neutrons (protons). This
M∗

n > M∗
p prediction is consistent with measurements of the

IVGDR [50], and has been confirmed in many-body calcula-
tions with realistic forces [30]. With these latter calculations
giving M∗

s = 0.84M and M∗
v = 0.73M at a density of n0 �

0.16 fm−3, we see that the magnitude of the splitting given by
the new models is in excellent agreement with such realistic
calculations.

Figure 7 shows for the three new models the density
dependence of M∗

n and M∗
p, and compares them with the

realistic EBHF predictions in asymmetric nuclear matter [30].
The three models show virtually the same density dependence
of M∗

q /M . Note that the non-linearity of 1/M∗
s and 1/M∗

v with
density is due to the terms in t4 and t5. In particular, the non-
monotonicity visible in Fig. 7 gives rise to a surface-peaked
value of the neutron effective mass larger than 1, but only
at very low densities, e.g., n � 0.08 fm−3 for an asymmetry
η = 0.4.

D. Potential energy in the (S,T ) channels

Fitting our forces to the mass data and the EOS of NeuM is
not a sufficient condition for ensuring a realistic distribution
of the potential energy per nucleon among the four two-
body spin-isospin (S,T ) channels in charge-symmetric INM.
Figure 8 shows this distribution for each of our three new forces
as a function of density, and compares with two different BHF
calculations: “Catania 1”, based on Ref. [17] and “Catania 2”,
based on Ref. [51]. Given the evident uncertainty in what the
real distribution actually is, the level of agreement we have
found with our new forces can be regarded as satisfactory.
This would have been very difficult within the framework
of conventional Skyrme forces and the term in t5 has been
indispensable in this respect (see the discussion in Ref. [50]).
The importance of a realistic distribution of the potential
energy among the (S,T ) channels for deformation energy was
discussed long ago in Refs. [52,53].

E. Maximum neutron-star masses

The neutron star PSR J1614–2230, and more recently PSR
J0348+0432, have been shown to have a mass as high as
1.97 ± 0.04 M	 for the former [54] and 2.01 ± 0.04 M	
for the latter [55]. These neutron-star mass measurements give
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FIG. 7. Neutron and proton effective masses in symmetric nuclear
matter (a) as well as in asymmetric matter with an asymmetry η = 0.2
(b) and 0.4 (c) obtained with the BSk30 (solid line), BSk31 (dashed
line), and BSk32 (dotted line). The EBHF calculation of Ref. [30] is
shown for comparison.
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as a function of density for charge-symmetric INM. The open symbols
correspond to the “Catania 1” BHF calculations [17], and the solid
symbols to the “Catania 2” BHF calculations [51].
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TABLE VI. Maximum neutron-star mass Mmax and correspond-
ing baryon number density ncen at the center of the star for the different
models.

Force Mmax/M	 ncen [fm−3]

BSk30 2.27 0.98
BSk31 2.26 0.97
BSk32 2.25 0.97

strong constraints on the EOS hence also on the effective inter-
action [20]. We calculated the maximum mass of nonrotating
neutron stars for each of the new models of this paper solving
the Tolman-Oppenheimer-Volkoff (TOV) equations [56,57].
We assume that neutron stars are homogeneous throughout,
i.e., we neglect the inhomogeneities of the outer and inner
crusts, and matter is supposed to be in β-equilibrium at zero
temperature. We see from Table VI that all our new models
are compatible with the existence of the massive neutron stars
PSR J1614–2230 and PSR J0348+0432. Indeed, it turns out
that the maximum mass is essentially the same for all models
constrained by the same EOS of NeuM, in particular, it seems
to be relatively independent of the symmetry coefficient J . As
can be seen from Tables V and VI, our models do not violate
causality in any neutron stars.

F. Heavy-ion measurements of pressure

We have calculated the pressure in charge-symmetric INM
as a function of density for our models with results that are es-
sentially identical to those we obtained in Ref. [12]. That is, our
models are consistent with measurements of nuclear-matter
flow and kaon production in heavy-ion collisions [36,37],
although close to the upper limit, as shown in Fig. 7 of
Ref. [12].
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FIG. 9. Comparison between experimental (crosses) [58] and
HFB-31 (squares) moments of inertia (expressed in units �

2 MeV−1).
The insert is a zoom on the rare-earth isotopic chains for which data
have been determined.

G. Moments of inertia

The moments of inertia of deformed even-even nuclei are
known to be sensitive to the pairing description. With the first
term of Eq. (11) representing the rotational correction, we can
write the moment of inertia given by our HFB calculations as

I = Icrank

b tanh(c|β2|) , (13)

where the parameters b and c of the rotational correction
are given in Table III. We compare in Fig. 9 the HFB-31
predictions of the moment of inertia with the available data
(HFB-30 and HFB-32 give rather similar estimates). We see
that the calculated moments of inertia agree with experimental
values within typically 10 to 15 %.

H. Mass extrapolations

Concerning the extrapolation of masses far away from
experimental data, we show in Fig. 10, for all the nearly 6900
nuclei with 8 � Z � 110 lying between the HFB-31 proton
and neutron drip lines, the deviations between our two best-fit
mass models, i.e., HFB-30 and HFB-31, as well as between the
two mass models with the largest difference in the symmetry
coefficient, i.e., HFB-30 with J = 30 MeV and HFB-32 with
J = 32 MeV. While in the first case, deviations are restricted
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FIG. 10. (a) Differences between HFB-30 and HFB-31 mass
predictions for all 6884 nuclei included in the tables. (b) Differences
between HFB-30 and HFB-32 mass predictions
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predictions for all 6884 nuclei included in the tables. (b) Differences
between HFB-31 and D1M [59] mass predictions

to the narrow range of ±2 MeV, much larger discrepancies,
up to 5 MeV, are found between HFB-30 and HFB-32 when
approaching the neutron drip line. In addition, it is noteworthy
that the lower the J value the larger the masses predicted
when approaching the neutron drip line, as already found and
discussed in Ref. [12].

In Fig. 11, we compare the HFB-31 predictions with
those of our mass model HFB-24 and the Gogny-HFB mass
calculation based on the D1M force [59]. We see that the
differences are relatively small except for the heaviest nuclei

(Z > 80) and as the neutron-drip line is approached (N >
160). However, it is noteworthy that in the comparison with
HFB-24 it is the higher J value that is associated with the larger
masses. Conceivably the different treatment of the pairing and
the different spin-orbit terms are playing a dominant role here.
Non-negligible deviations are found with respect to the D1M
mass model, especially in the vicinity of the N = 126 or 184
neutron shell closures.

V. CONCLUSION

This paper describes the latest effort in our long-running
project of developing HFB mass models that give precision
fits to all the available mass data while at the same time
respecting the constraints appropriate to the treatment of
highly neutron-rich environments of astrophysical interest.
The present paper extends our previous work by including
a phenomenological pairing term that depends on the density
gradient. In this way it is possible for the first time to have a
bulk pairing term that is fitted exactly to the realistic nuclear-
matter calculations of Ref. [30] with self-energy corrections.
At the same time, nucleon effective masses as predicted by
our new Skyrme forces are found to be in excellent agreement
with realistic calculations in asymmetric homogeneous nuclear
matter. A two-parameter spin-orbit term, as introduced in
Ref. [26], is also used. Our preferred model, HFB-31, fits
2353 measured masses with a model error of 0.561 MeV, and
gives a precision fit to measured charge radii. Its underlying
interaction, BSk31, has a symmetry coefficient J of 31
MeV and a slope L = 53.1 MeV, that are compatible with
current laboratory constraints. The fit to realistic NeuM
EOS and the empirical constraints from heavy-ion collision
experiments ensure a reliable extrapolation of our models
to the high densities found in neutron stars. As a matter of
fact, all our models are consistent with the existence of the
massive neutron stars PSR J1614–2230 and PSR J0348+0432.
For all these reasons, we believe that our new models are
particularly well suited for the description of neutron star
interiors, and especially of neutron superfluidity in their inner
crust.
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