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Background: In the past few decades quantum phase transitions have been of great interest in nuclear physics. In
this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition
evolves when moving into more complex systems, but the number of publications along this line has been scarce
up to now.
Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model that resembles the nuclear proton-
neutron interacting boson model Hamiltonian using both numerical results and analytic tools, i.e., catastrophe
theory, and compare the mean-field results with exact diagonalizations for large systems.
Method: The mean-field energy surface of a consistent-Q-like two-fluid Lipkin Hamiltonian is studied and
compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the
framework of catastrophe theory.
Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and
surfaces is determined using a catastrophe theory analysis.
Conclusions: There are two first-order surfaces in the phase diagram, one separating the spherical and the
deformed shapes, while the other separates two different deformed phases. A second-order line, where the later
surfaces merge, is found. This line finishes in a transition point with a divergence in the second-order derivative
of the energy that corresponds to a tricritical point in the language of the Ginzburg-Landau theory for phase
transitions.

DOI: 10.1103/PhysRevC.93.034336

I. INTRODUCTION

The study of quantum phase transitions (QPTs) is a hot topic
in different areas of quantum many-body physics. In nuclear
physics many aspects of QPTs have been studied [1–3], both
theoretically and experimentally. Also, in other fields such as
molecular physics [4,5], quantum optics [6,7], or solid-state
physics [8] studies related to relevant QPTs have been recently
presented.

QPTs are phase transitions analogous to the classical ones
but occurring at zero temperature. QPTs appear when the
Hamiltonian has two (or more) parts with different structures
(symmetries) and there is one (or several) control parameter
that drives the system from one structure to the other. The
phase transition is characterized by an abrupt change in an
observable (called order parameter) that is zero in one phase
and different from zero in the other. The value of the control
parameter for which the structural change appears is known
as critical value. Schematically, a Hamiltonian undergoing a
QPT is written as

H (ξ ) = ξH (symmetry1) + (1 − ξ )H (symmetry2). (1)

For a particular value of the control parameter, ξc, which is
the critical value, the system undergoes a structural QPT from
symmetry 1 to symmetry 2.

One interesting extension of the QPT concept appears when
treating with composed systems, as in the case of lattice
systems [9]. The simplest case is a quantum two-fluid system
in which there are two kind of particles (bosons in the case

presented here) with creation (and annihilation) operators that
commute among them. Some pioneering studies on two-fluid
systems [10–12] were carried out for the proton-neutron
interacting boson model, IBM-2, and the authors managed
to construct the phase diagram for a restricted Hamiltonian
and classified the different phase transitions that the system
undergoes. Other models that can be considered as two-fluid
systems are the Dicke [13] and the Jaynes-Cumming [14]
models for which the two fluids correspond to photons and
atoms. Note that in this case the role of both fluids is not
symmetric, photons fulfill a hw(1) (Heisenberg-Weyl) algebra
while atoms are governed by a su(2) algebra. In the case of
IBM-2, both fluids are connected with a u(6) algebra.

The aim of this work is to study a simple two-fluid Lipkin
model, which corresponds to a su(2) ⊗ su(2) algebra. One of
the main motivations for carrying out this study is to treat with
a model somehow similar to IBM-2 (except for the γ degree
of freedom) but simpler. In Refs. [10,11], when discussing
QPTs in IBM-2, because of the large dimensions involved,
exact results (obtained from a direct diagonalization) were
only obtained for small values of the boson number. Thus, a
comparison with the corresponding mean-field results, valid
for N → ∞, was not possible. Therefore, it is of interest to
carry out such a comparison for a model with similar physics
content than IBM-2. In particular, it has been shown that the
IBM-1 and the Lipkin energy surfaces are equal [15] and then
their phase diagrams are fully equivalent. The advantage of the
two-fluid Lipkin model with respect to IBM-2 is the smaller
dimensions involved, which allows one to perform exact
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calculations with much larger boson numbers. Consequently,
this study allows us to establish a proper comparison with the
mean-field results. Finally, it is worth noting that Dicke and
Jaynes-Cumming models correspond to a given limit of the
two-fluid Lipkin model, in which a contraction from u(2) to
hw(1) is performed [16].

The paper is organized as follows. In Sec. II the algebraic
structure of the model is outlined and the particular case of
the consistent-Q-like Hamiltonian is worked out. Section III
is devoted to study the classical limit of the model (mean
field). In Sec. IV a numerical study of the phase diagram
is presented. Section V is devoted to the application of the
catastrophe theory in the study of the phase diagram and
the unambiguous determination of the order of the different
phase transitions. Finally, Sec. VI contains the summary and
the conclusions.

II. THE LIPKIN MODEL AND ITS TWO-FLUID
EXTENSION

The Lipkin model was proposed by Lipkin, Meshkov, and
Glick in Ref. [17] as a toy model that is exactly solvable
through a simple diagonalization and appropriated to check
the validity and limitations of different approximation methods
used in many-body physics (in particular in nuclear physics).
Since then, a plethora of applications have appeared in the
literature. Using a boson representation, the model is built in
terms of scalar bosons that can occupy two nondegenerated
energy levels labeled by s and t . In the simplest case, the
building blocks are the creation—s†, t†—and annihilation—s,
t—boson operators. The four possible bilinear products of
one creation and one annihilation boson generate the u(2)
algebra. If one combines two coupled Lipkin structures, one

obtains the two-fluid Lipkin model. In this model, there are
two boson families identified by a subindex—s

†
1, t

†
1 and s

†
2,

t
†
2—and the corresponding dynamical algebra is u1(2) ⊗ u2(2),

whose generators are s
†
i si , s

†
i ti , t

†
i si , and t

†
i ti , for i = 1,2. If

the boson number in each fluid is conserved, it is also of
interest to consider the dynamical subalgebra su1(2) ⊗ su2(2)
with generators

J+
i = t

†
i si , J−

i = s
†
i ti , J 0

i = 1
2 (t†i ti − s

†
i si), (2)

which verify the angular momentum commutation relations,

[J+
i ,J−

i ] = 2J 0
i ,

[
J 0

i ,J±
i

] = ±J±
i . (3)

Adding the operators Ni = s
†
i si + t

†
i ti , one recovers the

u1(2) ⊗ u2(2) algebra.
We consider that s and t present a different behavior with

respect to the parity operator,

P t
†
i P

−1 = −t
†
i , P tiP

−1 = −ti ,

P s
†
i P

−1 = s
†
i , P siP

−1 = si . (4)

Therefore, s bosons preserve the parity while t bosons do not;
i.e., s has positive parity while t has negative. In u(2) this
assignment is arbitrary, but in higher-dimensional models it
appears from physical considerations.

A detailed description of the u1(2) ⊗ u2(2) algebraic struc-
ture can be found in Ref. [18]. Here we present just an abridged
version of that analysis. Starting from the dynamical algebra
u1(2) ⊗ u2(2), the possible subalgebra chains are four: two of
them correspond to an early coupling of the dynamical algebras
into the direct-sum subalgebra u12(2) [or su12(2)],

u1(2) ⊗ u2(2) ⊃ u12(2) ⊃ u12(1)
↓ ↓ ↓

N1 ⊗ N2 [h,h′] nt → basis |N1N2hnt 〉, (5)

where the labels of the irreps verify the following branching rules: h + h′ = N1 + N2, h � h′, 1/2(N1 + N2 + h′ − h) � nt �
1/2(N1 + N2 − h′ + h), and

u1(2) ⊗ u2(2) ⊃ su1(2) ⊗ su2(2) ⊃ su12(2) ⊃ so12(2)
↓ ↓ ↓ ↓

N1 ⊗ N2 j1 ⊗ j2 j μ → basis |j1j2jμ〉, (6)

where ji = Ni/2, j = 1/2(N1 + N2),1/2(N1 + N2) − 1, . . . ,1/2|N1 − N2|, −j � μ � j , and j = 1/2(h − h′). | · · · 〉 stands
for the basis state in the corresponding dynamical symmetry.

The second two algebras correspond to a late coupling into a direct-sum subalgebra,

u1(2) ⊗ u2(2) ⊃ u1(1) ⊗ u2(1) ⊃ u12(1)
↓ ↓ ↓

N1 ⊗ N2 nt1 ⊗ nt2 nt = nt1 + nt2 → basis
∣∣N1N2nt1nt2

〉, (7)

where nti � Ni , and

u1(2) ⊗ u2(2) ⊃ su1(2) ⊗ su2(2) ⊃ so1(2) ⊗ so2(2) ⊃ so12(2)
↓ ↓ ↓ ↓

N1 ⊗ N2 j1 ⊗ j2 μ1 ⊗ μ2 μ = μ1 + μ2 → basis |j1j2μ1μ2〉, (8)

where −ji � μi � ji .
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Concerning the Hamiltonian, the most general up to two-body interaction Hamiltonian can be written as

H = H1 + H2 + H12, (9)

where

Hi = aiJ
′0
i + bi(J

+ + J−) + ci(J
+
i J−

i ) + di[(J
+
i )2 + (J−

i )2] + ei

(
J+

i J ′0
i + J ′0

i J−
i

) + fi

(
J ′0

i

)2
, (10)

H12 = w1(J+
1 J+

2 + J−
1 J−

2 ) + w2(J+
1 J−

2 + J−
1 J+

2 ) + w3
(
J+

1 J ′0
2 + J−

1 J ′0
2

) + w4
(
J ′0

1 J+
2 + J ′0

1 J−
2

) + w5J
′0
1 J ′0

2 , (11)

where

J ′0
i = J 0

i + Ni

2
. (12)

In an equivalent way the Hamiltonian can be expressed as

Hi = ait
†
i ti + bi(t

†
i si + s

†
i ti) + ci(t

†
i sis

†
i ti) + di(t

†
i si t

†
i si + s

†
i tis

†
i ti) + ei(t

†
i si t

†
i ti + t

†
i tis

†
i ti) + fit

†
i ti t

†
i ti , (13)

H12 = w1(t†1s1t
†
2s2 + s

†
1t1s

†
2t2) + w2(t†1s1s

†
2t2 + s

†
1t1t

†
2s2) + w3(t†1s1t

†
2 t2 + s

†
1t1t

†
2 t2) + w4(t†1 t1t

†
2s2 + t

†
1 t1s

†
2t2) + w5t

†
1 t1t

†
2 t2. (14)

The consistent- Q-like Hamiltonian

A more restricted Hamiltonian, which is inspired in the
consistent-Q formalism of the IBM [19], is used throughout
the rest of the paper. This Hamiltonian resembles the schematic
one used in many IBM-2 calculations; it was studied in detail
in Refs. [10,20] and is the reference Hamiltonian in this work.
The Hamiltonian can be written as

H = x
(
nt1 + nt2

) − 1 − x

N1 + N2
Q(y1,y2)Q(y1,y2), (15)

where

nti = t
†
i ti , (16)

Q(y1,y2) = (
Q

y1
1 + Q

y2
2

)
, (17)

Q
yi

i = s
†
i ti + t

†
i si + yi(t

†
i ti). (18)

Owing to the behavior of the bosons under parity (4), the
Hamiltonian (15) is, in general, non-parity-conserving, except
for y1 = y2 = 0. This Hamiltonian (15) can be obtained from
the general one (9), (13), (14) with the relations among
parameters

ai = x − 2
x − 1

N1 + N2
, bi = x − 1

N1 + N2
yi,

ci = 2
x − 1

N1 + N2
, di = x − 1

N1 + N2
(19)

ei = 2yi

x − 1

N1 + N2
, fi = y2

i

x − 1

N1 + N2
, �i = x − 1,

(20)

w1 = w2 = 2
x − 1

N1 + N2
, w3 = 2y1

x − 1

N1 + N2
,

w4 = 2y2
x − 1

N1 + N2
, w5 = 2y1y2

x − 1

N1 + N2
(21)

(please note that �i correspond to a shift in the energy origins),
leading to the compact form,

H = x
(
J ′0

1 + J ′0
2

) − 1 − x

N1 + N2

× (
J+

1 + J−
1 + J+

2 + J−
2 + y1J

′0
1 + y2J

′0
2

)
× (

J+
1 + J−

1 + J+
2 + J−

2 + y1J
′0
1 + y2J

′0
2

)
. (22)

This Hamiltonian is a mixture of dynamical symmetries
of the problem, particularly u1(1) ⊗ u2(1) for x = 1, and
su1(2) ⊗ su2(2) for x = 0 and y1 = y2 = 0. This form is
especially suitable to study QPTs, because one can associate a
symmetric (spherical) phase to the first term of the Hamiltonian
and a nonsymmetric (deformed) shape to the second term.
Moreover, depending on the values of y1 and y2 different kinds
of deformation are produced.

III. THE CLASSICAL LIMIT

The study of QPTs should be strictly done in the ther-
modynamic limit, i.e., for an infinity number of particles.
Fortunately, this kind of calculation can be easily performed
through the use of the mean-field approximation, which,
indeed, coincides with the exact result in the large particle
number limit [21]. The mean-field analysis of the model starts
considering the product of two boson condensates, one for
each fluid,

|g〉 = 1√
N1!N2!

(�†
1)N1 (�†

2)N2 |0〉, (23)

where |0〉 is the boson vacuum and �
†
i the boson creation

operator for the i fluid defined as

�
†
i = 1√

1 + β2
i

(s†i + βit
†
i ). (24)

The coefficients β1 and β2 are variational parameters associ-
ated with each fluid that, in turn, become order parameters.
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The mean-field energy for the consistent-Q-like Hamiltonian for a symmetric system, i.e., a system with N1 = N2, in the
large-N (N = N1 + N2) limit can be written as

E(β1,β2,x,y1,y2)

N
= x

2

(
β2

1

1 + β2
1

+ β2
2

1 + β2
2

)
− 1 − x

4
[(Q1)2 + (Q2)2 + 2Q1Q2], (25)

with

Qi = 1

1 + β2
i

(
2 βi + yi β

2
i

)
. (26)

Inserting these expressions for Qi in Eq. (25), we get

E(β1,β2,x,y1,y2)

N
= x

2

(
β2

1

1 + β2
1

+ β2
2

1 + β2
2

)
− 1 − x

4

[
1(

1 + β2
1

)2

(
2 β1 + y1 β2

1

)2 + 1(
1 + β2

2

)2

(
2 β2 + y2 β2

2

)2

+ 2
1(

1 + β2
1

) 1(
1 + β2

2

)(
2 β1 + y1 β2

1

)(
2 β2 + y2 β2

2

)]
. (27)

Please note that, contrary to the IBM-2 case where for χπ = −χν the energy surface is invariant under the transformation
βπ ↔ βν , the double Lipkin model with y1 = −y2 is symmetric under the interchange β1 ↔ −β2.

It could be also of interest to write the energy for the nonsymmetric case for analyzing how the difference in the relative
number of bosons affects the mean-field energy,

E(β1,β2,x,y1,y2)

N
= x

[
F1

β2
1

1 + β2
1

+ (1 − F1)
β2

2

1 + β2
2

]
− (1 − x)

[
F 2

1(
1 + β2

1

)2

(
2 β1 + y1 β2

1

)2 + (1 − F1)2(
1 + β2

2

)2

(
2 β2 + y2 β2

2

)2

+ 2
F1(

1 + β2
1

) (1 − F1)(
1 + β2

2

)(
2 β1 + y1 β2

1

)(
2 β2 + y2 β2

2

)]
, (28)

where F1 = N1
N1+N2

. Throughout this paper we only consider
the symmetric case.

IV. NUMERICAL ANALYSIS OF THE PHASE DIAGRAM

To study the structure of the two-fluid Lipkin model phase
diagram as a function of the control parameters, (x,y1,y2),
we have found it appropriate to introduce alternative control
parameters (y,y ′), defined by

y = y1 + y2

2
, y ′ = y1 − y2

2
. (29)

With this change, we can study the phase diagram in terms of
the coordinates

ρ = 1 − x, θ = π

24
(y1 − y2) = π

12
y ′,

φ = π

24
(y1 + y2) = π

12
y, (30)

where we have assumed a maximum value for |y1| and |y2|
equal to 2 so as the angles θ and φ are defined between −π/6
and π/6 (see Fig. 1).

The geometric representation of the two-fluid consistent-
Q-like Lipkin Hamiltonian will be, therefore, a pyramid in
this phase space. One vertex corresponds to the u12(1) limit
of the model (x = 1). The bottom plane, y1 = y2 ⇒ y ′ = 0,
corresponds to the u12(2) dynamical algebra [both fluid are
combined symmetrically into a single u(2)] algebra, which is
equivalent at the mean-field level to the single Lipkin model (in
the IBM-2 case, the equivalent horizontal plane represents the

IBM-1, i.e., a symmetric combination of the two boson fluids).
In this plane, the line y1 = y2 = 0 (y = y ′ = 0) goes from the
so12(2) to the u12(1) limit. As soon as one considers y1 �= y2

(y ′ �= 0) one moves in the vertical direction of the pyramid
and any present symmetry will become broken. Of special
interest is the vertical plane y1 = −y2 (y = 0,y ′ �= 0) because,

FIG. 1. Representation of the two-Lipkin model parameter space.
For completeness, the symmetries of the model are also indicated in
the diagram.
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FIG. 2. Transition line for y = 0 and y ′ = 0 changing the control parameter x. In the different panels we plot as a function of x: panel (a)
the energy per boson (in arbitrary units), panel (b) the order parameter β1 (dimensionless), panel (c) the order parameter β2 (dimensionless),
panel (d) dE/dx in arbitrary units, and panel (e) representation of the trajectory in the control parameter space. Full thin black lines correspond
to the mean-field results while dashed thick red lines are the exact calculation with N1 = N2 = 500.

for this combination of parameters, the mean-field energy is
invariant under the transformation β1 → −β2. Note that the
two remaining vertexes do not correspond to any symmetry of
the model [in the case of IBM-2 they correspond to the su(3)
and su(3)∗ symmetries].

As a first step to establish the phase diagram of the model,
in the remainder of this section we present numerical studies
of different trajectories within the phase space of the model
(ρ,y,y ′) to identify the different phases and phase-transition
surfaces or lines.

To get a geometrical idea about system shapes in the differ-
ent regions of the phase space, we note that the region around
the u12(1) vertex corresponds to values of the variational
parameters β1 and β2 equal to zero. Because β parameters
give the weight of the t bosons in the boson condensate, β = 0
implies a condensate of spherical s bosons. Consequently,
the phase around the u12(1) vertex is called symmetric or
spherical. The corresponding spectrum will become nearly
harmonic. When the system goes far from the u12(1) vertex,
both variational parameters, β1 and β2 become different from
zero. This makes that the boson condensate in both fluids has
a fraction of t bosons. Thus, this phase is called nonsymmetric
or deformed. The horizontal plane corresponds to β1 = β2,
which implies equal deformations for both fluids, which brings
us back to the single Lipkin model.

To study the possible phase transitions that occur in the
phase diagram, we have performed numerical analysis through
selected straight trajectories in the phase space. For each of
them the equilibrium energy, the derivatives of the energy
functional, and also the equilibrium values of the varia-
tional parameters have been analyzed. All exact calculations

presented in this section correspond to N1 = N2 = 500, but
similar studies can be done for N1 �= N2 and other boson
numbers.

A. Plane y′ = 0

First, we start analyzing the bottom plane that corresponds
to y1 = y2 = y and y ′ = 0; therefore, an energy surface fully
equivalent to the single Linkin case is reproduced. In Fig. 2
the line y1 = y2 = y = 0 and y ′ = 0 is studied [see panel
(e)]; in the figure the energy per particle [panel (a)], as
well as the deformation parameters [panels (b) and (c)], as
functions of the control parameter x are plotted. We have also
included the function dE/dx in panel (d). One can clearly
see how a phase transition sets up around x = 4/5. At the
mean-field level the phase transition is established as second
order because a discontinuity appears in the second derivative
of the energy [see panel (d), where dE/dx is continuous but not
its derivative] and in the first derivative of the order parameters.
Note that, owing to symmetry arguments, β1 = β2 over the
whole plane. In Fig. 2 the mean-field results (black solid
line) are shown together with the exact result coming from
direct diagonalization (red dashed line) for N1 = N2 = 500.
In the exact calculation, the values of the order parameters are
extracted using this relationship,

βi =
√ 〈

nti

〉
Ni − 〈

nti

〉 . (31)

Excellent agreement is found between mean-field and exact
results because the number of bosons considered in the exact
diagonalization is large enough.
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FIG. 3. Same as Fig. 2, but with y1 = y2 = y = 1 and y ′ = 0.

In Fig. 3 we repeat the same calculation but for the line y1 =
y2 = y = 1 and y ′ = 0 [see panel (e)]. In this case, a first-order
phase transition is observed for xc = 5/6 = 0.833. The order
of the phase transition is clear from the discontinuity in the
value of the order parameter at the mentioned phase-transition
point, as well as for the discontinuity in dE/dx [see panel (d)].
In general, for y1 = y2 = y �= 0 the phase transition is of first
order and the critical point is located at [15]

xc = 4 + y2

5 + y2
. (32)

Consequently, the location of the critical point is shifted to
slightly larger values of x as y increases, while the jump of the
order parameter at the phase-transition point becomes larger.

B. Volume region inside the pyramid: y �= 0 and y′ �= 0

Now a trajectory going through the inner part of the pyramid
is analyzed. In particular, the case y1 = 1 and y2 = −1/2, i.e.,
y = 1/4 and y ′ = 3/4, is presented in Fig. 4(e). From this
figure, it is clear that a first-order phase transition is observed
at around xc = 0.805. Several trajectories inside the pyramid
have been studied with similar results (the dependence on y
and y ′ of xc is involved and cannot be obtained in a closed
form). The size of the discontinuity depends on how far the
values of y and y ′ are from y = 0 and y ′ = 0.

C. The vertical plane: y = 0

The vertical plane corresponds to y1 = −y2, which means
y = 0 and y ′ = y1 = −y2 and, as we show below, is the
most interesting case. Several trajectories inside this plane
are presented, with one crossing the plane from positive to
negative β values.

The first trajectory is the line y1 = −y2 = y ′ = 1/2, and the
results are depicted in Fig. 5. A second-order phase transition
at xc = 0.8 is observed. The order parameters, coming from
the exact diagonalization, show an oscillatory pattern owing
to the degeneracy of two states that are related with the two
minima present in the β1-β2 plane of the mean-field energy
(see Fig. 9). The degeneracy of two states with different
deformation makes that the order parameter obtained from
the diagonalization may jump from one minimum to the other
(between the two degenerate mean-field values). Indeed, for
a given value of x the equilibrium value of one of the order
parameters will correspond to β1 = βx and β2 = β ′

x , while
the other will correspond to β1 = −β ′

x and β2 = −βx . Note
that we have taken the absolute value of βi for a better
comparison with the exact results, which are, by definition,
positive.

In Fig. 6 a calculation along the line y1 = −y2 = y ′ = 1
and y = 0 is presented. In this case it is difficult to disentangle
the order of the phase transition just looking at the energy and
the order parameters; however, in the inset panel it is clear that
a discontinuity in the second derivative of the energy exists,
which, once more, happens at around xc = 0.8. In Sec. V B
we see in detail that, indeed, a divergence in d2E/dx2 exists
and we try to understand the reason why there is a divergence
in the second derivative. Note that dE/dx becomes vertical at
x = 4/5 from the left side.

Finally, in Fig. 7 the calculation along the line y1 = −y2 =
y ′ = 3/2 and y = 0 is shown. In this calculation, the onset
of a first-order phase transition at around xc = 0.81 is easily
appreciated, i.e., discontinuity in the first derivative of the
energy and in the value of the order parameters.

After the analysis of the different paths in the plane y = 0,
corresponding to different y ′ values, one is tempted to conclude
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FIG. 4. Same as Fig. 2, but with y1 = 1 and y2 = −1/2 (y = 1/4 and y ′ = 3/4).

that there is a line of phase transition for values of x around
xc = 0.8. However, the value y ′ = 1 separates this line into two
parts: For values y ′ � 1 the line corresponds to a second-order
phase transition, while for values y ′ > 1 the line is of first
order. This weak conclusion, based on numerical calculations,
is confirmed in Sec. V B through an analytic study.

It is worth noting that the vertical plane y = 0 for x <
4/5 separates two deformed regions. To study the transition
between both deformed regions, finally, a line crossing this

vertical surface is analyzed. Here, because of the presence
of two degenerated minima, a first-order phase transition for
the whole vertical surface in the deformed phase is expected.
This is fully confirmed in Fig. 8 (parameters x = 0.5, y = 1),
where the first-order phase transition appears for y2 = −1.
Please note that in Fig. 8 we have changed by hand the value
of β coming from the exact calculation (it is, by definition,
always positive) for a better comparison with the mean-field
results.
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FIG. 5. Same as Fig. 2, but with y1 = −y2 = y ′ = 1/2 and y = 0.
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FIG. 6. Same as Fig. 2, but with y1 = −y2 = y ′ = 1 and y = 0.

Combining all the preceding evidence one gets the phase
diagram depicted in Fig. 9, where one can appreciate a
first-order phase transition surface separating the symmetric
(spherical) and nonsymmetric (deformed) phases and the first-
order phase-transition vertical surface separating two different
deformed phases. We see in next section that the intersection
line between both surfaces, from y ′ = 0 up to y ′ = 1, is a

second-order phase-transition line, while for larger values of
y ′ it becomes first order. Note that the phase diagram can be
extended to negative values of y and y ′, with the first-order
phase transition surface separating spherical and deformed
phase extended to four quadrants and the vertical first-order
phase transition surface and the second-order phase-transition
line extended to negative values of y ′.
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FIG. 8. Transition for x = 0 and y1 = 1 as functions of y2. In panel (a) the energy per boson is plotted in arbitrary units, in panel (b) the
order parameter β1 (dimensionless) is shown, in panel (c) the order parameter β2 (dimensionless) is represented, in panel (d) dE/dx in arbitrary
units is plotted, and in panel (e) the representation of the trajectory in the control parameter space is shown. Solid thin black lines correspond
to the mean-field results, while dashed thick red lines are the exact calculation with N1 = N2 = 500.

FIG. 9. Phase diagram of the consistent-Q-like two-fluid Lipkin model. In the diagram the different phases are represented: spherical and
deformed, the first-order QPT surfaces, and the second-order QPT line. Moreover, the relevant control parameters and dynamical symmetries
also are shown.
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V. LOCAL TAYLOR EXPANSION AND
CATASTROPHE THEORY

A. Fundamentals

Once the main structure of the phase diagram of the model is
known numerically, it is necessary to perform an analytic study
to determine unambiguously the order of the phase transitions
of surfaces and lines appearing in the phase diagram and to
understand why the QPT areas are precisely located there. To
carry out this task we will make use of catastrophe theory
(CT) [22], which is an ideal tool for such an end.

In general, the aim of CT is to study a given potential,
V (�x,�λ) ∈ � (in our case, the mean-field energy surface of the
model), or a family of potentials that are the function of a set
of order parameters, �x ∈ �n, that depend on a set of control
parameters, �λ ∈ �r , and to study the qualitative behavior of the
potential, e.g., number of minima and maxima, as a function
of the control parameters. To proceed, one should start looking
for the stationary points (also known as critical points), i.e.,
those whose gradients vanish, and classify them according to
their stability: (i) points where the determinant of the Hessian
matrix is different from zero, called isolated, nondegenerated
or Morse points and (ii) points where the determinant of the
Hessian matrix is zero, called nonisolated, degenerated or
non-Morse points. In summary, points of a family of smooth
potentials can be classified according to their gradient and
Hessian matrix H as

(i) regular points, ∇V �= 0;
(ii) Morse points (isolated critical points), ∇V = 0 and

|H| �= 0;
(iii) non-Morse points (degenerated critical points), ∇V =

0 and |H| = 0.

The Morse theorem [23,24] guarantees that around a Morse
point, a smooth potential is equivalent to a quadratic form,
performing a smooth nonlinear change of variables. Therefore,
the potential is stable under small perturbations around Morse
points. At non-Morse points the potential cannot be written as a
quadratic form because the Hessian matrix has at least one zero
eigenvalue. Around non-Morse points CT will provide useful
information on how the qualitative shape of the potential will
evolve under small variations of the order parameters.

In the case of several order parameters, Thom’s splitting
lemma [22] guarantees that a smooth potential at non-Morse
points can be written as a sum of a quadratic form, associated
with the subspace with nonzero eigenvalues, plus a function
containing the variables associated to the zero eigenvalues of
the Hessian matrix.

The first step in the CT program is to find out the critical
points of the energy surface (∇E = 0). Among them, the most
important is the most degenerate one, i.e., the point where most
successive derivatives vanish. This point is the fundamental
root taking place at definite values of the control parameters,
which we call critical values. We next proceed to make use of a
Taylor expansion of the energy surface around the fundamental
root. A Taylor expansion around such a point is also valid for
the critical points that arise from the fundamental root when
the degeneracy is broken. Depending on the degeneracy of the
fundamental root, the number of extremes that can be analyzed

simultaneously will change. It is worth noting that the different
minima related with the appearance of a critical phenomenon
arise from a degenerated non-Morse point.

When the potential depends on several variables, as the case
for the two-fluid Lipkin model is, it is important to separate the
variables into two sets, depending on how Hessian eigenvalues
behave. On one hand, one has the variables associated with the
subspace with vanishing Hessian eigenvalues, called bad or
essential variables, while, however, there is a set of variables
related to the nonvanishing Hessian eigenvalues, called good
or nonessential variables. Therefore, as a consequence of the
splitting lemma [22], the potential could be separated into a
part depending on the essential variables and into another part
depending on the nonessential ones by rewriting it in terms of
the eigenvectors of the Hessian matrix [24]. The appearance
of critical phenomena will be associated exclusively with the
behavior of the essential variables, i.e., the variables that can
be identified as order parameters of the system.

B. Application to the two-fluid Lipkin model

According to Eqs. (27) and (28), the most degenerated
critical point for the two-fluid Lipkin model (15) corresponds
to β1 = 0 and β2 = 0 (all derivatives up to fourth order vanish
for an appropriated set of parameters) and, taking into account
the shape of the phase diagram, all the critical points that
can eventually arise in the energy surface are born from this
most degenerated critical point. Because there are two shape
variables it is necessary to construct, first, the Hessian matrix
associated to the energy surface (27),

H =
(

∂2E/∂β2
1 ∂2E/∂β1∂β2

∂2E/∂β2∂β1 ∂2E/∂β2
2

)
=

(
3x − 2 2x − 2
2x − 2 3x − 2

)
.

(33)

The two eigenvalues are 5x − 4 and x, and the corresponding
eigenvectors are

βa = 1
2 (β1 + β2), (34)

βb = 1
2 (β1 − β2). (35)

The eigenvalue associated with βa vanishes for x = 4/5, while
the one associated with βb only vanishes for the trivial case
x = 0. Therefore, the essential variable turns out to be βa ,
while βb becomes the nonessential one; i.e., the origin in this
variable behaves as a Morse point.

The next step is to carry out a Taylor expansion in βa and
βb around zero. Because we use βa and βb, the quadratic term
βaβb will not be present in the Taylor expansion. Note that we
are considering the case N1 = N2,

E(x,y,y ′,βa,βb)

N
= (5x − 4)β2

a + 4(x − 1)yβ3
a

+ [8 − 9x + y2(x − 1)]β4
a + �

(
β5

a

)
+ xβ2

b + �
(
βaβ

2
b ,βbβ

2
a

)
.
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To cancel the higher-order terms (βi
aβ

j
b with j > 1), we have

to implement a nonlinear transformation in βb

β̃b = βb +
∑

i+j>1

aijβ
i
aβ

j
b . (36)

After imposing the cancellation of the crossing terms and
determining the value of aij , we get the next expression that is
valid in the neighborhood of βa = 0, but for any value of βb

(note that to simplify the notation we continue referring to the
nonessential variable as βb instead of β̃b),

E(x,y,y ′,βa,βb)

N
= (5x − 4)β2

a + 4(x − 1)yβ3
a +

[
8 − 9x + y2(x − 1) − 16y ′2

x
(x − 1)2

]
β4

a

+ 8(x − 1)y[(6y ′2 − 1)x2 − 14y ′2x + 8y ′2]

x2
β5

a

+ 1

x3
{[64y ′4 − 384y ′2 − 2y2(82y ′2 + 1) + 13)x4 + 2(−96y ′4 + 576y ′2

+ y2(372y ′2 + 1) − 6]x3 + 4y ′2[48(y ′2 − 6) − 313y2]x2

+ 32y ′2(29y2 − 2y ′2 + 12)x − 256y2y ′2}β6
a + O

(
β7

a

) + xβ2
b . (37)

The number of lower-order terms that are kept in the
Taylor expansion without losing substantial information with
respect to the original function (problem of determinacy) is
determined studying the terms in the Taylor expansion that
can be canceled out with appropriated particular values of
the control parameters. For Eq. (37) the values of the control
parameters, x = 4/5, y = 0, and y ′ = 1 cancel all terms up
to β5

a . Therefore, the dominant remaining term is β6
a and it is

said that the function is 6 − determined. Hence, the number
of essential parameters will be 3. Consequently, the relevant
elementary catastrophe of this model is the butterfly (A+5) [24].
It is worth mentioning that the butterfly has a codimension
equal to 4; i.e., the number of essential parameters is 4. In
our case, owing to the function symmetry, the number of
parameters is only 3. In general, depending on the values
selected for the control parameters, the potential energy may
have three, two, or one local minima. Please note that Eq. (37)
does not correspond to the canonical form of the butterfly
because it presents a fifth-order term instead of the first-order
one. However, one always can perform a shift transformation
in the βa variable to recover the canonical form.

To determine the order of the phase transitions, already
studied numerically in the preceding section, we can take ad-
vantage of Eq. (37). In general, for any situation with y �= 0 the
cubic (and fifth) term always survives for any value of y ′ and,
therefore, the phase transition will become first order. The rea-
son is simple: The presence of a cubic (and fifth) term guaran-
tees the possible appearance of several critical points (i.e., a re-
gion of coexistence), three critical points (two minima and one
maximum) when the β2

a coefficient and the β4
a coefficient are

positive and five critical points (three minima and two maxima)
when the β2

a coefficient is positive and the β4
a coefficient is neg-

ative (see below for more details). Note that in our case the β6
a

coefficient is always positive. Indeed, this particular situation is
precisely the one necessary to develop a first-order phase tran-
sition. This happens in almost the whole surface separating the
symmetric (spherical) and nonsymmetric (deformed) phases.

To know the character of the vertical surface, y = 0 (with
x < 4/5), one can note that the lowest leading terms are β2

a

with negative coefficient and β4
a with positive coefficient. This

potential gives rise to two degenerated minima symmetric
with respect to the origin, βa = 0. As soon as one perturbs
the system, changing y (to either positive or negative values)
the degeneracy is broken and one of the deformed minima
is lower in energy. Therefore, this situation corresponds to a
first-order phase transition because the order parameter will
jump suddenly from one to the other minimum.

It is also of interest to see how one can recover the case
corresponding to the single Lipkin, i.e., y ′ = 0. For this case
(horizontal plane) the energy surface reads as

E(x,y,y ′,βa,βb)

N

= (5x − 4)β2
a + 4(x − 1)yβ3

a

+ [y2(x − 1) + 8 − 9x]β4
a + O

(
β5

a

) + xβ2
b , (38)

where one can easily single out that for the line x = 4/5, values
y �= 0 produce a first-order phase transition because the cubic
term is present. For the particular value y = 0 the cubic term
vanishes and, therefore, the transition is no longer of first order,
but of second order.

Finally, a most interesting case is the intersection line
between the surfaces y = 0 (vertical plane, separating two
regions of different deformation) and x ≈ 4/5 (spherical
surface separating spherical from deformed shapes). For this
situation, the energy functional is written as

E(x,y ′,βa,βb)

N

= (5x − 4)β2
a +

[
8 − 9x − 16(x − 1)2y ′2

x

]
β4

a

+ 1

2

[
26x − 24 + 128(x − 1)3y ′2(y ′2 − 6)

x2

]
β6

a

+O
(
β7

a

) + xβ2
b . (39)

This situation looks like the case y = y ′ = 0, because no
odd terms appear in the expansion and only the onset of a
second-order phase transition is expected. However, there are
fundamental differences. The key point to disentangle the
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stability structure of the energy surface is the sign of the
fourth-order coefficient. The phase transition at x = 4/5 is
indeed of second order if the fourth-order coefficient remains
positive but will change to first order otherwise. There is a
critical value for y ′ for which the fourth-order coefficient
vanishes, i.e., y ′ = 1 and x = 4/5. At this point, the only
term that survives in the energy functional is the sixth-order
term. The most important consequence is that at this point
the energy surface is very flat (as β6

a ). Going to values with
y ′ > 1, the fourth-order coefficient changes to negative sign,
which implies that there is no longer a second-order phase
transition, but a first-order one because, in this case, there is a
sudden change in the order parameter when crossing the QPT
point. To understand this fact, let us write in a more compact
form the Taylor expansion (39) as

E = A

2
β2 + B

4
β4 + C

6
β6, (40)

where C > 0. According to Eq. (39): A > 0 for x > 4/5, A <
0 for x < 4/5, and A = 0 for x = 4/5; at x = 4/5, B > 0
for y ′ < 1, B < 0 for y ′ > 1, and B = 0 for y ′ = 1; for x ≈
4/5, C is always positive. The equation dE/dβ = 0 has as
solutions

β = 0,

β2 = −B ± √
B2 − 4AC

2C
. (41)

The spherical solution (β = 0) corresponds to a minimum
if A > 0, i.e., x > 4/5 (to a maximum if A < 0, i.e., x <
4/5), irrespective of the B sign, i.e., independently of the y ′
value. For A < 0 and B > 0 (which occurs for |y ′| < 1) two
deformed critical points exist (symmetric with respect to the
origin), which correspond to minima because, as discussed
above, β = 0 corresponds, in this case, to a maximum. Note
that for A = 0 the two deformed minima merge into a flat
spherical one, never coexisting several minima. Therefore, the
line y = 0 and A = 0 corresponds to a second-order phase
transition while |y ′| < 1.

For A � 0 and B < 0 (which occurs for y ′ > 1 and x �
4/5) five critical points coexist for B2 > 4AC, one corre-
sponds to the spherical minimum, and other two correspond
to two deformed minima (symmetric with respect to the
origin, βa = 0). The other two extremes correspond to maxima
(symmetric with respect to the origin). The particular region
y = 0, A = 0 (x = 4/5), for values y ′ > 1, is a region of
coexistence of three minima, one spherical and two deformed.
At the critical point all three minima are degenerated. As a
consequence, a first-order phase transition develops around
this line. The first-order phase-transition line is defined then by

A = B2

4C
(42)

and is bounded by the spinodal [(∂2E/∂β2)β=0 = 0] and the
antispinodal [(∂2E/∂β2)β=βc �=0 = 0] lines given by

A = 0 (spinodal), (43)

A = 3B2

16C
(antispinodal). (44)

For the case B2 < 4AC only the spherical minimum exists.

It is worth analyzing what happens at the special line y = 0
and y ′ = 1. For this line B = 0 and the energy surface presents
three critical points when A < 0 (x < 4/5),

β = 0, (45)

β = ±
(−A

C

)1/4

. (46)

The first one, spherical, corresponds to a maximum and the
second and the third, deformed and symmetric with respect to
the origin, correspond to minima. For A > 0 (x > 4/5) only
the minimum at β = 0 survives. To study the QPT at x = 4/5,
one can write the energy at the equilibrium β value (46), that
is,

E = (−A)3/2

3
√

C
for A < 0, (47)

E = 0 for A > 0. (48)

Its first derivative with respect to A is

dE

dA
= −√−A

2
√

C
for A < 0, (49)

dE

dA
= 0 for A > 0. (50)

Therefore, the transition is not of first order. Performing the
second-order derivative,

d2E

dA2
= −1

4
√−AC

, for A < 0, (51)

d2E

dA2
= 0 for A > 0. (52)

Therefore, a discontinuity appears in the second derivative
with respect to the control parameter. Indeed, in the deformed
side the second derivative diverges to −∞.

FIG. 10. Same as Fig. 9, but including the corresponding energy
curves as a function of the essential order parameter βa .
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FIG. 11. Representation of the butterfly catastrophe (without odd-
power terms), Eq. (40), as a function of the control parameters A and
B. The energy curves that characterize every region are depicted as
well as the curves corresponding to lines and points with degenerated
critical points are also depicted.

In Fig. 10 we show, once more, the phase diagram, but
in this case plotting the corresponding energy curves as a
function of the value of the essential variable. In this figure
one can appreciate in a cleaner way how the first-order
vertical plane is related to two symmetric degenerated minima,
symmetric with respect to βa = 0, while the first-order surface
separating spherical and deformed phases corresponds also to
two degenerated minima, spherical and deformed. The line
x = 4/5, y = 0, y ′ < 1 corresponds to a β4

1 energy curve, i.e.,
to a cusp line. The point x = 4/5, y = 0, y ′ = 1 corresponds
to a β6

1 energy curve and, finally, a first-order phase transition
line appears for x ≈ 4/5, y = 0, y ′ > 1 with three degenerated
minima. The behavior of this first-order phase-transition area
is explained in detail in Fig. 11, where, as a function of the
control parameters A and B, is depicted the phase diagram,
separating the areas corresponding to spherical (blue area),
deformed shapes (red area), or coexistence area (yellow area).
Also spinodal, antispinodal, and first-order lines are shown.

At the point A = 0, B = 0, i.e., x = 4/5, y = 0, and
y ′ = 1, the second-order phase-transition line (B > 0) and the
spinodal, antispinodal, and first-order phase transitions merge.
This point is known as the tricritical point, while the first-order
phase-transition line corresponds to a triple point curve where
three minima are degenerated and coexist.

The inclusion of a third- (and a fifth-) order term in the
potential (40) will break the symmetry of the function. The
consequence will be the appearance of a coexistence region for

the cusp line and, therefore, its transformation in a first-order
phase transition line. In the case of the coexistence area with
B < 0 the asymmetry generated in the energy curves will make
impossible the degeneracy of three minima, but the degeneracy
of the spherical and one of the deformed minima will continue
to be possible. Moreover, the spinodal line is still at A = 0 too,
though the antispinodal one will be shifted. As a consequence,
in this case, the phase transition is still of first order.

VI. SUMMARY AND CONCLUSIONS

In this work the mean-field energy surface of the consistent-
Q-like double Lipkin Hamiltonian has been studied. The
analyzed Hamiltonian resembles the IBM-2 Hamiltonian of
interest in nuclear physics. The phase diagram of the model
has been established both numerical and analytically. The
mean-field numerical calculations have been compared with
direct diagonalizations and good agreement has been reached.
The analytical study has been performed using the catastrophe
theory and it has been found that the energy can be successfully
described by the butterfly catastrophe.

Therefore, the phase diagram of the model has been
obtained, including phases, locations of the QPT phase
transitions, and their orders. In particular, there are three
phases: spherical and two different deformed ones. The surface
separating spherical and both deformed phases is of first
order: two minima, one spherical and one deformed, which
are degenerated at the phase transition point. Moreover, the
vertical plane separating both deformed phases is also of first
order: Two deformed minima with different deformations are
degenerated and separated by a maximum at βa = 0. These
two surfaces intersect in the line (x = 4/5, y = 0), this is of
second order for 0 < y ′ � 1 and transforms to a first-order
phase transition for y ′ > 1. The part of the line (x = 4/5,
y = 0, 0 < y ′ < 1) corresponds to a flat surface (goes as β4

a ).
At the point (x = 4/5, y = 0, y ′ = 1) the energy surface is
even flatter and goes as β6

a . Finally, in the part of the line
(x ≈ 4/5, y = 0, y ′ > 1) three degenerated minima coexist
(one spherical and two deformed ones). The point x = 4/5,
y = 0, and y ′ = 0 corresponds to a tricritical point in the
language of the Ginzburg-Landau theory for phase transitions.
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J. E. GARCÍA-RAMOS et al. PHYSICAL REVIEW C 93, 034336 (2016)

[7] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008).

[8] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, UK, 2011).

[9] F. Iachello, B. Dietz, M. Miski-Oglu, and A. Richter, Phys. Rev.
B 91, 214307 (2015).

[10] J. M. Arias, J. E. Garcı́a-Ramos, and J. Dukelsky, Phys. Rev.
Lett. 93, 212501 (2004).

[11] M. A. Caprio and F. Iachello, Phys. Rev. Lett. 93, 242502 (2004).
[12] M. A. Caprio and F. Iachello, Ann. Phys. (NY) 318, 454 (2005).
[13] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[14] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[15] J. Vidal, J. M. Arias, J. Dukelsky, and J. E. Garcı́a-Ramos,

Phys. Rev. C 73, 054305 (2006).
[16] F. Iachello, Lie Algebras and Applications (Springer-Verlag,

Berlin, Heidelberg, Germany, 2006).

[17] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188
(1965).

[18] A. Frank and P. Van Isacker, Algebraic Methods in Molecules
and Nuclei (Wiley & Sons, New York, 1994).

[19] R. F. Casten and D. D. Warner, Rev. Mod. Phys. 60, 389
(1988).

[20] J. E. Garcı́a-Ramos, J. M. Arias, and J. Dukelsky, Phys. Lett. B
736, 333 (2014).

[21] D. H. Feng, R. Gilmore, and S. R. Deans, Phys. Rev. C 23, 1254
(1981).

[22] R. Thom, Structural Stability and Morphogenesis (Benjamin,
Reading, 1975).

[23] T. Poston and I. N. Stewart, Catastrophe Theory and Its
Applications (Pitman, London, 1978).

[24] R. Gilmore, Catastrophe Theory for Scientists and Engineers
(Wiley, New York, 1981).

034336-14

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/PhysRevB.91.214307
http://dx.doi.org/10.1103/PhysRevB.91.214307
http://dx.doi.org/10.1103/PhysRevB.91.214307
http://dx.doi.org/10.1103/PhysRevB.91.214307
http://dx.doi.org/10.1103/PhysRevLett.93.212501
http://dx.doi.org/10.1103/PhysRevLett.93.212501
http://dx.doi.org/10.1103/PhysRevLett.93.212501
http://dx.doi.org/10.1103/PhysRevLett.93.212501
http://dx.doi.org/10.1103/PhysRevLett.93.242502
http://dx.doi.org/10.1103/PhysRevLett.93.242502
http://dx.doi.org/10.1103/PhysRevLett.93.242502
http://dx.doi.org/10.1103/PhysRevLett.93.242502
http://dx.doi.org/10.1016/j.aop.2005.02.003
http://dx.doi.org/10.1016/j.aop.2005.02.003
http://dx.doi.org/10.1016/j.aop.2005.02.003
http://dx.doi.org/10.1016/j.aop.2005.02.003
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1103/PhysRevC.73.054305
http://dx.doi.org/10.1103/PhysRevC.73.054305
http://dx.doi.org/10.1103/PhysRevC.73.054305
http://dx.doi.org/10.1103/PhysRevC.73.054305
http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1103/RevModPhys.60.389
http://dx.doi.org/10.1103/RevModPhys.60.389
http://dx.doi.org/10.1103/RevModPhys.60.389
http://dx.doi.org/10.1103/RevModPhys.60.389
http://dx.doi.org/10.1016/j.physletb.2014.07.038
http://dx.doi.org/10.1016/j.physletb.2014.07.038
http://dx.doi.org/10.1016/j.physletb.2014.07.038
http://dx.doi.org/10.1016/j.physletb.2014.07.038
http://dx.doi.org/10.1103/PhysRevC.23.1254
http://dx.doi.org/10.1103/PhysRevC.23.1254
http://dx.doi.org/10.1103/PhysRevC.23.1254
http://dx.doi.org/10.1103/PhysRevC.23.1254



