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Isospin splitting of the nucleon effective mass from giant resonances in 208Pb
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Based on mean field calculations with Skyrme interactions, we extract a constraint on the isovector effective
mass in nuclear matter at saturation density ρ0, i.e., m∗

v(ρ0) = (0.77 ± 0.03)m by combining the experimental
data of the centroid energy of the isovector giant dipole resonance (IVGDR) and the electric dipole polarizability
αD in 208Pb. Meanwhile, the isoscalar effective mass at ρ0 is determined to be m∗

s (ρ0) = (0.91 ± 0.05)m by
analyzing the measured excitation energy of the isoscalar giant quadrupole resonance (ISGQR) in 208Pb. From
the constrained m∗

s (ρ0) and m∗
v(ρ0), we obtain the isospin splitting of nucleon effective mass in asymmetric

nuclear matter of isospin asymmetry δ at ρ0 as [m∗
n(ρ0,δ) − m∗

p(ρ0,δ)]/m = �m∗
1(ρ0)δ + O(δ3) with the linear

isospin splitting coefficient �m∗
1(ρ0) = 0.33 ± 0.16. We notice that using the recently corrected data on the αD

in 208Pb with the contribution of the quasideuteron effect subtracted slightly enhances the isovector effective
mass to m∗

v(ρ0) = (0.80 ± 0.03)m and reduces the linear isospin splitting coefficient to �m∗
1(ρ0) = 0.27 ± 0.15.

Furthermore, the constraints on m∗
v(ρ), m∗

s (ρ), and �m∗
1(ρ) at other densities are obtained from the similar

analyses and we find that the �m∗
1(ρ) increases with the density.
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I. INTRODUCTION

Nucleon effective mass, which is usually introduced to
characterize the dynamical properties for the propagation
of (quasi)nucleons in nuclear medium, is of fundamental
importance in nuclear many-body physics [1–3]. While there
exist several different kinds of nucleon effective masses in non-
relativistic and relativistic approaches [4–7], we shall focus in
this work on the total nucleon effective mass used typically in
the nonrelativistic approach, which measures the momentum
dependence (or equivalently energy dependence by assuming
an on-shell dispersion relation) of the nucleon single-particle
potential in nuclear medium. In isospin asymmetric nuclear
matter, neutrons and protons may feel different single-particle
potentials which can then lead to the isospin splitting of nu-
cleon effective mass, i.e., m∗

n−p ≡ (m∗
n − m∗

p)/m. The isospin
splitting of the nucleon effective mass may have a profound
impact on various physical phenomena and quantities in
nuclear physics, astrophysics, and cosmology [8,9], such as
the properties of mirror nuclei [10], transport properties of
asymmetric nuclear matter [11–20], neutrino emission in
neutron stars [21], and the primordial nucleosynthesis in the
early universe [22]. The isospin splitting of nucleon effective
mass is also related to the momentum dependence of the
nuclear isovector (symmetry) potential in nuclear medium [23]
and thus the nuclear symmetry energy [24–28] which is of
critical importance for many issues of both nuclear physics
and astrophysics but remains largely uncertain. A most recent
review on the isospin splitting of nucleon effective mass as well
as its relation to the symmetry energy and symmetry potential
can be found in Ref. [9].

*Corresponding author: lwchen@sjtu.edu.cn

Theoretical studies based on either microscopic many-
body theories or phenomenological approaches have thus
far given widely divergent predictions on m∗

n−p. For exam-
ple, nonrelativistic Brueckner-Hartree-Fock and relativistic
Dirac-Brueckner-Hartree-Fock calculations indicate m∗

n−p >
0 [29–31] in neutron-rich matter, while relativistic mean
field, Skyrme-Hartree-Fock (SHF), and Gogny-Hartree-Fock
models predict either m∗

n−p > 0 or m∗
n−p < 0 [6,26,32–37],

depending on the interactions. During the last several years,
significant progress has been made in determining the isospin
splitting of nucleon effective mass by analyzing experimental
data [9]. However, there is still no quantitatively and even
qualitatively consensus on the behavior of m∗

n−p in asymmetric
nuclear matter. For example, while the optical model analyses
of nucleon-nucleus scattering data [24,38] favor m∗

n−p > 0 in
neutron-rich matter at ρ0, the transport model analysis on the
double n/p ratio in heavy ion collisions seems to suggest the
opposite conclusion [39] (but see Ref. [40]). Therefore, any
new and independent constraints on the isospin splitting of
nucleon effective mass are extremely helpful for understanding
the issue on the behavior of m∗

n−p in asymmetric nuclear
matter.

Nuclear giant resonances provide an important approach to
determine nucleon effective mass. It has been well established
that the excitation energy Ex of the isoscalar giant quadrupole
resonance (ISGQR) in finite nuclei is related to the isoscalar
effective mass m∗

s (ρ) (nucleon effective mass in symmetric
nuclear matter) at ρ0, i.e., m∗

s,0 (see, e.g., Refs. [41–44]).
A value of m∗

s,0 ∼ 0.8m has been estimated by analyzing
experimental data for ISGQR excitation energy in early
studies [42], and more recent microscopic random phase
approximation (RPA) calculations suggest that the ISGQR in
heavy nuclei favors m∗

s,0 ∼ 0.9m [43–45]. Moreover, within
the RPA approach using Skyrme interactions, the isovector
effective mass m∗

v(ρ) [i.e., neutron (proton) effective mass
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in pure proton (neutron) matter] at ρ0, i.e., m∗
v,0, is closely

related to the enhancement factor κ of the energy weighted
sum rule (EWSR) m1 in the isovector giant dipole resonance
(IVGDR) [45–47]. Unfortunately, while the peak of the
IVGDR strength function has been well located for a number
of nuclei by photoabsorption measurements [48], neither the
m1 nor the κ has been accurately determined. Furthermore, the
detailed relation between m∗

v,0 and m1 or κ has not yet been
systematically investigated for different nuclei. Therefore, the
m∗

v,0 has so far not yet been properly constrained.
The properties of the heavy doubly magic nucleus 208Pb,

especially including various kinds of giant resonances, have
been well researched. In the present work, we mainly study
how the ISGQR and IVGDR of 208Pb constrain the m∗

n−p

in neutron-rich matter. Thanks to the recent high resolution
measurement for the electric dipole polarizability αD in 208Pb,
which is determined by the inverse energy weighted sum rule
m−1 of the IVGDR, at the Research Center for Nuclear Physics
(RCNP) [49], in this work, we deduce the m1 of the IVGDR
in 208Pb from the experimental value of the IVGDR centroid
energy E−1 = √

m1/m−1 [48]. Using the RPA calculations
with a number of representative Skyrme interactions, we
establish the detailed relations between m∗

s,0 (m∗
v,0) and the Ex

of ISGQR (m1) in 208Pb, and then extract relatively accurate
constraints on m∗

s and m∗
v from the ISGQR excitation energy

Ex and the m1 of the IVGDR in 208Pb, respectively. Within the
SHF model, we show that the m∗

n−p is completely determined
by the m∗

s and m∗
v , and thus we can obtain constraints on the

m∗
n−p, which is the main motivation of the present work. For

the first time, our results indicate that the data on the giant
resonances in 208Pb definitely favor m∗

n−p > 0 in neutron-rich
matter, which would be very helpful to pin down the isospin
splitting of nucleon effective mass.

II. MODEL AND METHOD

A. Nucleon effective mass in Skyrme-Hartree-Fock approach

In nonrelativistic approaches, the effective mass m∗
q of a

nucleon q (n or p) in asymmetric nuclear matter with density
ρ and isospin asymmetry δ = (ρn − ρp)/(ρp + ρn) can be
calculated as [1]

m∗
q(ρ,δ)

mq

=
[

1 + mq

k

dUq(k,εq(k,ρ,δ),ρ,δ)

dk

∣∣∣∣
k

q
F

]−1

, (1)

where mq represents the mass of neutrons or protons in
free space (mq = m is assumed in this work), k

q
F is the

neutron/proton Fermi momentum, Uq is the single-nucleon
potential, and εq is the nucleon single-particle energy satisfy-
ing the following dispersion relation:

εq(k,ρ,δ) = k2

2mq

+ Uq(k,εq(k),ρ,δ). (2)

In this work, we use the standard Skyrme interaction with
a zero-range and velocity-dependent form as [47]

V12(R,r) = t0(1 + x0Pσ )δ(r)

+ 1
6 t3(1 + x3Pσ )ρσ (R)δ(r)

+ 1
2 t1(1 + x1Pσ )(K

′2δ(r) + δ(r)K2)

+ t2(1 + x2Pσ )K
′ · δ(r)K

+ iW0(σ1 + σ2) · [K
′ × δ(r)K] (3)

with r = r1 − r2 and R = (r1 + r2)/2. In the above expres-
sion, the relative momentum operators K = (∇1 − ∇2)/2i and
K′ = −(∇1 − ∇2)/2i act on the wave function on the right and
left, respectively. The quantities Pσ and σi denote, respectively,
the spin exchange operator and Pauli spin matrices. In the
following, several Skyrme interactions with nonstandard spin-
orbit term [50] are also employed, but the spin-orbit term is
irrelevant to the expressions of nucleon effective mass.

Within the standard SHF approach, the nucleon effective
mass in asymmetric nuclear matter with density ρ and isospin
asymmetry δ can be expressed as [47]

�
2

2m∗
q(ρ,δ)

= �
2

2m
+ 1

4
t1

[(
1 + 1

2
x1

)
ρ −

(
1

2
+ x1

)
ρq

]

+ 1

4
t2

[(
1 + 1

2
x2

)
ρ +

(
1

2
+ x2

)
ρq

]
. (4)

By setting ρq = ρ/2 in Eq. (4), the isoscalar effective mass
can then be obtained as [47]

�
2

2m∗
s (ρ)

= �
2

2m
+ 3

16
t1ρ + 1

16
t2(4x2 + 5)ρ. (5)

The isovector effective mass, which corresponds to the proton
(neutron) effective mass in pure neutron (proton) matter, can
be obtained with ρq = 0 in Eq. (4) as [47]

�
2

2m∗
v(ρ)

= �
2

2m
+ 1

8
t1(x1 + 2)ρ + 1

8
t2(x2 + 2)ρ. (6)

From Eqs. (4), (5), and (6), one can obtain the isospin
splitting of nucleon effective mass, i.e.,

m∗
n−p(ρ,δ) ≡ m∗

n − m∗
p

m
= 2

m∗
s

m

∞∑
n=1

(
m∗

s − m∗
v

m∗
v

δ

)2n−1

=
∞∑

n=1

�m∗
2n−1(ρ)δ2n−1, (7)

where the isospin splitting coefficients �m∗
2n−1(ρ) can be

expressed as

�m∗
2n−1(ρ) = 2

m∗
s

m

(
m∗

s

m∗
v

− 1

)2n−1

. (8)

The above expressions reveal that, within the SHF model, the
m∗

n−p is completely determined by the m∗
s and m∗

v , and the sign
of m∗

n−p in neutron-rich matter is the same as that of m∗
s − m∗

v .

B. Random-phase approximation and nuclear giant resonances

The random-phase approximation [51] provides a success-
ful microscopic approach to study giant resonance observables
in finite nuclei. Within the framework of RPA theory, for
a given excitation operator F̂JM , the reduced transition
probability from RPA ground state |0̃〉 to RPA excitation state
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|ν〉 is given by

B(EJ : 0̃ → |ν〉) = |〈ν||F̂J ||0̃〉|2

=
∣∣∣∣∣
∑
mi

(
Xν

mi + Y ν
mi

)|〈m||F̂J ||i〉
∣∣∣∣∣
2

, (9)

where m(i) denotes the unoccupied (occupied) single nucleon
state, 〈m||F̂J ||i〉 is the reduced matrix element of F̂JM , and
Xν

mi and Y ν
mi are the RPA amplitudes. The strength function

then can be calculated as

S(E) =
∑

ν

|〈ν‖F̂J ‖0̃〉|2δ(E − Eν), (10)

where Eν is the energy of RPA excitation state |ν〉. Thus the
moments of strength function can be obtained as

mk =
∫

dEEkS(E) =
∑

ν

|〈ν‖F̂J ‖0̃〉|2Ek
ν . (11)

For the IVGDR and IVGQR that we are interested in here, the
excitation operators are defined as

F̂1M = N

A

Z∑
i=1

riY1M(r̂i) − Z

A

N∑
i=1

riY1M(r̂i), (12)

F̂2M =
A∑

i=1

r2
i Y2M(r̂i), (13)

where Z, N , and A are proton, neutron, and mass number,
respectively, ri is the nucleon’s radial coordinate, Y1M(r̂i) and
Y2M(r̂i) are the corresponding spherical harmonic function.

C. Nucleon effective mass and nuclear giant resonances

It is well known that the isoscalar effective mass at
saturation density, i.e., m∗

s,0, is intimately related to the
excitation energy of the ISGQR in finite nuclei. In the harmonic
oscillator model, the ISGQR energy is [41,43]

Ex =
√

2m

m∗
s,0

�ω0, (14)

where �ω0 is the frequency of the harmonic oscillator. This
semiempirical expression reveals the correlation between
the ISGQR excitation energy and the isoscalar effective
mass m∗

s,0, which has been also confirmed by microscopic
calculations [43,44].

Meanwhile, the isovector effective mass at saturation
density m∗

v,0 is correlated with the energy weighted sum rule
m1 of the IVGDR [52], i.e.,

m1 = 9

4π

�
2

2m

NZ

A
(1 + κ), (15)

where κ is the enhancement factor reflecting the deviation
from the Thomas-Reiche-Kuhn sum rule [53] (e.g., due to
the exchange and momentum dependent force). Within the

Skyrme-RPA approach, κ is given by [47,52]

κ = 2m

�2

A

4NZ

∫
ρn(r)ρp(r)d3r

×
[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
. (16)

Substituting Eqs. (6) and (16) into Eq. (15) leads to

m1 = 9

4π

�
2

2m

NZ

A

×
[

1 + A

NZ

(
m

m∗
v,0

− 1

)∫
ρn(r)ρp(r)d3r

ρ0

]
, (17)

which suggests that the EWSR m1 (and thus κ) of the IVGDR
is proportional to (m∗

v,0/m)−1 for a fixed nucleus. In particular,
by assuming ρn = ρp = ρ0/2, one then obtains the following
approximate expressions [47]:

m1 ≈ 9

4π

�
2

2m

NZ

A

(
m∗

v,0

m

)−1

(18)

and

m∗
v,0/m ≈ 1/(1 + κ). (19)

III. RESULTS AND DISCUSSIONS

To study the correlation between the nucleon effective mass
and the giant resonance observables, we select 50 representa-
tive Skyrme interactions [34,54,55] (i.e., BSk1, BSk2, BSk5,
BSk6, BSk13, Es, Gs, KDE, KDE0v1, MSk7, MSL0, MSL1,
NRAPR, Rs, SAMi, SGI, SGII, SK255, SK272, SKa, SkI3,
SkM, SkMP, SkM∗, SkP, SkS1, SkS2, SkS3, SkS4, SkSC15,
SkT7, SkT8, SkT9, SKX, SKXce, SKXm, Skxs15, Skxs20,
SLy4, SLy5, SLy10, SV-K241, v070, v075, v080, v090, v105,
v110, Zs, Zs∗). The corresponding ISGQR excitation energies
and EWSRs of the IVGDR in 208Pb are calculated by using
the Skyrme-RPA program by Colò et al. [52].

In the calculation of the ISGQR excitation energy Ex , we
smear out the strength function with Lorentzian functions
with a width 1 MeV. We note that varying the width has
little influence on the peak energy. The obtained data-to-data
relations between 103/E2

x in 208Pb and ms,0/m predicted by
the chosen 50 Skyrme interactions are displayed in Fig. 1.
Also included in Fig. 1 is the linear fit together with the
corresponding Pearson correlation coefficient r . As expected
from the semiempirical relation Eq. (14), one can see that a
strong linear correlation exists between 1/E2

x and m∗
s,0/m with

the coefficient r as large as 0.971. And the linear fit gives

103

E2
x

= (0.66 ± 0.26) + (8.49 ± 0.30)

(
m∗

s,0

m

)
, (20)

where the Ex is in MeV.
In the present work, we invoke the weighted average of

experimental values for the ISGQR energy in 208Pb, i.e., Ex =
10.9 ± 0.1 MeV [43], which is shown as the hatched band
in Fig. 1. Combining this weighted average and Eq. (20), we
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FIG. 1. 103/E2
x in 208Pb vs m∗

s,0/m predicted by a large num-
ber (50) of Skyrme interactions. The linear fit gives 103/E2

x =
(0.66 ± 0.26) + (8.49 ± 0.30)(m∗

s,0/m) with the Pearson correlation
coefficient being 0.971. The hatched band corresponds the weighted
averages of the experimental values for the ISGQR excitation energy
in 208Pb, Ex = 10.9 ± 0.1 MeV [43].

extract the isoscalar effective mass at saturation density as

m∗
s,0

m
= 0.91 ± 0.05. (21)

Here the error is obtained from the propagation of the
experimental uncertainty of Ex and parameter errors in the
linear fit. This constraint is consistent with the result m∗

s,0 ≈
0.8 − 0.9m obtained from analyzing the ISGQR of Nd and
Sm isotopes [56], and naturally confirms the empirical value
of m∗

s,0 ∼ 0.9m predicted by some Skyrme interactions which
are obtained by fitting the experimental data of the ISGQR
excitation energy in finite nuclei [44,45]. It is also in good
agreement with the result of m∗

s,0 ∼ 0.92m from the extended
Brueckner-Hartree-Fock calculation with realistic nucleonic
forces [29].

For the IVGDR, we use the chosen 50 Skyrme interactions
to evaluate the m1 of the IVGDR in 208Pb with energy up
to 130 MeV. Similarly, in Fig. 2, we plot the data-to-data
relations between 104/m1 and m∗

v,0/m as well as the linear
fit and Pearson correlation coefficient r . It is clearly shown
that an excellent linear correlation exists between 1/m1 and
m∗

v,0/m, and the linear fit gives

104

m1
= (2.17 ± 0.05) + (11.5 ± 0.07)

m∗
v,0

m
, (22)

where the m1 is in MeV fm2. Experimentally, the centroid
energy of the IVGDR, i.e., E−1 = √

m1/m−1, in 208Pb has
been well determined from photoabsorption measurements,
i.e., E−1 = 13.46 MeV [48], and the inverse energy weighted
sum rule m−1 can be obtained from the experimental value of
the electric dipole polarizability measured at RCNP, i.e., αD =
20.1 ± 0.6 fm3[49], through the following simple relation:

m−1 = 9

8πe2
αD. (23)

FIG. 2. 104/m1 in 208Pb vs m∗
v,0/m predicted by a large number

(50) of Skyrme interactions. The linear fit gives 104/m1 = (2.17 ±
0.05) + (11.5 ± 0.07)m∗

v,0/m with the Pearson correlation coefficient
being 0.999. The hatched band (cyan band) corresponds to the
(corrected) experimental value of the EWSR m1 of the IVGDR in
208Pb (see text for the details).

The experimental values of E−1 and m−1 together thus give
m1 = 905.60 ± 27.03 MeV fm2. Therefore, one can constrain
isovector effective mass at saturation density using Eq. (22),
and the result is

m∗
v,0

m
= 0.77 ± 0.03. (24)

One can see that our constraint is rather accurate and well
consistent with the empirical value, e.g., m∗

v,0/m = 0.90 ± 0.2
from analyses of finite nuclei mass data [57]. In addition, from
the well-known relation Eq. (15) for the EWSR, the value of the
enhancement factor κ can be deduced as κ = 0.228 ± 0.037
with m1 = 905.60 ± 27.03 MeV fm2, which is in very good
agreement with κ = 0.22 ± 0.04 reported in Ref. [58] and
consistent with the estimate of κ ≈ 0.2–0.3 in Ref. [59]. We
note that using the relation m∗

v,0/m ≈ 1/(1 + κ) [i.e., Eq. (19)]
leads to a little bit larger κ as κ ≈ 0.30 ± 0.05, indicating
that Eq. (19) is indeed satisfied approximately. However, one
should be cautious to use the relation m∗

v,0/m ≈ 1/(1 + κ) for
an accurate determination on m∗

v,0 from κ , and vice versa.
From the constraints on m∗

s,0 and m∗
v,0, one can then

obtain the isospin splitting m∗
n−p(ρ0) according to Eq. (8).

In particular, we obtain the first-order (linear) isospin splitting
coefficient �m∗

1(ρ) at ρ0 as

�m∗
1(ρ0) = 0.33 ± 0.16, (25)

which is in very good agreement with the constraint
�m∗

1(ρ0) = 0.32 ± 0.15 obtained in Ref. [24] and the more re-
cent constraint �m∗

1(ρ0) = 0.41 ± 0.15 extracted in Ref. [38]
from the global optical model analysis of nucleon-nucleus
scattering data. The present result is also consistent with the
�m∗

1(ρ0) = 0.27 obtained by analyzing various constraints on
the magnitude and density slope of the symmetry energy at
ρ0 [60]. The positive value of �m∗

1(ρ0) further agrees with
the microscopic Brueckner calculations with realistic nuclear
forces [29–31]. In addition, it is interesting to see that the
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FIG. 3. (a) Constraints on the density dependence of the isoscalar
and isovector effective mass, m∗

s and m∗
v , extracted from the ISGQR

and IVGDR in 208Pb, respectively. The inset shows the corresponding
Pearson correlation coefficient r as a function of density. (b)
Constraints on the density dependence of the isospin splitting
coefficients �m∗

1(ρ) and �m∗
3(ρ) obtained in this work. The hatched

bands (cyan bands) represent the results of m∗
v , �m∗

1(ρ), and �m∗
3(ρ)

without (with) subtracting the contribution from the quasideuteron
effect. The �m∗

1(ρ0) constraints obtained in Refs. [24,38,60] are also
included for comparison.

higher-order isospin splitting coefficients are rather small and
can be neglected safely. For example, the third-order isospin
splitting coefficient �m∗

3(ρ0) is found to be 0.01 ± 0.01.
The above analyses are only made at saturation density ρ0

and it is also interesting to see the constraints on m∗
s (ρ), m∗

v(ρ),
and m∗

n−p(ρ) at other densities. Similar analyses indicate that
the strong linear correlation also exists between 1/E2

x and
m∗

s (ρ)/m as well as between 1/m1 and m∗
v(ρ)/m at other

densities ρ. Shown in Fig. 3(a) are the constraints on the
m∗

s (ρ)/m and m∗
v(ρ)/m as functions of density extracted from

the ISGQR and IVGDR in 208Pb, respectively. The inset of
Fig. 3(a) shows the density dependence of the corresponding
Pearson correlation coefficient r for 1/E2

x vs m∗
s (ρ)/m as well

as 1/m1 vs m∗
v(ρ)/m. The corresponding constraints on the

isospin splitting coefficients �m∗
1(ρ) and �m∗

3(ρ) as functions
of density are shown in Fig. 3(b). Also included in Fig. 3(b)
are the �m∗

1(ρ0) constraints obtained in Refs. [24,38,60] as
discussed earlier. Indeed, one can see that all the r values in the
inset of Fig. 3(a) are larger than 0.95 for 0 < ρ < 0.32 fm−3

that we are considering here, indicating the strong linear
correlation. Particularly, the strongest correlation appears at
ρ ≈ 0.19 fm−3 (with r = 0.97035) for 1/E2

x vs m∗
s (ρ)/m

while at ρ ≈ 0.13 fm−3 (with r = 0.99961) for 1/m1 vs
m∗

v(ρ)/m. It is seen that the m∗
s (ρ)/m is generally larger

than m∗
v(ρ)/m and both m∗

s (ρ)/m and m∗
v(ρ)/m decrease with

density but the latter exhibits a stronger density dependence,
which leads to the isospin splitting coefficients �m∗

1(ρ) and
�m∗

3(ρ) increase with density as observed in Fig. 3(b). It
is interesting to see that the third-order isospin splitting
coefficient �m∗

3(ρ) is very small (about 0.05 even at ρ =
0.32 fm−3) and can be approximately negligible. The stronger
isospin splitting of nucleon effective mass at higher densities
may have implications on the isospin effects in heavy ion
collisions and neutrino emission in neutron stars as mentioned
earlier, and these are deserved further explorations in the
future.

Very recently, Roca-Maza et al. [61] pointed out that
the measured value of αD in 208Pb reported in Ref. [49]
is contaminated by the nonresonant quasideuteron effect at
higher energies. The quasideuteron effect should be mainly
due to correlated neutron-proton pairs in nucleus and it
overwhelms the IVGDR for the photon absorption at higher
energies beyond about 25 MeV [62]. In principle, the con-
tribution from the quasideuteron effect should be subtracted
to directly compare the experimental strength against the
theoretical RPA calculations for the IVGDR. In Ref. [61] (and
references therein), this contribution has been determined and
the electric dipole polarizability in 208Pb has been corrected
to be 19.6 ± 0.6 fm3. Invoking the corrected value of αD,
we derive a value of the EWSR of the IVGDR as m1 =
883.05 ± 27.03 MeVfm2 which is plotted as the cyan band
in Fig. 2. Repeating the above analyses, one can further obtain
the isovector effective mass at ρ0 as m∗

v,0/m = 0.80 ± 0.03
and the corrected linear isospin splitting coefficient �m∗

1(ρ)
as �m∗

1(ρ0) = 0.27 ± 0.15. The obtained new value of the
enhancement factor is κ = 0.197 ± 0.037, which is still in
good agreement with the results in Refs. [58,59]. Again,
we extract the density dependence of the isovector effective
mass m∗

v and the isospin splitting coefficients �m∗
1(ρ) and

�m∗
3(ρ) by using the corrected value of αD in 208Pb due to

the quasideuteron effect, and the results are shown as the cyan
bands in Fig. 3. Overall, one can see that the correction on
the experimental value of αD in 208Pb from subtracting the
contribution of the quasideuteron effect does not affect the
qualitative conclusions and only leads to small corrections on
quantitative results.

Furthermore, we have made similar analyses for the
IVGDR of the semidouble-closed-shell nucleus 68Ni. Using
the measured centroid energy E−1 = 17.1 ± 0.2 MeV [63] as
well as the electric dipole polarizability αD = 3.88 ± 0.31 fm3

obtained in Ref. [61] from a Lorenzian(-plus-Gaussian) extrap-
olation of the measured GDR strength [63] to the high-energy
(low-energy) region, we extract an isovector effective mass at
ρ0 as m∗

v,0/m = 0.81 ± 0.11, which is in good agreement with
the above results obtained from analyzing the data of 208Pb
although the uncertainty is larger. In addition, we would like
to point out that the present RPA calculations are not expected
to reproduce the experimental spreading width of the GDR, and
this problem can be solved effectively by taking into account
the coupling to the collective low-lying (mainly surface)
vibrations or phonons [64–67]. As discussed in Ref. [61],
however, such an effect beyond the mean-field approximation
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is not expected to significantly affect the integral properties of
the calculated strength that we are focusing on here.

IV. CONCLUSIONS

Based on mean field calculations with Skyrme interactions,
we have demonstrated that the isoscalar and isovector effective
masses at saturation density, i.e., m∗

s,0 and m∗
v,0, can be well

constrained by the ISGQR excitation energy Ex and the EWSR
m1 of the IVGDR in 208Pb, respectively. In particular, invoking
the experimental data for Ex in 208Pb, we have obtained the
constraint m∗

s,0 = 0.91 ± 0.05m. Meanwhile, combining the
experimental IVGDR centroid energy and the electric dipole
polarizability αD = 20.1 ± 0.6 in 208Pb, we have deduced a
value of m1 = 905.60 ± 27.03 MeV fm2, and further extracted
a value of m∗

v,0 = 0.77 ± 0.03m. From the extracted m∗
s,0

and m∗
v,0, we have obtained a constraint on the first-order

(linear) isospin splitting coefficient of nucleon effective mass,
i.e., �m∗

1(ρ0) = 0.33 ± 0.16 which is in good agreement
with the constraints extracted from global nucleon optical
potentials constrained by world data on nucleon-nucleus
scattering [24,38] and is also consistent with the value obtained
by analyzing the constraints on the symmetry energy [60].

Furthermore, we have constrained the isoscalar and isovec-
tor effective masses as well as the isospin splitting of nucleon
effective mass at other densities by the similar analyses of the
giant resonances in 208Pb. Our results indicate that the isospin
splitting of nucleon effective mass increases with the density,
and the third-order or higher-order isospin splitting coefficients
are negligibly small.

In addition, we have also investigated how our results
change if the recently corrected experimental value of αD =
19.6 ± 0.6 fm3 in 208Pb due to the quasideuteron effect is
used. Our results indicate that the corrected value leads
to m1 = 883.1 ± 27.0 MeV fm2, m∗

v,0 = 0.80 ± 0.03m, and
�m∗

1(ρ0) = 0.27 ± 0.15. Therefore, the quasideuteron effect
in 208Pb only plays a minor role on the extractions of the
isovector effective mass and the isospin splitting coefficient of
nucleon effective mass. Our present work reveals for the first
time that the data on the giant resonances in 208Pb definitely
favor m∗

n > m∗
p in neutron-rich matter, which sheds a light

upon understanding the isospin splitting of nucleon effective
mass in asymmetric nuclear matter.
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