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Two types of average neutron-proton interaction formulas are compared: In the first type, neutron-proton
interactions for even-even and odd-A nuclei extracted from experimental binding energies show a smooth
behavior as a function of mass number A and are dominated by the contribution from the symmetry energy.
Whereas in the second type large systematic staggering is seen between even-A and odd-A nuclei. This deviation
is understood in terms of the additional neutron-proton interaction in odd-odd nuclei relative to the neighboring
even-even and odd-A systems. We explore three possible ways to extract this additional interaction from the
binding energy difference of neighboring nuclei. The extracted interactions are positive in nearly all cases and
show weak dependence on the mass number. The empirical interactions are also compared with theoretical values
extracted from recent nuclear mass models where large unexpected fluctuations are seen in certain nuclei. The
reproduction of the residual neutron-proton interaction and the correction of those irregular fluctuations can be a
good criterion for the refinement of those mass models.
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I. INTRODUCTION

Systematic studies on nuclear masses, in particular their
global smooth behaviors and local fluctuations, have revealed
rich information about nuclear structure and the underlying
effective interaction. It is possible to isolate specific interaction
channels by using appropriate relative mass differences. For
example, the pairing interaction can be extracted from the
odd-even staggering of nuclear masses (see, e.g., Refs. [1–5]
and references therein). Another prominent example is the so-
called average neutron-proton (np) interaction in the even-even
nucleus, which can be extracted from the double difference of
binding energies as [6]

δVnp(Z,N ) = 1
4 [B(Z,N ) + B(Z − 2,N − 2)

−B(Z − 2,N ) − B(Z,N − 2)], (1)

where B(Z,N ) is the (positive) binding energy of a nucleus
with Z protons and N neutrons. The factor 1/4 takes into
account the fact that, as illustrated in the upper left panel of
Fig. 1, four additional np pair interactions are formed by the last
two protons and neutrons. This filter was extensively studied in
the literature [7–17]. The empirical values from experimental
data were compared with those predicted by density functional
as well as mass formula calculations [18,19].

The average np interaction in odd-A and odd-odd nuclei
can be extracted in a similar way as

δVnp(Z,N − 1) = 1
2 [B(Z,N − 1) + B(Z − 2,N − 2)

−B(Z − 2,N − 1) − B(Z,N − 2)], (2)

δVnp(Z − 1,N ) = 1
2 [B(Z − 1,N ) + B(Z − 2,N − 2)

−B(Z − 2,N ) − B(Z − 1,N − 2)], (3)
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which involve two np pairs [Fig. 1(b)] and

δVnp(Z − 1,N − 1)

= B(Z − 1,N − 1) + B(Z − 2,N − 2)

−B(Z − 1,N − 2) − B(Z − 2,N − 1), (4)

involving one np pair [Fig. 1(c)]. We have assumed that N
and Z only take even numbers in Eqs. (1)–(4). Empirical
studies of nuclear masses suggest that average np interactions
for even-even and neighboring odd-A nuclei extracted from
experimental data are roughly the same and show somewhat
smooth behavior as a function of A [18,19]. Whereas values
for odd-odd nuclei are systematically larger than those for
neighboring even-even and odd-A nuclei.

In addition to the family of δVnp relations shown above in
Eqs. (1)–(4), there is another way to extract the average np
interaction as

V1n−1p(Z,N ) = B(Z,N ) + B(Z − 1,N − 1)

−B(Z,N − 1) − B(Z − 1,N ), (5)

where Z and N denote proton and neutron numbers which can
take both even and odd values. This was proposed in Ref. [20]
and applied recently in Refs. [21–25].

In this paper we are interested in exploring the difference
between the above two families of np formulas. We will
show that the difference can be useful for our understanding
of the general properties of the np interaction as well as
the additional binding between the last unpaired proton and
neutron in odd-odd nuclei. This additional binding can be
extracted from experimental data in simple ways. We will
also compare those empirical np interactions with theoretical
values extracted from recent nuclear mass models.

II. COMPARISON BETWEEN THE TWO TYPES
OF NP INTERACTIONS

The average np interaction formulas Eqs. (4) and (5) are
the same for odd-odd nuclei. They measure the energy gain by
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FIG. 1. Illustration of the np interaction in even-even (EE) (a),
odd-A (EO/OE) (b), and odd-odd (OO) (c) nuclei as extracted from
Eqs. (1)–(4) as well as those from Eq. (5) for even-even nuclei, which
can be seen as a hole-hole-like np interaction.

the odd proton and odd neutron relative to the even-even core
from the additional np interaction between the two particles.
On the other hand, the np interaction for even-even nuclei from
Eq. (5) involves the breaking of two identical pairs, which one
intentionally avoided in the construction of the first family of
average np interaction. On the first glance, one may suspect that
the np interaction for even-even and odd-A nuclei extracted
from Eq. (5) may be perturbed by the neutron-neutron and
proton-proton pairing interactions. However, it is noticed that
these pair energies will cancel each other and will not affect
the final np interaction energy if the pairing interactions in
even-even nuclei are the same as those of the corresponding
odd-A nuclei with one less neutron or proton. This can also
be understood from Eq. (5): Similar to V1n−1p(OO) which
measures the energy gain relative to the even-even core with
one less np pair, one can reinterpret V1n−1p(Z,N ) for an even-
even nucleus as a measure of the np interaction between the
(Z − 1)th proton and (N − 1)th neutron relative to the even-
even nucleus (Z,N ) with one more np pair. This is illustrated
in the lower right panel of Fig. 1. Indeed, as shown in Fig. 2,
V1n−1p(EE) are roughly the same as those for the odd-odd
nuclei with one less np pair.
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FIG. 2. The average np interactions for even-even and odd-odd
nuclei as extracted from experimental data [26] by using V1n−1p ,
Eq. (5), in comparison to δVnp(EE) from Eq. (1). The dotted lines
are determined by fitting to the corresponding data points.
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FIG. 3. The average np interactions for odd-A nuclei as extracted
from experimental data [26] by using V1n−1p in comparison to
δVnp(EE) from Eq. (1). The dotted lines are determined by fitting to
the corresponding data points.

Moreover, a striking feature one notices is that the average
np interactions V1n−1p(EE) and V1n−1p(OO) shown in Fig. 2
are systematically larger than δVnp(EE) for neighboring
nuclei. In Fig. 3 we also extracted V1n−1p for even-odd and
odd-even nuclei, which in most cases, however, are smaller
than δVnp(EE). These different deviation behaviors are related
to the fact that δVnp for odd-A nuclei are actually the average
of V1n−1p(EO/OE) and V1n−1p(OO) as

δVnp(Z − 1,N ) = 1
2 [V1n−1p(Z − 1,N )

+V1n−1p(Z − 1,N − 1)]. (6)

The reason for the systematic deviations seen in Figs. 2 and 3
will be analyzed below.

III. THE RESIDUAL NP INTERACTION
IN ODD-ODD NUCLEI

From a phenomenological point of view, it is understood
that δVnp for even-even and odd-A nuclei are dominated by
contributions from nuclear symmetry energy which is induced
by the monopole np interaction (the mean field). We have
evaluated the contribution from the standard liquid drop model
(with parameters from Ref. [27]) where, as expected, the
values for δVnp and V1n−1p are nearly identical and show a
very smooth behavior as a function of A. On the other hand,
empirical δVnp(OO) extracted from experimental binding
energies can be a mixture of the symmetry energy effect
and the re-coupling effect from the residual np interaction
between the two unpaired particles. The mean field effect
has to be properly filtered out if one aims at studying the
residual np coupling. This is important for our eventual
clarification of the role played by np pairing correlation in
nuclei (see, e.g., Refs. [28–31]) and for our understanding
of the density functional theory [32] and shell-model effective
interaction [33,34]. In general, the mean field channel of the np
interaction is dominated by its strong quadrupole-quadrupole
correlation and strongly attractive monopole interaction,
which are expected to play a key role in the development
of collective correlation [8,35] and in the evolution of the shell
structure [36–38].
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One possible way to extract the residual np interaction
in odd-odd nuclei (denoted as δnp) is to take the difference
between the pairings gaps of even-odd (even nuclei minus
one) and even-even nuclei as [4]

δ(1)
np = �(3)

n (Z,N ) − �(3)
n (Z − 1,N )

= 1
2 [B(Z,N ) + B(Z,N − 2)

−B(Z − 1,N ) − B(Z − 1,N − 2)

− 2B(Z,N − 1) + 2B(Z − 1,N − 1)]

= δVnp(OO) − [2δVnp(EO) + δVnp(OE) − 2δVnp(EE)]

= 1
2 [V1n−1p(Z,N ) − V1n−1p(Z,N − 1)], (7)

where �(3)
n denotes the three-point odd-even staggering for-

mula for the empirical neutron pairing gap.1 The persistence
of positive δnp values would suggest that �(3)

n for odd-A
isotopes is reduced relative to those of the even-even nuclei
because of the residual np interaction. The reduction equals
to the difference between δVnp(OO) and a weighted average
of those for odd-A and even-even nuclei. It also equals to half
of the difference between V1n−1p(EE) and V1n−1p(EO).2 A
very similar result can be obtained by taking the difference
between the pairing gaps of the even-even and corresponding
even-Z-odd-N nucleus. There can be other ways to extract the
residual np interaction [32,39]. One may also simply take the
difference between the odd-odd and even-even nuclei as

δ(2)
np = δVnp(OO) − δVnp(EE), (8)

which looks simpler than Eq. (7) but actually is a seven-point
formula involving one more nucleus than Eq. (7). In the spirit
of Ref. [1], one can remove the smooth contribution as defined
by the curve for δVnp(EE) in Fig. 2 as

δ(3)
np = δVnp(OO) − Vsmooth. (9)

It hopes that the δ(3)
np values thus extracted will be less

influenced by the local fluctuations presented in the average np
interaction in the even-even nucleus in relation to the shell and
other effects. However, extra parameters have to be introduced
to describe the smooth trend.

In Fig. 4 we plotted the residual np interaction extracted
from experimental binding energies [26] using the above three
formulas. It is seen that, as expected, the extracted δnp values
are positive for almost all known nuclei. This is particularly
true for δ(1)

np . The values of all the above three formulas show
a weak dependence on the mass number A. But relative large
fluctuations are seen in δ(2)

np and δ(3)
np . The mean δnp values are

around 300 keV in all three cases. The values for available
superheavy nuclei are mostly below 200 keV.

From Eq. (7) one realizes that the positive contribution
from the residual np interaction to the total binding energy is
the origin of the systematic deviations seen in Figs. 2 and 3
as well as the odd-even staggering in V1n−1p that was studied

1There was a typographical error in Fig. 2 in Ref. [4] where the δpn

values plotted correspond to the difference between nuclei with Z

and Z + 1 protons.
2This is pointed out to us by Y. Y. Cheng.
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FIG. 4. The residual np interactions defined in Eqs. (7)–(9) for
all known nuclei with N �= Z as extracted from experimental data.

in Ref. [21]. V1n−1p values for even-A nuclei in Fig. 2 are
larger than the mean value of δVnp(EE) by roughly an amount
δnp. Whereas V1n−1p(EO/OE) in Fig. 3 is smaller than the
average by an amount δnp.

A. δnp from recent mass formulas

δnp may also serve as a good test to theoretical mass models,
in particular to their predictions of the relative evolution of
mean field effect in neighboring nuclei, which are supposed
to be largely canceled out in δnp. In the upper and middle
panels of Fig. 5 we calculated δnp values from a recent
macroscopic-microscopic (mac-mic) mass formula [40] and
the 33-term shell-model mass formula [41]. As indicated in
Fig. 5, an additional isospin-dependent np interaction term
was added to the binding energy of the odd-odd nuclei in
the shell-model mass formula [41]. But our calculations show
that the improvement in the overall root-mean square error by
the addition of this term is marginal [42]. The reason is that
large irregular fluctuations around zero occur in intermediate
mass and heavy nuclei around pre-defined shell closures. For
example, one has δ(1)

np as low as −0.38 MeV for the N = 81
nucleus 132Sb in comparison to the experimental data of δ(1)

np =
0.11 MeV. This is related to the fact that the binding energies
of 132Sb and the neighboring nucleus 133Te are underestimated
by around 900 and 400 keV, respectively, whereas the binding
energy of the semimagic nucleus 133Sb is overestimated. Such
inconsistent or nonsystematic deviations from experimental
data lead to large unphysical fluctuations in local np formula
δnp. Actually similar fluctuations are also seen in the pairing
gaps extracted from the odd-even staggering in binding
energies calculated from the shell-model mass formulas [5].

In the lowest panel of Fig. 5 we plotted the δnp values
calculated and a recent HFB mass formula [43]. As can be
seen from Fig. 5(c), the δnp values extracted from the HFB
mass formula show fluctuations that are significantly larger
than those from the mac-mic and shell-model mass formulas.
In intermediate and heavy nuclei, the deviation can be as large
as ±1 MeV. One has δnp > 4 MeV in certain light nuclei.
For example, for the nucleus 18F we have δ(1)

np = 5.2 MeV in
comparison to the experimental result of 1.97 MeV. A detailed
comparison between the experimental and calculated binding
energies of the involved nuclei shows that the large deviation
is related to the underestimation of the binding energy of 19Ne
by 2.3 MeV. As a result, the empirical pairing gap for 20Ne,
which enters Eq. (9), is significantly overestimated.
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FIG. 5. Same as Fig. 4 but for those extracted from calculated
binding energies from the mac-mic mass formula [40] (a), the shell-
model mass formulas [41] with parameters as taken from Ref. [42] (b),
and the HFB mass formula [43] (c). Only results for experimentally
known nuclei are plotted.

The fluctuations become even larger in drip-line nuclei, as
seen in Fig. 6 as well as in the δnp values in the Supplemental
Material [44]. The fluctuations in Fig. 6 occur at mass regions
around A = 150 and 220 (up to ±0.5 MeV) and in unknown
heavy and superheavy nuclei. Again, the fluctuation is related
to the different predictions on the masses of neighboring even
and odd mass nuclei around shell closures. The fluctuations
for unknown nuclei as extracted from the HFB mass formula
are mostly around ±2 MeV. They are as large as ±4 MeV in
a few cases around A = 300. As for those extracted from the
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FIG. 6. Same as Fig. 4 but for all predicted bound nuclei from
the full shell-model mass formula.

mac-mic model, large fluctuations (up to ±2 MeV) also appear
in the superheavy region where the masses are not known.

Those large fluctuations seen in Fig. 5, especially the
appearance of large negative δnp values, are not expected from
the systematic behavior as plotted in Fig. 4. On the other hand,
they indicate that the relative evolution of the binding energies
of neighboring even and odd nuclei may have not been properly
reproduced in a consistent way, even though it may not show
itself through the average deviations of the masses between
theory and experiment. The correction to those fluctuations
can provide a good constraint on the improvement of the cor-
responding mass formulas and the underlying shell structure.

IV. SUMMARY

To summarize, we compared two families of filters for the
extraction of the average np interaction from nuclear binding
energies, which have been studied intensively recently. All
these formulas involve four neighboring nuclei. One avoids
breaking the proton and/or neutron pair in the construction
the first family of np formulas [Eqs. (1)–(4)]. As for odd-
odd nuclei, the second family, V1n−1p in Eq. (5), coincides
with the first type Eq. (4). V1n−1p values for even-even and
odd-odd systems are similar to each other quantitatively and
are systematically larger than δVnp(EE). On the other hand,
V1n−1p values for odd-A nuclei are systematically smaller
than those for neighboring even-A systems as well as than
δVnp(EE). These systematic deviations are related to the fact
that there is an additional np interaction present in the odd-odd
nuclei in comparison to the neighboring even-even and odd-A
systems [Eq. (7)].

We explored three possible ways to extract the additional np
interaction from the binding energy difference of neighboring
nuclei [Eqs. (7)–(9)]. The extracted δnp values are positive in
nearly all cases, as expected, and show a weak dependence
on mass number A. We then compared the empirical δnp

values with those extracted from recent nuclear mass models.
Large fluctuations around zero (±1 MeV for known nuclei
and ±2 MeV for unknown nuclei) are seen in the HFB mass
model. Fluctuations are also seen in the shell-model mass
formulas at mass regions around A = 150 and 220 (up to ±0.5
MeV) and in unknown superheavy nuclei (up to ±1 MeV). The
irregular fluctuations are related to the different behaviors in
the predicted binding energies of the neighboring even and
odd mass nuclei involved. The residual np interaction δnp may
serve as an excellent criterion for the refinement of those mass
models and for the constraint on the underlying shell structure.
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