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Entanglement in the states of the two-rotors model
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The eigenfunctions of the two-rotors model are superpositions of states corresponding to precessions of the
rotors around two orthogonal axes. In the application of the model to a system of particles, such a structure
becomes a coherent entanglement of many particles. In nuclear physics such an entanglement has not been
directly confirmed. I show that it is possible to come to a definite conclusion about its existence by measuring
the electromagnetic transition probabilities for the J = 3 member of the scissors-mode rotational band and for
higher excited states with intrinsic energy twice that of the scissors mode. The present results are relevant to
single-domain magnetic nanoparticles.
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I. INTRODUCTION

The two-rotors model (TRM) describes the dynamics of
two rigid bodies rotating with respect to each other under an
attractive force around their centers of mass fixed at one and
the same point. It was devised as a model for deformed atomic
nuclei, in which case the rigid bodies represent the proton and
neutron systems [1]. The low-lying excited states predicted by
this model were first observed [2] in the rare-earth nucleus
156Gd and then in all deformed atomic nuclei [3] and were
called scissors modes; see Fig. 1.

By analogy, similar collective excitations were predicted in
several other systems [4] and as is well known they have been
clearly observed in Bose-Einstein condensates [5]. Moreover,
an application of the TRM to the evaluation of the magnetic
susceptibility of single-domain magnetic nanoparticles stuck
in rigid matrices has given results compatible with a vast
body of experimental data with an agreement in some cases
surprisingly good [6].

Figure 1, however, while very suggestive, does not give
a complete representation of the TRM states, because the
TRM Hamiltonian has a double-well potential and then at the
classical level two states corresponding to the two minima.
The present paper is devoted to the investigation of the
consequences of this feature. To describe the problem it is
necessary to define the model. I assume the two rotors to have
axial symmetry [7]. The TRM Hamiltonian is then

H = 1

2I1

�L2
1 + 1

2I2

�L2
2 + V, (1)

where �L1, �L2 are the angular momenta, I1,I2 are the moments
of inertia of the two rotors with respect to the axes perpendic-
ular to the symmetry axis, and V is the potential interaction
between them. I assume the potential to be a function of the
angle between the axes of the rotors. Denoting this angle by 2θ ,

V = V [| cos(2θ )|]. (2)

This potential is symmetric with respect to θ = π/4 and
has two degenerate minima at θ = 0,π/2. So at the classical
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level the axes of the rotors will vibrate with respect to one
another around these values of θ . At the quantum level the
eigenfunctions will be superpositions of states describing these
vibrations. To be definite, let us define an intrinsic frame of
axes ξ,η,ζ :

ξ̂ = ζ̂2 × ζ̂1

2 sin θ
, η̂ = ζ̂2 − ζ̂1

2 sin θ
, ζ̂ = ζ̂2 + ζ̂1

2 cos θ
. (3)

The eigenfunctions will be superpositions of states describing
the precession of the proton and neutron axes around the ζ
and the η axes [1]. Such superpositions are constrained by
the condition that independent inversions of the orientation of
the proton and neutron axes are not observable. In general,
such constraint should be imposed on the absolute value of the
wave functions [8]. In Ref. [1], however, they were enforced
by requiring that the eigenfunctions, rather than their absolute
value, should be invariant under these inversions, and I use here
this restrictive requirement. As a consequence, they result in
having the form schematically represented in Fig. 2.

As far as I know the actual occurrence of such an
entanglement has never been directly confirmed in nuclear
physics. I discuss this feature of the TRM in detail and I
show how entanglement can be observed in atomic nuclei by
studying the J = 3 member of the scissors-mode rotational
band and states with higher intrinsic energy.

The determination of the eigenstates of the TRM requires
the solution of the above-mentioned constraint that until now
was worked out case by case. Here I present a rather general
and practical procedure to do it. In this way I find that the so-
lution for states with higher intrinsic energy used in a previous
investigation [9] is not unique, as I incorrectly assumed.

In Sec. II I report the essentials of the TRM, in Sec. III I
determine its eigenvalues and eigenstates, in Secs. IV and V
I evaluate the electromagnetic (em) transition amplitudes
in the scissors-mode rotational band and in the overtones
respectively, in Sec. VI I discuss what we can learn about
entanglement in atomic nuclei from new possible experiments,
in Sec. VII I compare with other theoretical approaches, and
finally in Sec. VIII I present my conclusions, including a
conjecture concerning single domain magnetic nanoparticles
[6]. In the Appendix I collect and derive some expressions of
em operators. I set � = c = 1.
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FIG. 1. Scissors modes in the two-rotors model: the proton (p)
and neutron (n) rotors precess around the bisector of their axes.

II. THE TWO-ROTORS MODEL

The TRM Hamiltonian acts on the direction cosines of
the rotor axes ζ̂1,ζ̂2. These variables can be replaced with
the Euler angles α,β,γ that describe the orientation of the
intrinsic frame plus the angle θ . The correspondence {ζ1,ζ2} =
{α,β,γ,θ} is one-to-one and regular for 0 < θ < π/2. It is
important to remember that this whole range of θ is necessary
for the transformation to be one-to-one [10].

Because of the axial symmetry the wave functions must
satisfy the constraints

ζ̂1 · �L1 = ζ̂2 · �L2 = 0. (4)

To get analytic results, these (weak) constraints on the wave
functions were replaced with (strong) constraints on the

FIG. 2. The TRM Hamiltonian has a double-well potential,
the two wells corresponding to the precession of the rotors axes
around the ζ and η axes of the intrinsic frame. The eigenfunctions,
therefore, are necessarily a superposition of the states describing such
precessions. The requirement that they be invariant under inversion of
the orientation of the neutron and proton axes, that is not observable,
selects a definite superposition for each value of the total angular
momentum.

operators and solved in terms of

�L = �L1 + �L2
(5)�S = �L1 − �L2

where

Sξ = i
∂

∂θ
, Sη = − cot θLζ , Sζ = − tan θLη. (6)

Using the above change of variables, the TRM Hamiltonian
becomes the sum of the rotational Hamiltonian of the two-
rotors system as a whole plus an intrinsic Hamiltonian that in
the reformulation of Ref. [10] reads

H =
�L2

2I + Hintr, (7)

where I = I1I2/(I1 + I2) and

Hintr = 1

2I
[

cot2 θL2
ζ + tan θ2L2

η − ∂2

∂θ2
− 2 cot(2θ )

∂

∂θ

]

+ I1−I2

4I1I2

[
− tan θLζLη−cot θLηLζ +iLζ

∂

∂θ

]
+V.

(8)

This Hamiltonian is invariant under separate inversions of the
rotors axes. To define the action of such operators, I must write
the unit length vectors ζ̂1,ζ̂2 in terms of the intrinsic and global
variables:

ζ̂1 = − sin θ η̂ + cos θ ζ̂ , ζ̂2 = sin θ η̂ + cos θ ζ̂ . (9)

Then the inversion operators can be represented as

Iζ1 = Rζ (π )Rξ

(π

2

)
Rθ, Iζ2 = Rη(π )Rξ

(π

2

)
Rθ, (10)

where Rζ (π ),Rη(π ),Rξ (π
2 ) are rotation operators around the

intrinsic axes.
As I said, it was assumed that such inversions should

leave the wave functions invariant. Invariance under separate
inversions is equivalent to the conditions

Iζ1Iζ2� = �, (11)

Iζ1� = �. (12)

The range of θ can be separated into two regions,

sI = s(θ )s
(π

4
− θ

)
, sII = s

(π

2
− θ

)
s
(
θ − π

4

)
, (13)

where s(x) is the step function: s(x) = 1,x > 0 and zero
otherwise. The two regions are obtained from each other by the
reflection of θ with respect to π/4. It is convenient to introduce
the notation

Rθf (θ ) = f
(π

2
− θ

)
=

◦
f (θ ), (14)

so that
◦
sI= sII. With this notation,

◦
V = V .

The second term of Hintr is proportional to [10] θ0 |I1 −
I2|/(4I1I2), where

θ0 = (IC)−
1
4 (15)
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is the zero-point oscillation parameter. It is therefore neg-
ligible for atomic nuclei (for which |I1 − I2|/(4I1I2) � 1
and θ0 ∼ 0.1) but not for free nanoparticles (for which
|I1 − I2|/(4I1I2) ∼ 1 and θ0 � 1). I think, however, that the
importance of the second term of HI for different moments of
inertia is attributable to the fact that the intrinsic frame I chose
is not a principal frame, namely a frame in which the tensor
of the moment of inertia of the two-rotors system is diagonal.
I conjecture that in a principal system the second term will be
small also for nanoparticles.

Neglecting the second term, the TRM Hamiltonian becomes
then invariant also under the transformation

R = Rξ

(π

2

)
Rθ . (16)

Next I eliminate the linear derivative in the first term of Hintr

by the transformation

(U�)(θ ) = 1√
2 sin(2θ )

�′(θ ), (17)

getting

H ′
intr = UHintrU

−1 = 1

2I
{
− d2

dθ2
− [2 + cot2(2θ )]

+ cot2 θ L2
ζ + tan2 θL2

η

}
+ V (θ ).

(18)

At last I assume that the wave functions have such a fast falloff
(which is completely justified in the case of nuclei) that I can
perform the harmonic approximation for the potential and the
circular functions,

V ≈ 1

2
C θ2, S ′

ξ = i ∇θ , S ′
η = 0,

S ′
ζ = −1

θ
Lη, in region I, (19)

V ≈ 1

2
C

◦
θ

2
, S ′

ξ = −i ∇◦
θ
, S ′

η = −1
◦
θ

Lζ ,

(20)
S ′

ζ = 0, in region II,

where

∇θ = d

dθ
− 1

2θ
. (21)

I then write accordingly

H ′
intr ≈ HIsI + HIIsII, (22)

where

HI = 1

2
ω

[
− d2

dx2
+ 1

x2

(
I 2
ζ − 1

4

)
+ x2

]
, 0 � x � π

4θ0
,

HII = 1

2
ω

[
− d2

d
◦
x

2 + 1
◦
x

2

(
I 2
η − 1

4

)
+ ◦

x
2
]
, 0 � ◦

x� π

4θ0
,

(23)

with

x = θ

θ0
,

◦
x =

◦
θ

θ0
, (24)

ω =
√

C

I . (25)

The harmonic approximation makes more evident that (18) is
a double-well Hamiltonian, implying that in stationary states
the rotor axes oscillate simultaneously around the ζ and η
axes.

The eigenfunctions and eigenvalues of HI are [10]

ϕKn(x) =
√

n!

(n + K)! θ0
xK+ 1

2 LK
n (x2)e− 1

2 x2
, (26)

εnK = ω(2n + K + 1), (27)

where LK
n are Laguerre polynomials and the wave functions

ϕKn are normalized according to∫ ∞

0
dx[ϕKn(x)]2 = 1

2
. (28)

Because in the harmonic approximation θ plays the role a a
radius, I call n the radial quantum number.

In general, the eigenstates occur in doublets, whose energy
splitting can be estimated with the WKB approximation

δE ≈ E exp
∫ θ(E)

−θ(E)
[−|p(θ )|], (29)

where θ (E) is the angle of inversion of the classical tra-
jectory of energy E and p(θ ) its conjugate momentum,
|p| = √|2I(E − V )| ≈ | sin θ |/θ2

0 . Because θ (E) ≈ θ0 for
the states of interest,

δE ≈ E exp

(
− 2

θ2
0

)
. (30)

For atomic nuclei in the rare-earth region θ2
0 ∼ 0.01 and such

energy splitting is to all effects negligible, but the situation is
different for nanoparticles.

III. EIGENSTATES

I write the eigenfunctions in the form

�IMmn =
∑
K�0

F I
MK (α,β,γ )�I

mKn(θ ), (31)

where

F I
MK =

√
2I + 1

16(1 + δK0)π2

[DI
MK + (−1)IDJ

M−K

]
. (32)

I,M,K are the nucleus angular momentum and its component
on the z axis of the laboratory frame and the ζ axis of the
intrinsic frame, and m is an additional quantum number to
be specified in the sequel. Because all the states I consider
have positive parity, I omit the parity quantum number. The
combination of rotational matrices in the F is required by the
condition (11). It remains to impose the condition (12).
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The eigenstates are normalized according to∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ

∫ π
2

0
dθ |�IMmn|2 = 1. (33)

The eigenstates of the Hamiltonian in region I are

�
(I)
L,M,K,n = F I

MK (α,β,γ )ϕKn(θ ). (34)

For each such eigenstate there is in region II the degenerate
eigenstate

�
(II)
I,M,K,n = GI

M,K

◦
ϕK,n, (35)

where

I 2
η GI

M,K = K2GI
M,K. (36)

The constraint (12) determines their amplitudes in the total
eigenfunction.

When I express the GI
M,K in terms of the F I

MK the total
eigenfunctions take the standard form (31). Notice that in
region I the eigenstates have a unique component of Iζ , while
in region II they have all the components of Iζ appearing in
GI

M,K . The quantum number m is the component of the total
angular momentum on the ζ axis in region I. Even if each of
the rotors has axial symmetry, the two-rotors system does not
have it, so that the component of angular momentum along
any intrinsic axis is not conserved, resulting in a superposition
of states with different K-quantum number.

To impose the constraint (12), I must determine the action
of Rη(π ) and Rξ (π/2) on the F I

M,K and the GI
M,K . For any

component of Îk,k = ξ,η,ζ ,

exp(iαÎk) = i
Îk

Ik

sin(Ikα) + cos(Ikα), (37)

so that

exp(iπ Îk)ψIk
= (−)IkψIk

,

exp(iπ/2 Îk)ψIk
=

[
i
Îk

Ik

sin(Ikπ/2) + cos(Ikπ/2)

]
ψIk

.

(38)

Notice that the transformations in the last equation are simpler
for Ik even.

To find the action of Rξ (π/2) on the F I
M,K and the GI

M,K I
express these functions in terms of the eigenstates of Î 2

ξ

I 2
ξ KI

M,K = K2KI
M,K. (39)

Because, as noted above, such an action is simpler for even
values of K , it is convenient to express all the F I

M,K and the
GI

M,K for K even and odd in terms of the KI
M,K with even K .

IV. THE SCISSORS-MODE ROTATIONAL BAND

For the discussion of entanglement it is necessary to
separate the contributions coming from regions I and II. To
this end I introduce the parameters rI,rII that in the TRM take
the values

rI = rII = 1, in the TRM. (40)

A general feature is that the intraband magnetic transition
amplitudes vanish, because they are proportional to

〈ϕ1,0|∇θ |ϕ1,0〉 = 〈ϕ1,0|1

θ
|ϕ1,0〉 = 0. (41)

A. The bandhead

The bandhead, the scissors mode, is a pure K = 1 state. Its
wave function and transition amplitude are well known [1] but
are reported for the sake of completeness,

�1M1,0 = F1
M1�

1
1,1,0, (42)

where

�1
1,1,0 = ϕ1,0−

◦
ϕ1,0. (43)

The transition amplitude to the ground state is

〈�1M1,0|M(M1; μ)|�0,0,0,0〉

= i

2
√

3

1

θ0
M(M1)C1M

001μ(rI + rII), (44)

where the expression of

M(M1) =
√

3

4π

e

2m
(45)

is rederived in the Appendix.

B. The J = 2 member of the band

The J = 2 member of the band is also a pure K = 1 state,
and its wave function and transition amplitude are also well
known [1] but are reported for the sake of completeness

�2M1,0 = F2
M1�

2
1,1,0, (46)

where

�2
1,1,0 = ϕ1,0+

◦
ϕ1,0. (47)

Its transition amplitude to the ground state is

〈�2M,1,0|M(E2; μ)|�0,0,0,0〉 = −ie Q20
1

4
θ0 C2M

002μ (rI + rII),

(48)

where Q20 is the quadrupole moment in the intrinsic frame.

C. The J = 3 member

The wave function of the J = 3 member is determined in
the present paper. It can be written

�3M1,0 = cF3
M1 ϕ1,0 + s G3

M1

◦
ϕ1,0, c2 + s2 = 1, (49)

where

G3
M1 = 1

4

(F3
M1 +

√
15F3

M3

)
. (50)

The eigenfunctions of Î 2
ξ with eigenvalues 0,4, respectively,

are

K3
M0 = 1

2
√

2

(√
3F3

M1 −
√

5F3
M3

)
,

(51)

K3
M2 = 1

2
√

2

(√
5F3

M1 +
√

3F3
M3

)
.
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Expressing F3
M1 and G3

M1 in terms of K3
M0 and K3

M2 and
imposing the constraint (12), I get

�3
1,1,0 = ϕ1,0 + 1

4

◦
ϕ1,0,

(52)

�3
1,3,0 =

√
15

4

◦
ϕ1,0.

Written in the standard form (31)

�3M1,0 = F3
1

(
ϕ10 + 1

4

◦
ϕ10

)
+

√
15

4
F3

3

◦
ϕ10 . (53)

One can see how the intrinsic structure of the two-rotors system
changes in the band with the angular momentum, with a strong
departure from a rigid rotor.

The nonvanishing electromagnetic transition amplitudes
are

〈�3M1,0|M(E2; μ)|�2M ′1,0〉

= e Q20
1√
7

C3M
2M ′2μ〈ϕ10|ϕ10〉

(
rI − 5

4
rII

)
,

〈�3M1,0|M(E2; μ)|�1M ′1,0〉

= e Q20

√
3

7
C3M

1M ′2μ〈ϕ10|ϕ10〉(0.63 rI − 0.5 rII),

〈�3M1,0|M(M3; μ)|�0,0,0,0〉

= iM(M3)

√
2

7
C3M

003μ C31
0031〈ϕ10|∇|ϕ00〉

(
rI − 1

4
rII

)
,

(54)

where the expression of

M(M3) = − 3

20

√
42

π
R2

3

[
1 − 1

3

(
R1

R3

)3
][

1 −
(

R1

R3

)2
]

(55)

is derived in the Appendix.

V. OVERTONES

In previous papers [9,11] I studied the states of intrinsic
energy 2Escissors, called first overtones because of the harmonic
approximation. I know that, in general, in nuclear physics one
can trust collective models at most for the lowest excitation.
Nevertheless, I considered it worthwhile to investigate the
first overtones for two reasons. First, their excitation energy
falls below the threshold for neutron emission and, therefore,
their width is of purely electromagnetic nature, which might
make their existence plausible, in spite of the fragmentation of
the scissors mode. Second, their electric quadrupole transition
amplitude is of zero order [9] in θ0 and therefore much greater
than that of the J = 2 member of the scissors rotational band
that is of order θ0.

I reconsider now these states by using the present method
of solving the constraint (12).

The state I = 0 = m = 0, n = 1 cannot be excited by
electromagnetic radiation, and for this reason it was called
the elusive overtone [11]. The same is true for the state
I = 1, m = 0, n = 1.

The states I = 2, m = 0, n = 1 and I = 2, m = 2, n = 0
are degenerate and their wave functions in regions I and II are

sI �2,M,0,1 = F2
M0 ϕ0,1,

sI �2,M,2,0 = F2
M2 ϕ2,0, (56)

sII �
II
2M2,0 = G2

M2

◦
ϕ2,0,

(57)
sII �

II
2M0,1 = G2

M0

◦
ϕ0,1,

where

G2
M0 = 1

2

(F2
M0 +

√
3F2

M2

)
,

(58)

G2
M2 = 1

2

(F2
M0 − F2

M2

)
.

The eigenfunctions of Î 2
ξ with eigenvalues 0,4, respectively,

are

K2
M0 = 1

2

(F2
M0 −

√
3F2

M2

)
,

(59)

K2
M2 = 1

2

(√
3F2

M0 + F2
M2

)
.

Expressing the F2
MK and G2

MK in terms of K2
M0 and K2

M2 and
imposing the constraint (12), I find

�2
0,0,1 = ϕ0,1 − 1

2

◦
ϕ0,1,

�2
0,2,1 = −

√
3

2

◦
ϕ0,1,

(60)

�2
2,0,0 = −

√
3

2

◦
ϕ2,0,

�2
2,2,0 = ϕ2,0 + 1

2

◦
ϕ2,0.

The state �2M0,1 can be regarded as a member of the rotational
band over the elusive overtone �0,0,0,1. Its quadrupole transi-
tion amplitude to the ground state vanishes. Because, as the
bandhead, it cannot be excited from the ground state, I do not
discuss it any further (even though if reached from above, it
could decay to the scissors mode).

The nonvanishing electromagnetic transition amplitudes of
the state �2M2,0 are

〈�2M2,0|M(E2; μ)|�0,0,0,0〉

= eQ20
1

4

√
3

10
C2M

002μrII,

〈�2M2,0|M(M1; μ)|�1,M ′1,0〉

= i

√
3

5

1

4θ0
M(M1)C2M

1M ′1μ(rI + rII). (61)

The transition strengths are

B(E2) ↑overtone= 1

32 θ2
0

4r2
II

(rI + rII)2
B(E2) ↑scissors,

(62)

B(M1; overtone → scissors) = 1

7
B(M1) ↑scissors.
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In the quoted investigation of overtones [9] I did not find the
present (60), most general solution of the constraint (12), but
the particular solution

1√
2

(�2M2,0 + �2M0,1), (63)

which was incorrectly assumed to be unique, and the em
transition amplitudes were evaluated accordingly. I notice that
with the TRM values of the parameters rI,rII, the electric
quadrupole transition strength of the overtone �2M2,0 is a factor
2 larger than that of the above state while the magnetic dipole
transition strength is a factor 4/7 smaller.

VI. ENTANGLEMENT

The TRM gives distinctive predictions that should enable
us to reach a definite conclusion concerning the existence of
entanglement in atomic nuclei.

To be definite, I compare the predictions of the TRM with
those of a reference model that does not have entanglement.
This reference model is what is often regarded to be the
TRM as derived from microscopic models [12–14]. It is
the intrinsic Hamiltonian HI with the understanding that it
acts on intrinsic wave functions defined and normalized in
the whole range 0 < θ < π/2. The reference model has the
same eigenvalues as the TRM. Unlike the TRM, it has axial
symmetry and obviously describes a precession around the
ζ axis only. Its eigenfunctions are pure K states and can be

obtained from the eigenfunctions of the TRM setting
◦
ϕKn= 0

and 〈ϕKn|ϕKn〉 = 1. The transition amplitudes can be obtained
from the expressions relative to the TRM by setting

rI = 2, rII = 0 , in the reference model. (64)

I discuss the entanglement separately for the different states.

A. Entanglement in the scissors rotational band

1. Entanglement in the J = 1,2 members of the band

The em transition amplitudes of these states are the same
in the TRM and in the reference model, because they are
proportional to rI + rII, a quantity that takes the same value
in both models. Therefore, one cannot learn anything about
entanglement from their comparison with experiment.

2. Entanglement in the J = 3 member of the band

Let us denote by RM and TRM the transition amplitudes
for the reference model and the TRM, respectively. Then

〈�3M1,0|M(E2; μ)|�2M ′1,0〉RM

= −8〈�3M1,0|M(E2; μ)|�2M ′1,0〉TRM,

〈�3M1,0|M(E2; μ)|�1M ′1,0〉RM

= 9.7〈�3M1,0|M(E2; μ)|�1M ′1,0〉TRM,

〈�3M1,0|M(M3; μ)|�0,0,0,0〉RM

= 8

3
〈�3M1,0|M(M3; μ)|�0,0,0,0〉TRM. (65)

One can see that the amplitudes for decay of the J = 3, m =
1, n = 0 state to the lower members of the band are depressed

by large factors in the TRM with respect to the reference model.
Equations (54) show that this is attributable to destructive
interference between the contributions from regions I and II.
The difference in strengths is so large that if this member of the
band can be observed, one should be able to reach a definite
conclusion about entanglement.

B. Entanglement in the first overtones

The electric quadrupole amplitude for decay of the overtone
�2M,2,0 to the ground state vanishes in the absence of entan-
glement. The relation between the magnetic dipole transition
amplitudes in the reference model and the TRM is

〈�2M2,0|M(M1; μ)|�0,0,0,0〉RM

= 1.7〈�2M2,0|M(M1; μ)|�0,0,0,0〉TRM. (66)

Observation of the magnetic transition in the absence of the
electric decay would give strong support to the absence of
entanglement. Obviously on the contrary, observation of both
transitions with the strengths (62) would be evidence in favor
of it.

In a recent experiment the deformed nucleus 156Gd, where
the scissors mode has been discovered initially [2], has been
studied by a high-resolution nuclear resonance fluorescence
experiment at the superconducting Darmstadt linear electron
accelerator up to 7 MeV of excitation energy. “A single
candidate with the following characteristics a) a ground state
decay indicating a quadrupole radiation, and b) simultaneously
a significant branch to the main fragment of the scissors mode
at 3 MeV has not been found above the detection limit” [15].

For an assessment of the realization in nature of the first
overtone and its entanglement, it is crucial to put the above
findings in relation with the present estimate of its decay
strength to the scissors mode. Indeed, such a strength is not
so large and in the comparison with experiment it should be
reduced by a factor equal to the percentage of the total strength
carried by the main fragment of the scissors mode.

VII. OTHER THEORETICAL APPROACHES

There is a copious literature on the scissors modes, in which,
however, entanglement never appears explicitly. Therefore,
it is sufficient for me to examine schematically how one
could investigate entanglement in the different approaches.
For this purpose, I can schematically divide them into two
categories.

In the first one, following different procedures, one derives a
collective Hamiltonian that has an eigenstate with the quantum
numbers of the scissors mode and approximately the same
excitation energy. However, there can be some important
subtleties that I illustrate by two examples. One is provided
by the interacting boson model [16]. It has been shown [12]
that in the coherent states approximation, for small vibrations
of the rotor axes around the ζ axis, it reproduces the intrinsic
part HI of the TRM Hamiltonian. I think that the vibrations
around the η axis are also present in the interacting boson
approximation Hamiltonian and that in the coherent-state
approximation they should provide the Hamiltonian HII, but
this remains to be verified. I must notice, however, that
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in calculations done with the interacting boson model one
does not use the coherent-state approximation, but rather
other approximations assuming explicit symmetries of the
wave functions. In a comparison with the TRM one has to
check whether and how the invariance under inversion of the
orientation of the rotors axes has been implicitly implemented
and whether the assumed symmetries imply, for instance,
axial symmetry, which would eliminate the entanglement
altogether.

Another relevant example is the recent analytical approach
to rotational states [14], in which the TRM Hamiltonian
has been derived in the form (1). This paper is especially
interesting in this context, because in the derivation of the
collective Hamiltonian, as far as I understand, entanglement
has not been enforced explicitly, and then also the Hamiltonian
of the reference model should be a possible outcome. A
clarification of this point is of the highest consequence for
a strict connection between a many-body Hamiltonian and the
TRM.

In conclusion, one must be sure of which conditions
concerning invariance under inversion of the rotor axes are
explicitly or implicitly set on the wave functions in the course
of the derivation.

The second category includes model or microscopic cal-
culations in which a collective state appears that can be
interpreted as the scissors mode. The RPA, for instance,
reproduces at a semiquantitative level the eigenvalues and the
em strengths of the TRM for scissors modes [17]. A recent
approach, the Wigner function moments method [13], also
belongs to this class.

In all the works belonging to this category, however, to
my knowledge, the resulting collective modes have not been
analyzed in relation to the entanglement.

All the theoretical approaches of which I am aware are
restricted to the lowest scissors excitation. This is justified
by the fact that, in general, collective models in nuclear
physics can be trusted at most for the first excited state. I
notice, however, that this does not need to be an absolute
rule, and indeed it is not true for all systems. For instance, in
the evaluation of the magnetic susceptibility of single-domain
magnetic nanoparticles using the TRM, all the excited states
appear and contribute [6]. The important point is whether
the rotors actually behave as rigid bodies at the energy of
the collective state of interest, namely whether the coupling
between intrinsic and collective degrees of freedom is or is
not important. A general criterion can be found in Ref. [18].
However, for higher states this point can be more efficiently
investigated in a constructive way, introducing in a many-body
Hamiltonian a number of collective variables with an equal
number of constraints to not change the effective number
of degrees of freedom. In a variant of such a method one
can avoid explicit constraints that make the calculations
awkward by modifying the microscopic Hamiltonian in such
a way as to push the spurious excitations associated with the
redundant variables out of the part of the spectrum one is
interested in. Such a method was used long ago to enforce
translational invariance [19] in shell-model calculations and
exploited to introduce collective rotations [20]. The latter
application might be extended to the physics of the TRM by

introducing the collective variable θ in addition to the Euler
angles.

VIII. CONCLUSION

The wave functions of the TRM have a peculiar entangle-
ment. In applications of the model to many-body systems this
becomes a coherent entanglement of many particles of which
I do not know other examples.

In nuclear physics with the present data there is no evidence
in favor or against it, and the only check I can envisage is to
compare the mass density distribution of the states in which
the scissors mode is fragmented with that predicted by the
TRM.

I have shown, however, that significant pieces of informa-
tion can be obtained from the study of higher excited states. I
hope that a definitive assessment concerning the first overtone
will come soon [15]. The other crucial investigation concerns
the J = 3 member of the scissors rotational band. If such a
state is realized in nature and can be observed, one has enough
distinctive predictions to identify it.

It is interesting to consider the application of the TRM to
single-domain magnetic nanoparticles. These objects consist
of a magnetic structure, called macrospin, that rotates with re-
spect to a nonmagnetic lattice. They have been represented as a
couple of rigid rotors, one associated with the nonmagnetic lat-
tice, and the other one, with a spin attached, with the macrospin
[6]. The macrospin has usually two stable orientations antipar-
allel to each other, separated by an energy barrier. At finite
temperature there is a finite probability for the magnetization
to flip and reverse its orientation. The double-well potential,
at variance with the case of atomic nuclei in which it might
appear an artifact, is in this case at the basis of the dynamics.
There is a strong, even though indirect evidence of the validity
of the TRM for nanoparticles stuck in rigid matrices [6]. I
think that a direct check of the entanglement predicted by the
TRM is possible by measuring the magnetic susceptibility of
free nanoparticles at temperatures of the order of 1 K.

ACKNOWLEDGMENTS

I thank N. LoIudice for a discussion of the subject of the
present paper and N. Pietralla and A. Richter for a continuous
correspondence and for keeping me informed about their
research related to scissors modes.

APPENDIX: ELECTROMAGNETIC OPERATORS

The magnetic multipole operator in the intrinsic frame
is

M′(Ml,μ) = e

mc

1

Vnucleus

∫
d�rS ′

k

∂

∂xk

(rlYlμ), (A1)

where Vnucleus is the nuclear volume and the operators S ′
k in

the intrinsic frame are given in Eqs. (20). I found that the
terms S ′

η,S
′
ζ do not contribute to the transitions of the states I

consider, and I ignore them. Working out the above equation
I then get the expression of the magnetic dipole (already well
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known) and octupole operators in the laboratory frame

M(M1,μ) = −M(M1)
1√
2

(
D1

μ1 − D1
μ−1

)
i
(∇θ sI − ∇◦

θ
sII

)
,

M(M3,μ) = M(M3)
1√
2

(
D3

μ1 − D3
μ−1

)
i
(∇θ sI − ∇◦

θ
sII

)
,

(A2)

where

M(M1) =
√

3

4π

e

2m
,

M(M3) = − 3

20

√
42

π
R2

3

[
1− 1

3

(
R1

R3

)3
][

1−
(

R1

R3

)2
]

e

2mc
.

(A3)

R3,R1 are the lengths of the semiaxes of the ellipsoids. In
the evaluation of transition amplitudes I will need the matrix

elements

〈ϕ20|∇θ |ϕ10〉 = − 1

2
√

2

1

θ0
, 〈ϕ10|∇θ |ϕ00〉 = −1

2

1

θ0
. (A4)

The electric quadrupole operator in the laboratory frame was
evaluated in [1,9]

M(E2,μ) = e Q20

[
D2

μ0

(
sI − 1

2
sII

)

+ 1

2

√
3

2

(D2
μ2 + D2

μ−2

)
sII

]

− i

√
5

2
e Q20 (θsI+

◦
θ sII)

(D2
μ1 + D2

μ−1

)
, (A5)

where e Q20 is the electric quadrupole moment in the intrinsic
frame. Notice that the first line is of zero order in θ while
the second line is of order θ . In the evaluation of transition
amplitudes I need the matrix element

〈ϕ20|ϕ00〉 = 1

2
√

2
. (A6)
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