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Decay dynamics of the unbound 25O and 26O nuclei
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We study the ground and excited resonance states of 26O with a three-body model of 24O + n + n taking into
account the coupling to the continuum. To this end, we use the new experimental data for the invariant mass
spectroscopy of the unbound 25O and 26O nuclei, and present an update of three-body model calculations for
the two-neutron decay of the 26O nucleus. With the new model inputs determined with the ground-state decay of
26O, we discuss the dineutron correlations and a halo nature of this nucleus, as well as the structure of the excited
states. For the energy of the 2+ state, we achieve an excellent agreement with the experimental data with this
calculation. We show that the 2+ state consists predominantly of the (d3/2)2 configuration, for which the pairing
interaction between the valence neutrons slightly decreases its energy from the unperturbed one. We also discuss
the structure of excited 0+ states of the 26O nucleus. In particular, we show the existence of an excited 0+ state
at 3.38 MeV, which is mainly composed of the (f7/2)2 configuration.
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I. INTRODUCTION

In recent years, there has been a rapidly increasing interest
in two-neutron decays of unbound nuclei beyond the neutron
drip line [1–22]. These are similar phenomena to the two-
proton radioactivities in unbound nuclei beyond the proton-
drip line [23], but with neutrons. While the resonance in
proton radioactivity is mainly due to the Coulomb barrier, the
resonant two-neutron emission arises from penetration of a
centrifugal barrier. Since the long-range Coulomb interaction
is absent in the two-neutron decays, it has in general been
expected that nucleon correlations, such as the dineutron
correlations [24–28], are easier to be probed in the two-neutron
decays as compared to the two-proton decays.

Among the two-neutron emitters studied so far, the 26O
nucleus has attracted a particular attention [11–15,18–21],
owing partly to the problem of abrupt termination of neutron-
drip line for the oxygen isotopes at the neutron number N =
16 [29,30]. The ground-state decay of this nucleus was first
observed by Lunderberg et al. at the National Superconducting
Cyclotron Laboratory (NSCL) at Michigan State University
(MSU) [11]. A clear resonance peak was observed in the
decay energy spectrum at E = 150+50

−150 keV [11]. This has
been confirmed by the GSI-LAND group, who reported the
upper limit of the decay energy to be 40 and 120 keV with
the confident level of 68% and 95%, respectively [12]. These
experimental data on the ground-state decay of 26O have been
theoretically analyzed in Refs. [18–21].

Very recently, new experimental data on the decay of the
25,26O nuclei came out from the radioactive ion beam factory
(RIBF) at RIKEN, which have revised the previous data with
much higher statistics [15]. The energy of the ground state of
26O has now been determined with a higher precision to be
18 ± 3 (stat) ± 4 (sys) keV [15]. Moreover, Ref. [15] has also
reported a clear second peak at 1.28+0.11

−0.08 MeV [15], which

is likely due to the excited 2+ state. The data for the 25O
have also been revised in this experiment. While the previous
measurements reported the d3/2 resonance state at 770+20

−10 keV
with the width of 172 ± 30 keV [31], and at 725+54

−29 keV with
the width of 20+60

−20 keV [12], the new measurement has shown
the d3/2 resonance state at 749 (10) keV with the width of
88 (6) keV [15].

In this paper, we study the ground and excited resonance
states in 26O with a three-body model by taking into account
the coupling to the continuum. The main aim of our study
is to extract the dineutron correlations and a halo nature of
the ground state of 26O from the two-neutron decay spectrum
with updated empirical inputs for the model Hamiltonian. In
the present 24O + n + n three-body model, the neutron-core
potential as well as the strength of the pairing interaction be-
tween the valence neutrons are calibrated by the empirical data.
To this end, we adopt the new experimental data of Ref. [15]
and refine the calculations performed in Refs. [20,21]. With
the same model input, we also discuss the structure of excited
0+ and 2+ resonance states, which were not presented in our
previous publications.

The paper is organized as follows. In Sec. II, we discuss
the resonance structure of the 25O nucleus. We use the new
experimental data for this nucleus to determine the n- 24O
potential and obtain the resonance states of 25O. We also
discuss how the Green’s function can be used to estimate
the width of the resonance states. In Sec. III, we discuss the
decay energy spectrum for the 0+ configuration of the 26O
nucleus. We also apply the bound-state approximation and
discuss the radius and the angular momentum configurations.
In Sec. IV, we discuss the first 2+ state and make a comparison
with other theoretical calculations. In Sec. V, we discuss the
angular correlation of the emitted two neutrons and show that
the back-to-back emission is enhanced due to the dineutron
correlation. We then summarize the paper in Sec. VI.
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II. RESONANCE STRUCTURE OF THE 25O NUCLEUS

A. Calibration of the n- 24O potential
and single-particle resonances

An important input for the three-body calculation is the
potential between a neutron and the core nucleus. In order
to calibrate it, we first discuss the properties of the two-body
subsystem of 26O, that is, the 25O nucleus, using the neutron
+ 24O model.

Assuming that 24O is inert in the ground state, we consider
the following single-particle Hamiltonian for the relative
motion between a neutron and the core nucleus:

hnC = − �
2

2μ
∇2 + VnC(r), (1)

where μ = AcmN/(Ac + 1) is the reduced mass, and mN and
Ac = 24 are the nucleon mass and the mass number of the core
nucleus, respectively. We employ the Woods-Saxon potential
for the neutron-core potential,

VnC(r) =
[
V0 + Vls(l · s)

1

r

d

dr

][
1 + exp

(
r − R

a

)]−1

,

(2)
where R = r0A

1/3
c . We use the same value for the diffuseness

parameter, a, and the radius parameter, r0, as in Ref. [20],
that is, a = 0.72 fm and r0 = 1.25 fm. With these values
of a and r0, the depth parameter, V0, is determined to be
−44.1 MeV in order to reproduce the energy of the 2s1/2

state, ε2s1/2 = −4.09(13) MeV [31]. For the strength of the
spin-orbit potential, Vls , we use the new data for the energy of
the unbound d3/2 state, that is, εd3/2 = 749 (10) keV [15]. To
this end, we seek a Gamow resonance state by imposing the
outgoing boundary condition to the radial wave function. The
resultant value is Vls = 45.605 MeV fm2, which is slightly
smaller than the value employed in Ref. [20]. This potential
yields the resonance width of 87.2 keV, which agrees well with
the experimental value, 86 (6) keV [15].

In addition to the d3/2 resonance, we also find a broad p3/2

and a relatively narrow f7/2 resonances with this potential.
For the p3/2 resonance, the resonance energy and the width
are E = 0.577 MeV and � = 1.63 MeV, respectively, while
they are E = 2.44 MeV and � = 0.21 MeV for the f7/2

resonance. Notice that, due to the lower centrifugal barrier,
the p3/2 resonance appears at a lower energy with a larger
width compared to the d3/2 and f7/2 resonances. The existence
of the three resonance states in 25O is consistent with a
prediction reported in Ref. [32] based on shell model and
Skyrme Hartree-Fock calculations, although the resonance
widths are not evaluated there (see Table III and Fig. 12 in
Ref. [32]). The energy and the width of each of these three
resonance states are summarized in Table I. In Sec. III, we will
discuss the structure of excited 0+ states of 26O in connection
to these single-particle resonance states of 25O.

B. One-particle Green’s function and the resonance width

While we investigated in the previous subsection the
resonance structure of the 25O nucleus using the Gamow states
with complex eigenenergies, the resonance structure can also

TABLE I. Single-particle resonance states of the 25O nucleus
obtained with a n + 24O model. The Woods-Saxon potential is
calibrated using the energy of the d3/2 resonance. The resonance
energy, E, and the width, �, are obtained by imposing the outgoing
wave boundary condition to the radial wave function for each angular
momentum j and l.

Angular momentum E (MeV) � (MeV)

d3/2 0.749 (input) 0.0872
p3/2 0.577 1.63
f7/2 2.44 0.21
expt. d3/2 [15] 0.749 (10) 0.088 (6)

be studied using the Green’s function keeping the energy to be
real. In this approach, the decay energy spectrum is given by

dP

dE
= |〈�ref|ψE〉|2, (3)

where �ref is the wave function for a reference state. ψE is a
continuum wave function at E for a Hamiltonian of interest
and is given by

ψE(r) = ujl(r)

r
Yj lm(r̂), (4)

with

ujl(r) →
√

2μ

πk�2
sin

[
kr − l

2
π + δjl(E)

]
(r → ∞). (5)

Here, Yj lm(r̂) is the spin-angular wave function, k =√
2μE/�2 is the wave number, and δjl(E) is the phase shift.

The normalization factor in Eq. (5) is chosen such that the
wave function ψE satisfies the normalization condition of∫

dE |ψE〉〈ψE| = 1. Equation (3) indicates that the decay
energy spectrum dP/dE increases when the overlap between
the reference state and the continuum state is large. Therefore,
if one chooses the reference wave function to be well confined
inside a barrier, the decay energy spectrum shows a peak
around the resonance energy, at which there is an appreciable
component of the continuum wave function inside the barrier.
The reference state is referred to as a doorway state in Ref. [33].

The decay spectrum, Eq. (3), can also be expressed in a
different way using the relation

lim
η→0

1

x − iη
= 1

x
+ iπδ(x). (6)

That is,

dP

dE
=

∫
dE′|〈�ref|ψE′ 〉|2 δ(E′ − E), (7)

= 1

π
Im

∫
dE′|〈�ref|ψE′ 〉|2 1

E′ − E − iη
, (8)

where Im denotes the imaginary part and η is taken to be an
infinitesimal number. Notice that∫

dE′ |ψE′ 〉 1

E′ − E − iη
〈ψE′ | = 1

ĥ − E − iη
(9)
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FIG. 1. The decay energy spectrum for the d3/2 configuration
for the n + 24O system. The solid line is obtained with Eq. (3),
while the dashed line is obtained using Eq. (8) with a finite value of
η = 0.1 MeV. The reference state �ref is taken to be a bound neutron
d3/2 state in the 25F nucleus.

is nothing but the Green’s function, G(E). Equation (8) can
therefore be written also as

dP

dE
= 1

π
Im〈�ref|G(E)|�ref〉. (10)

The solid line in Fig. 1 shows the decay energy spectrum
for the d3/2 configuration of the 25O nucleus. To draw this
curve, we use the neutron 1d3/2 state at ε1d3/2 = −0.811 MeV
in the 26F nucleus for the reference state, �ref . To this end,
we use a similar potential as VnC for the 25O nucleus, but by
modifying the strength of the spin-orbit potential to be Vls =
33.50 MeV fm2 taking into account the tensor force between
the valence proton and neutron [30,34–37]. As is expected, the
decay energy spectrum shows a sharp peak at E = 0.75 MeV.
The curve is approximately given by the Breit-Wigner function
with a natural width of 0.087 MeV, which is consistent with
the one obtained with the Gamow state method shown in the
previous subsection (see Table I).

The dashed line in Fig. 1, on the other hand, is obtained
with Eq. (8) by keeping a finite value of η= 0.1 MeV. One
can see that the peak position remains almost the same as in
the solid line, but the width increases significantly because
of the smearing factor 1/(E′ − E − iη) in Eq. (8). If one
approximates the decay energy spectrum in the limit of η →
0 by the Breit-Wigner function with the resonance energy ER

and the natural width �, that is,

|〈�ref|ψE〉|2 ∼ 1

2π

�

(E − ER)2 + �2

4

, (11)

Eq. (8) is written as

dP

dE
∼

∫
dE′

�
2π

(E′ − ER)2 + �2

4

η
π

(E − E′)2 + η2
. (12)

It is known that a convolution of the Breit-Wigner function
with another Breit-Wigner function is again a Breit-Wigner
function with the same resonance energy and the sum of
the two resonance widths (this can be easily confirmed by
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FIG. 2. The d3/2 resonance width for the n + 24O system esti-
mated from the decay energy spectrum with a finite value of η in the
Green’s function.

performing the Fourier transform and then the inverse Fourier
transform back to the original function). This equation thus
becomes

dP

dE
∼

�+2η
2π

(E − ER)2 + (�+2η)2

4

. (13)

This implies that the resonance width can numerically be
estimated with the decay energy spectrum calculated with a
finite value of η as

� = �FWHM − 2η, (14)

where �FWHM is the full width at half maximum (FWHM) of
the calculated spectrum, Eq. (8).

In order to test this idea, Fig. 2 shows the right-hand side
of Eq. (14) as a function of η. One can see that this method
yields the resonance width within the accuracy of about 1% at
η = 0.1 MeV. In practice, one may extrapolate the values for
different η down to η = 0 in order to estimate the resonance
width. This method is convenient particularly for the three-
body problem, which we shall discuss in the next section.

III. DECAY ENERGY SPECTRUM FOR 0+ STATES
OF THE 26O NUCLEUS

A. Decay energy spectrum

Let us now solve a three-body Hamiltonian for the 26O
nucleus based on the 24O + n + n model and discuss the decay
dynamics. To this end, we consider the following three-body
Hamiltonian:

H = hnC(1) + hnC(2) + v(r1,r2), (15)

where hnC is the single-particle Hamiltonian given by Eq. (1)
and the pairing interaction is taken to be a density-dependent
contact interaction as [26,27,38–41]

v(r1,r2) = δ(r1 − r2)

{
v0 + vρ

1 + exp[(r1 − Rρ)/aρ]

}
. (16)

For simplicity, we have neglected the two-body part of the
recoil kinetic energy of the core nucleus, as in our previous
works [20,21]. In the density-dependent pairing interaction,
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Eq. (16), the strength of the density-independent part is given
as [39]

v0 = 2π2 �
2

mN

2ann

π − 2kCann

, (17)

where ann is the scattering length for the nn scattering
and kC is related to the cutoff energy, Ecut, as kC =√

mNEcut/�2. Following Ref. [39], we take ann = −15 fm.
With Ecut = 30 MeV, this leads to v0 = −857.2 MeV fm3. For
the parameters for the density-dependent part in Eq. (16), we
determine them so as to reproduce the ground-state energy of
26O, E = 18 keV [15]. The values of the parameters that we
employ are Rρ = 1.34 × A

1/3
c fm, aρ = 0.72 fm, and vρ =

928.95 MeV fm3.
As in the previous section, the decay energy spectrum

is obtained with the Green’s method, Eq. (10), with some
three-body wave function for �ref and the two-particle Green’s
function given by G(E) = 1/(H − E − iη). We evaluate the
correlated Green’s function, G(E), using the relation [40]

G(E) = G0(E) − G0(E)v[1 + G0(E)v]−1G0(E), (18)

where the uncorrelated two-particle Green’s function, G0(E),
is given by

G0(E) = 1

hnC(1) + hnC(2) − E − iη
(19)

=
∑
j1,l1

∑
j2,l2

∫
de1de2

|[ψ1ψ2](0+)〉〈[ψ1ψ2](0+)|
e1 + e2 − E − iη

. (20)

Since the interaction v is zero-ranged, the inversion of the
operator [1 + G0(E)v] in Eq. (18) is best performed in the
coordinate space on a finite radial grid [38,40]. With Eqs. (18)
and (20), the uncorrelated spectrum is then given by

dP0

dE
= 1

π
Im〈�ref|G0(E)|�ref〉 (21)

= 1

π
Im

∑
j1,l1

∑
j2,l2

∫
de1de2

|〈�ref|[ψ1ψ2](0+)〉|2
e1 + e2 − E − iη

, (22)

while the correlated spectrum is evaluated as [40]

dP

dE
= dP0

dE
− 1

π
Im

∫
d rd r ′G̃D(r)v(r)

×(1 + G0(E)v)−1
r r ′GD(r ′), (23)

with

GD(r) =
∑
j1,l1

∑
j2,l2

∫
de1de2

×〈r r|[ψ1ψ2](0+)〉〈[ψ1ψ2](0+)|�ref〉
e1 + e2 − E − iη

, (24)

and

G̃D(r) =
∑
j1,l1

∑
j2,l2

∫
de1de2

×〈�ref|[ψ1ψ2](0+)〉〈[ψ1ψ2](0+)|r r〉
e1 + e2 − E − iη

. (25)

Notice that G̃D(r) is not identical to G
†
D(r).
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FIG. 3. Upper panel: uncorrelated (dashed line) and correlated
(solid line) decay energy spectra for the 26O nucleus. The uncorre-
lated two-neutron state in 27F with the |[1d3/21d3/2](0+)〉 configuration
is employed for the reference state, �ref . For a presentation purpose,
a finite value of η = 0.1 MeV is used. The experimental data are taken
from Ref. [15]. Lower panel: the dependence of the correlated decay
spectrum on the choice of the reference state. The solid line is the
same as that in the upper panel and is obtained with the uncorrelated
two-particle wave function of 27F. The dot-dashed line, on the other
hand, is obtained with the correlated two-particle wave function of
27F based on the 25F + n + n three-body model,

The upper panel of Fig. 3 shows the uncorrelated (the
dashed line) and the correlated (the solid line) decay spectra for
26O. To this end, we use the uncorrelated two-neutron state of
27F with the |[1d3/21d3/2](0+)〉 configuration for the reference
state �ref , since the 26O nucleus was produced in the single
proton-knockout reaction from a secondary 27F beam in the
experiments of Refs. [11,12,15]. For a presentation purpose,
we keep a finite value of η = 0.1 MeV in Eq. (20) in order to
evaluate the uncorrelated Green’s function. In fact, numerically
it is much easier to evaluate the correlated Green’s function
with a finite value of η, especially when a natural width is
small, since in any case one must discretize the energies in the
quadratures in Eq. (20). In the figure, the main feature of the
decay energy spectra is the same as that in Ref. [20]. That is,
a peak appears at twice the single-particle resonance energy,
1.498 MeV, in the uncorrelated spectrum, which is largely
shifted toward the threshold energy in the correlated spectrum
due to the pairing correlation.

The lower panel of Fig. 3 shows the dependence of the
result on the choice of the reference state. The solid line is
the same as that in the upper panel, while the dot-dashed
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TABLE II. Ground-state properties of the 26O nucleus obtained
with the bound-state approximation with a box size of Rbox = 40 fm.
〈r2

nn〉 and 〈r2
c−2n〉 are the mean-square neutron-neutron distance and

the core-dineutron distance, respectively. The fractions of the main
components and the spin-singlet component are also shown.

〈r2
nn〉 〈r2

c−2n〉 [d3/2]2 [f7/2]2 [p3/2]2 [p1/2]2 [g9/2]2 S = 0
(fm2) (fm2) (%) (%) (%) (%) (%) (%)

40.2 18.5 66.1 18.3 10.5 1.50 1.15 54.8

line is obtained with the correlated three-body wave function
for the 27F nucleus obtained with the 25F + n + n model
using the same pairing interaction as in Eq. (16). One can see
that qualitatively the spectrum does not depend much on the
choice of the reference state. In particular, the sharp low-energy
peak is produced in both the calculations, although the height
is somewhat lower in the calculation with the uncorrelated
reference state. This is because the ground state is mainly
composed of the |[1d3/21d3/2](0+)〉 configuration both in the
26O and in the 27F nuclei (see the next subsection).

This finding implies that the decay energy spectrum does
not depend much on how the 26O nucleus is produced.
Intuitively, for a narrow resonance with a long lifetime, a
nucleus loses its memory of how it was produced, before
it decays under the barrier [42]. In this situation, the decay
dynamics predominantly reflects properties of the continuum
wave function of the final three-body system, 
E . In the
terminology of nuclear reaction, the decay involves only the
final state interactions. This is, in fact, a good point of narrow
resonances, since one does not have to bother with the reaction
dynamics and/or the structure of the initial nucleus in analyzing
observables in the decay process. We will discuss an example
of this point in Sec. IV, that is, the angular correlation of the
two emitted neutrons, which reflects the dineutron correlation
in the continuum state of 26O, rather than the properties of the
initial state of 27F.

In the following calculations, for simplicity, we shall use
the uncorrelated wave function for the reference state �ref .

B. Dineutron correlation in the ground state

Since the resonance width is considerably small for the
ground state of 26O [10,18], one would expect that a bound
state approximation provides a reasonable result in discussing
the ground-state properties of the 26O nucleus. Let us therefore
obtain the ground-state wave function by putting the 26O
nucleus in a large box as in Ref. [26]. To this end, we use
the box size of Rbox = 40 fm. Since the continuum states are
treated approximately in this calculation, we slightly readjust
the vρ parameter in the pairing interaction, Eq. (16), so that
the resultant ground-state energy is 18 keV.

Table II summarizes the properties of the ground-state wave
function thus obtained. One can see that the ground-state wave
function mainly consists of the (d3/2)2 configuration, but there
is also an appreciable admixture of other components, such as
the (f7/2)2 and the (p3/2)2 components (see also Ref.[32]).
From the calculated root-mean-square (rms) interneutron
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A

2.4
2.6
2.8

3
3.2
3.4
3.6

rm
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FIG. 4. The root-mean-square (rms) radii of the oxygen isotopes
as a function of the mass number A. The filled and open circles are the
experimental data taken from Refs. [43] and [44], respectively. The
filled square is the radius of the 26O estimated with the three-body
model calculation with the empirical rms radius of 24O. The solid
line shows a function

√
〈r2〉 = r0A

1/3 with r0 = 1.0 fm, in which the
value of r0 is determined with the radius of 16O.

distance,
√〈r2

nn〉, and the core-dineutron distance,
√

〈r2
c−2n〉,

one can estimate the radius of the 26O as [41]

〈r2〉26O = 24

26
〈r2〉24O + δ〈r2〉, (26)

with

δ〈r2〉 = 1

26

(
2 × 24

26
〈r2

c−2n〉 + 1

2
〈r2

nn〉
)

. (27)

Using the empirical rms radius of 24O,
√

〈r2〉24O = 3.19 ±
0.13 fm [43], obtained with the interaction cross-section
measurement, we estimate the rms radius of 26O to be√

〈r2〉26O = 3.39 ± 0.11 fm. The radii of the oxygen isotopes
are shown in Fig. 4. The filled and open circles are the
experimental radii taken from Refs. [43] and [44], respectively,
while the filled square is the calculated radius for 26O. One
can see that the radius of the 26O nucleus is significantly larger
than the empirical law of r ∝ A1/3, as is shown by the solid
line in the figure. This may suggest a halo structure of the 26O
nucleus.

In order to see whether 26O has a halo structure, Fig. 5
shows the density distribution of the 26O nucleus. To this end,
we construct the density of the core nucleus, 24O, with the
Skyrme-Hartree-Fock calculation with SLy4 interaction [45].
We do not take into account the pairing correlation in 24O
in order to be consistent with the three-body model for 26O.
This calculation yields 3.05 fm for the matter radius of 24O,
which agrees with the experimental value within the error bar.
The upper and the lower panels in the figure show the density
distribution in linear and logarithmic scales, respectively. One
can see that the neutron distribution (the solid line) is more
extended than the proton density (the dashed line) and than the
neutron density in the core nucleus (the dotted line).

Figures 6 and 7 show the two-particle density, ρ(r1,r2,θ12),
of the 26O nucleus with and without the weight factor of
8π2r4 sin θ12, respectively. These are plotted as a function
of r1 = r2 = r and the angle between the valence neutrons,
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FIG. 5. The density distribution of the 26O nucleus in the linear
(the upper panel) and in the logarithmic (the lower panel) scales,
respectively. The solid and the dashed lines denote the neutron and
the proton densities, respectively, while the dotted line shows the
neutron density of the core nucleus, 24O. The density distribution for
the valence neutrons is obtained with the three-body model while the
density of the core nucleus is constructed using the Skyrme-Hartree-
Fock calculation.

θ12. One can see, especially in Fig. 7, that the two-particle
density is well concentrated in the small θ12, which is a clear
manifestation of the dineutron correlation [26]. Notice that,
with the Woods-Saxon potential that we employ, the position of
the centrifugal barrier is at r = 6.08 fm for d3/2. The dineutron
correlation is thus present inside the barrier, hence before the
two-neutron decay. The angular density, defined by [26]

ρ(θ12) = 4π

∫ ∞

0
r2

1 dr1

∫ ∞

0
r2

2 dr2 ρ(r1,r2,θ12), (28)

 0  2  4  6  8  10

r  (fm)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

θ 1
2 

 (
de

g)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

FIG. 6. The two-particle density for the 26O nucleus as a function
of r1 = r2 = r and the angle between the valence neutrons, θ12. It is
weighted with a factor of 8π 2r4 sin θ12.
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FIG. 7. Same as described in the caption of Fig. 6, but without
the weight factor of 8π 2r4 sin θ12.

is plotted in Fig. 8 as a function of θ12. The figure also shows a
decomposition into the spin-singlet (S = 0) and and the spin-
triplet (S = 1) components [38]. One can see that the dineutron
component in the small θ12 region consists predominantly of
the S = 0 component, while the peak in the large θ12 region
mainly consists of the S = 1 component. This has some
similarity to the 11Li nucleus shown in Ref. [26], although
the middle peak is absent in 11Li due to the dominance of the
(p1/2)2 configuration instead of the (d3/2)2 configuration.

In connection to the angular correlations of the two emitted
neutrons, which we will discuss in Sec. V, it is interesting here
to discuss the ground-state density in the momentum space.
Suppose that one expresses the ground-state wave function in
the coordinate space as [26,38,39]


(r1,r2) =
∑
n,n′

∑
l,j

αnn′lj
nn′lj (r1,r2), (29)

with


nn′lj (r1,r2) =
∑
m

〈jmj − m|00〉ψnjlm(r1)ψn′j l−m(r2),

(30)
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FIG. 8. The angular density (weighted with a factor 2π sin θ12)
for the ground state of the 26O nucleus as a function of the angle
between the two valence neutrons, θ12. The solid line is for the total
density, while the dashed and the dotted lines are for the spin-singlet
(S = 0) and the spin-triplet (S = 1) components, respectively.
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FIG. 9. The two-particle density in the momentum space as a
function of k1 = k2 = k and the angle between the valence neutrons,
θ12. It is weighted with a factor of 8π 2k4 sin θ12.

where n is the radial node and the single-particle wave function
is given by

ψnjlm(r) = φnjl(r)Yj lm(r̂). (31)

Noticing that the Fourier transform of ψnjlm(r) is given by

ψ̃njlm(k) =
∫

d r eik·rψnjlm(r) = il φ̃nj l(k)Yj lm(k̂), (32)

≡ ilψ̃ ′
njlm(k), (33)

with

φ̃njl(k) = 4π

∫
r2dr jl(kr)φnjl(r), (34)

the Fourier transform of 
(r1,r2) reads


̃(k1,k2) =
∑
n,n′

∑
l,j

(−1)lαnn′lj 
̃nn′lj (k1,k2), (35)

with


̃nn′lj (k1,k2) =
∑
m

〈jmj − m|00〉ψ̃ ′
njlm(k1)ψ̃ ′

n′j l−m(k2).

(36)
By comparing Eq. (29) with Eq. (35), one can notice that the
role of odd-partial waves is opposite between the coordinate
space and the momentum space. Notice that the dineutron
correlation is caused by the coherent superposition between
even- and odd-partial waves [28,46,47]. If the weight factors
αnn′lj in Eq. (29) are such that the wave function for r1 = r2

is enhanced and that for r1 = −r2 is suppressed, as in the
dineutron correlation, the wave function in the momentum
space therefore shows an enhancement for k1 = −k2 and a
suppression for k1 = k2. This fact can also be understood in
terms of the uncertainty relation between the space and the
momentum.

The two-particle density in the momentum space, con-
structed with 
̃(k1,k2), is shown in Fig. 9 as a function of
k1 = k2 = k and θ12. One can clearly see that the two-particle
density is indeed enhanced in the large θ12 region in the
momentum space, reflecting the dineutron correlation shown
in Fig. 6 in the coordinate space.
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FIG. 10. Same as described in the caption of Fig. 3, but plotted
in a magnified way for the region of E � 0.5 MeV.

C. Excited 0+ states

The decay energy spectrum shown in Fig. 3 shows that
the ground energy peak does not vanish quickly and there is
appreciable strength between 1 � E � 3 MeV, indicating the
presence of a few unresolved excited 0+ resonances in this
energy region. In addition, one can see a peak at 3.38 MeV. In
order to better understand these structures, Fig. 10 shows the
decay energy spectrum in a magnified way. One can see at least
two peaks, the lower one at 1.22 MeV and the higher one at
3.38 MeV. For the higher energy peak, the width is estimated
to be 0.737 MeV using the method discussed in Sec. II. On the
other hand, for the lower energy peak, unfortunately the width
cannot be estimated, because the resonance peak overlaps with
other peaks and the full-width-at-half maximum cannot be
defined.

In order to understand the structure of these peaks, we
evaluate the probabilities of angular momentum components
in the wave functions. Since the correlated Green’s function is
expressed as

G(E) =
∑
2̃p

|2̃p〉〈2̃p|
E2p − E − iη

, (37)

where |2̃p〉 is the correlated two-particle wave function at
E = E2p, the amplitude of the correlated wave function on an
uncorrelated basis, |2p〉, can be extracted as

〈�ref|2̃p〉〈2̃p|2p〉 = Im〈�ref|G(E2p)|2p〉. (38)

Notice that many continuum states are degenerate in energy
at a given value of E2p (this can be easily understood in the
uncorrelated limit, in which there are many combinations of
(e1,e2,j,l), leading to the 0+ configuration with the same
energy E = e1 + e2). By taking the overlap 〈�ref|2̃p〉 in
Eq. (38), only those correlated wave functions that have an
appreciable overlap with the reference wave function, thus the
resonance wave functions, contribute on the left-hand side.
Because of this property, when one extracts the amplitudes
of resonance wave functions, we find that this method is more
convenient than a similar method presented in Ref. [38], which
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TABLE III. Properties of the ground and excited 0+ states in 26O
corresponding to the three peaks in the decay-energy spectrum. For
the peak at E = 3.38 MeV, the resonance width is also evaluated
using the method presented in Sec. II B.

E � (p3/2)2 (d3/2)2 (f7/2)2

(MeV) (MeV) (%) (%) (%)

0.018 – 10.5 66.1 18.3
1.22 – 60.3 26.8 2.02
3.38 0.737 10.4 24.9 62.1

uses the relation

〈�ref|δ(r1 − r2)|2̃p〉〈2̃p|2p〉
= Im〈�ref|δ(r1 − r2)G(E2p)|2p〉. (39)

In practice, we use the uncorrelated basis |2p〉 obtained with
the box discretization method (see the previous subsection)
with a relatively small box size in order to eliminate the
contribution outside the centrifugal barrier, and we evaluate
the amplitudes according to

〈2̃p|2p〉 = Im〈�ref|G(E2p)|2p〉∑
2p |Im〈�ref|G(E2p)|2p〉|2 , (40)

even though the true continuum wave function is not square
integrable.

The results obtained with Rbox = 15 fm are summarized in
Table III. The table also shows the result for the ground state
obtained in the previous subsection with the box discretization
method. One can see that these three resonance peaks nicely
reflect the single-particle resonance states of the two-body
subsystem, n+ 24O, shown in Table I. That is, the first (i.e.,
the ground state), the second, and the third peaks in the decay
energy spectrum mainly consist of the (d3/2)2, (p3/2)2, and
(f7/2)2 configurations, respectively, as is expected from the
single-particle resonances.

In Ref. [19], Grigorenko and Zhukov obtained two excited
0+ states at 1.7 and 2.6 MeV, in addition to the ground-state
resonance at 0.01 MeV. All these resonance states show the
dominance of the (d3/2)2 configurations, and thus their excited
0+ states are apparently different from the resonance peaks
found in the present calculation. As we have mentioned,
unresolved resonances may exist around 2 MeV in the decay
spectrum shown in Fig. 10, and the resonance states found by
Grigorenko and Zhukov might correspond to some of these.
As for the (f7/2)2 resonance at 3.38 MeV, it is not clear
whether they have included the l = 3 configuration in the
n- 24O channel, since they have mentioned the n- 24O potential
only for the s, p, and d waves [19]. The correspondence is
thus not certain at this moment.

IV. THE 2+ STATE

Let us next discuss the first 2+ state in 26O. One of the
most important findings in the recent experiment reported in
Ref. [15] is a finding of a clear second peak at E = 1.28+0.11

−0.08
MeV, which is likely attributed to the 2+ state. A signal of this
peak was weak in the earlier experiments, mainly because the
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FIG. 11. Top panel: The decay energy spectrum of the 26O
nucleus. The dashed and solid lines are for the 0+ and 2+ states,
respectively, while the dotted line shows the uncorrelated spectrum.
Middle panel: The decay energy spectrum obtained by mixing the 0+

and the 2+ components, as is indicated in the figure. The experimental
data are taken from Ref. [15]. Bottom panel: same as the middle panel,
but with a larger scale.

statistics were not sufficient. In Ref. [21], we have investigated
the 2+ state in the 26O nucleus using the three-body model.
That is, the energy spectrum for this state can still be obtained
with the Green’s function approach, by using a 2+ state for
the reference state, �ref , as well as in the unperturbed Green’s
function, Eq. (20) [21]. Here we repeat the same calculation,
but with the revised set of input parameters. The results for
the decay energy spectrum is shown in Fig. 11. Again, the
main feature remains the same as in Ref. [21]. That is, due
to the pairing interaction between the valence neutrons, the
energy of the 2+ state is slightly shifted toward lower energies
from the unperturbed energy, whereas the energy shift is much
larger for the 0+ state due to the larger overlap between the
wave functions of the two neutrons. The 2+ peak appears at
1.282 MeV, which agrees perfectly with the experimental data.
The middle and the bottom panels of Fig. 11 show the energy
spectrum obtained by mixing the 2+ component by 10% to
the 0+ component. As has already been shown in Ref. [21],
the experimental data are better reproduced by mixing the 2+
component.

While we achieve an excellent agreement with the exper-
imental data for the energy of the 2+ state, it is striking to
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TABLE IV. Comparison of the energies of the 3/2+ state of 25O
and the 2+ state of 26O obtained with several methods. These values,
given in units of MeV, are measured from the thresholds.

Method 25O (3/2+) 26O (2+) Reference

Shell model (USDA) 1.301 2.4 [12,49]
Shell model (USDB) 1.303 2.45 [12,49]
Chiral NN + 3N 0.742 1.64 [12]
Continuum shell model 1.002 1.87 [50]
Continuum-coupled shell model 0.86 1.66 [33]
Three-body model ? 1.6 [19]
Three-body model 0.749 (input) 1.282 this work
Experiment 0.749 (10) 1.28+0.11

−0.08 [15]

notice that most of the theoretical calculations performed
so far overestimate the energy. For instance, an ab initio
calculation with chiral NN and 3N interactions predicts
E2+ to be 1.6 MeV above the ground state [12] (see also
Ref. [48]). Shell model calculations with the USDA and
USDB interactions [49] yield the excitation energy of 1.9 and
2.1 MeV, respectively [12], whereas the continuum shell model
calculations predict the 2+ energy above the threshold to be
1.87 MeV [50] and 1.66 MeV [33]. The recent three-body
model calculation by Grigorenko and Zhukov shows the
energy to be 1.6 MeV [19]. We summarize these results in
Table IV together with the energy of the 3/2+ state in 25O for
each calculation. It is not clear what causes these overestimates
of the 2+ energy, but the 2+ state should certainly appear at
an energy slightly lower than the unperturbed state, as long
as the three-body structure is reasonable. In this sense, the ab
initio calculation with chiral NN and 3N interactions shows
the opposite trend, and the shell model calculations, except for
the continuum shell model calculations of Refs. [33,50], seem
to overestimate the correlation (unfortunately, we cannot judge
this for the recent three-body model calculation of Grigorenko
and Zhukov, because they do not discuss the energy of the 25O
nucleus and also because the exact form of the spin-orbit form
which they employ is not clear).

In addition to the energy of the 2+ state, in this paper
we also evaluate the width and the angular momentum
components using the methods presented in the previous
sections. The results are � = 0.121 MeV, and 94.6% for the
(d3/2)2 configuration, 2.06% for the (p1/3f7/2) configuration,
and 1.05% for the (f7/2)2 configuration. These values are
summarized in Table V. The 2+ state predominantly consists
of the (d3/2)2 configuration, which supports our three-body
model argument of the energy of the 2+ state [21].

TABLE V. Properties of the 2+ state obtained with the present
three-body model. The experimental value of the energy is Eexp =
1.28+0.11

−0.08 MeV [15].

E � (d3/2)2 (p1/3f7/2) (f7/2)2

(MeV) (MeV) (%) (%) (%)

1.282 0.121 94.6 2.06 1.05

V. ANGULAR CORRELATIONS

We next discuss the angular correlation of the emitted
neutrons from the ground state of 26O. The amplitude for
emitting the two neutrons with spin components of s1 and s2

and momenta k1 and k2 is given by [20,40]

fs1s2 (k1,k2) =
∑
j,l

e−ilπ ei(δ1+δ2) Mj,l,k1,k2

×〈[Yj l(k̂1)Yj l(k̂2)](00)|χs1χs2〉, (41)

where χs is the spin-wave function and δ is the nuclear phase
shift. Mj,l,k1,k2 is the decay amplitude given by

Mj,l,k1,k2 = 〈(jj )(00)|(1 + vG0)−1|�ref〉
√

de1

dk1

√
de2

dk2
, (42)

in which the unperturbed Green’s function, G0, is evaluated at
E = e1 + e2. The angular distribution is then obtained as

P (θ12) = 4π
∑
s1,s2

∫
dk1dk2 |fs1s2 (k1,k̂1 = 0,k2,k̂2 = θ12)|2,

(43)
where we have set the z axis to be parallel to k1 and evaluated
the angular distribution as a function of the opening angle, θ12,
of the two emitted neutrons. As in Ref. [20], for simplicity, we
compute the correlated distribution only at the peak energy of
the spectrum and then normalize the calculated distribution.

The upper panel of Fig. 12 shows the angular distributions
thus obtained. In the absence of the correlation between the
valence neutrons, the angular distribution is symmetric with
respect to θ12 = π/2 (see the dotted line). On the other hand, in
the presence of the interaction between the valence neutrons,
the angular distribution becomes highly asymmetric, with an
enhancement of the back-to-back emission [18,20], as is shown
by the solid line. This is a natural consequence of the dineutron
correlation in the momentum space shown in Fig. 9.

As we have already discussed in Sec. II B, the dineutron
correlation is caused by the interference between even- and
odd-angular momentum configurations. In order to demon-
strate this in connection to the angular correlation of the
emitted neutrons, the lower panel of Fig. 12 shows the decom-
position of the distribution into several angular momentum
components. The dotted line is obtained by including only
l = 0 in Eq. (41), which leads to a flat distribution reflecting
the property of the s wave. The filled circles, on the other
hand, are obtained by including both l = 0 and l = 1. One can
now see the enhancement of the back-to-back emission, due
to the interference between the l = 0 and l = 1 components,
reflecting the dineutron correlation.

Moreover, one can also see that the angular distribution is
almost exhausted only by the l = 0 and l = 1 components. One
can view this as follows. That is, the original d2 component in
the reference wave function, �ref , is scattered by the neutron-
neutron interaction to the s2 and p2 configurations during the
penetration of the centrifugal barrier, and are then observed as
emitted neutrons from 26O [18]. The operator (1 + vG0)−1 =
1 − vG0 + vG0vG0 − . . . in Eq. (42) has a responsibility for
this multiple scattering process during the penetration. The
mixing between the s2 and p2 configurations is such that the
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FIG. 12. Upper panel: the angular correlations between the
emitted neutrons from the two-neutron decay of 26O. The solid
and the dotted lines show the correlated and the uncorrelated
distributions, respectively. Lower panel: the decomposition of the
correlated distribution into the angular momentum components. The
dotted line and the filled circles are obtained by including the angular
momentum of the final state up to l = 0 and l = 1, respectively.

back-to-back emission is enhanced being consistent with the
dineutron correlation. In principle, the two neutrons may be
scattered to high partial waves, but these are suppressed due
to high centrifugal barriers.

As compared to the angular distribution reported in
Ref. [20], the degree of asymmetry is smaller in the present
calculation shown in Fig. 12. This is due to the smaller ground-
state energy, that is, we employ the ground-state energy of
18 keV while Ref. [20] considered the energy of 140 keV. Since
the energy is smaller, the p-wave contribution is smaller in the
present calculation. This leads to a smaller admixture between
the s-wave and the p-wave components, and thus the smaller
asymmetry in the angular distribution. In order to see this,
Fig. 13 shows the dependence of the angular distribution on the
ground state energy. For this purpose, we vary the ground-state
energy in two different ways. In the first calculations, we vary
it by changing the strength of the pairing interaction, while
we vary the d3/2 resonance energy of the 25O in the second
calculation keeping the strength of the pairing interaction to
be the same. In either way, one can see that the asymmetry
indeed becomes larger as the ground-state energy increases.
If the ground-state energy further increases, the d wave starts
contributing, and the forward-angle components grow up, even
though the back-to-back emission is still enhanced due to the
dineutron correlation.

Very recently, Kohley et al. extracted experimentally
the three-body correlations from the ground-state decay of
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FIG. 13. The dependence of the correlated angular distribution
on the energy of the ground state. The upper panel is obtained by
varying the energy by changing the pairing interaction between the
two valence neutrons. On the other hand, the lower panel is obtained
by shifting the resonance energy of the d3/2 state in 25O keeping the
strength of the pairing interaction to be the same.

26O [14]. The observed angular correlation has shown an
enhancement of the forward angle emissions, contradictory
to Fig. 12. Kohley et al. have also performed the Monte Carlo
simulations and have figured out that the observed three-body
correlations are insensitive to the theoretical predictions [14].
That is, even a theoretical calculation with the enhancement of
back-to-back emission leads to the opposite trend in the actual
measurement, i.e., the enhancement of forward angles. Kohley
et al. argue that this is due to the uncertainty in the momentum
of the 24O nucleus at the reaction point in the target, which
provides a large impact especially when the decay energy is
small [14]. A confirmation of our prediction shown in Fig. 12
therefore seems quite challenging at this moment, and a further
experimental development will still be necessary.

VI. SUMMARY

We have investigated the two-neutron emission decay of
the unbound nucleus 26O using the 24O + n + n three-body
model. To this end, we have calibrated the model parameters
using the new experimental data measured at RIKEN. We
have first discussed properties of the two-body subsystem,
25O = 24O + n. Using a Woods-Saxon potential, which
reproduces the energy of the d3/2 resonance, we have shown
that the calculated width of the d3/2 resonance as a Gamow
state agrees well with the experimental data. In addition to
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the known d3/2 resonance, we have also found a broad p3/2

and a relatively narrow f7/2 resonance states above the d3/2

resonance. We have then calculated the decay energy spectrum
of 26O. The strength of the pairing interaction between the
two valence neutrons was tuned in order to reproduce the
ground state energy of the 26O nucleus. We have shown
that this interaction leads to an excellent agreement with
the experimental data for the excited 2+ state. We have
also investigated the ground-state properties employing the
bound-state approximation. We have shown that the density
distribution shows a clear signature of dineutron correlation,
with an extended distribution of the valence neutrons. We
have found that the ground state of 26O is dominated by
the (d3/2)2 configuration. In addition to the ground state,
we have found at least two more excited 0+ states, which
consist mainly of the (p3/2)2 and the (f7/2)2 configurations,
respectively, being consistent with the resonance structure of
the two-body subsystem. For the (f7/2)2 resonance, we have
estimated also the resonance width. For the angular correlation
of the two emitted neutrons, we have confirmed the result
of our previous calculations, that is, an enhancement of the
back-to-back emission. We have argued that this enhancement

of the back-to-back emission is a clear signature of dineutron
correlation in 26O, which can be understood in a simple term
of uncertainty relation between the space and the momentum.

The unbound nucleus 26O studied in this paper is a unique
three-body system, which is unbound only slightly with an
extremely small decay energy. This property would offer an
interesting opportunity for further experimental and theoretical
investigations on many-body correlations in neutron-rich nu-
clei. In this situation, the two-particle Green’s function method
will be a useful means in order to analyze experimental data. A
theoretical challenge is to extend it to a four-body decay, such
as 28O. Another theoretical challenge is to apply it to the un-
bound 16Be and 13Li nuclei, both of which have been observed
experimentally. To that end, a treatment of the deformation and
the Borromean nature of the core nuclei would be crucial in
the former and the latter unbound nuclei, respectively.
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