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Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density
functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently,
the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without
any truncation on the two-quasiparticle model space.
Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the
conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn
(TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated.
Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA
scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the
ground states and FAM-QRPA calculation for the excitations.
Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to
experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK
enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength
to higher-energy region, without a significant change in the transition amplitudes.
Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to
perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption
cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of
an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional
(EDF) parameters.
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I. INTRODUCTION

Collective excitations of atomic nuclei reflect various
properties of nuclear structure and the underlying interaction
between nucleons. Their macroscopic or microscopic descrip-
tion has been a major subject in nuclear theory [1–6]. Recently,
self-consistent mean-field models, based on nuclear density
functional theory (DFT), have been intensively applied to the
collective excitations in heavy open-shell nuclei, where ab
initio models are still not computationally feasible.

The giant dipole resonance (GDR) is a noticeable phe-
nomenon generated by electric dipole excitation. It is basically
understood as a collective oscillation of all the neutrons
against all the protons, occupying a major part of the nuclear
giant resonances [1–4]. The GDR plays an essential role
in the nuclear photoabsorption reaction, determining the
centroid energy and width of the cross section. The nuclear
photoabsorption reaction impacts also the dynamics of various
astrophysical scenarios [7]. Therefore, GDR can provide a
good testing ground for DFT-based theories to describe the
nuclear collectivity, as well as the relevant physical properties
of finite and infinite nuclear systems. For example, the centroid
energy of GDR, which is well approximated as �ω ∼= 80A−1/3

MeV for spherical nuclei, can be connected to the symmetry
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energy in infinite nuclear matter, which is an important pseudo-
observable used to determine the parameters of the nuclear
energy density functional (EDF) [6,8,9]. The wide spread of
the GDR in neutron-rich nuclei [10] has been understood to
originate from the ground state deformation, which has been
well reproduced with modern nuclear EDFs [11–15]. Also, the
pairing part of the nuclear EDF has been expected to play a
significant role in the low-lying dipole excitations of exotic
nuclei [16–20].

A commonly used DFT-based approach to address collec-
tive nuclear excitations is done in the framework of linear
response theory, with the random-phase approximation (RPA).
By taking the pairing correlations into account, the RPA is
extended to the quasiparticle random-phase approximation
(QRPA), which has been conventionally treated in the matrix
formulation [5,21]. A fully self-consistent calculation within
the matrix QRPA could be, however, numerically demanding
due to the large size of QRPA matrices. Especially in the case
where the spherical symmetry is broken, one often needs to em-
ploy an additional truncation on the two-quasiparticle model
space in order to reduce the numerical cost [11,13,22,23].
Another approach to reduce the computational cost of the
QRPA is the separable approximation for the residual in-
teraction [15,24–26]. Such a truncation or approximation,
however, may invoke spurious excitations due to the broken
self-consistency between the Hartree-Fock-Bogoliubov (HFB)
ground state and the QRPA solution.
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The finite-amplitude method (FAM) provides an alternative
way to solve the QRPA problem with a significantly reduced
computational cost. With this method, the QRPA linear
response problem is solved iteratively, by circumventing actual
calculation and diagonalization of the QRPA matrix. FAM
was originally developed for a computation of the RPA
strength function, and soon after it was expanded to cover
the QRPA problem within spherical symmetry [27,28]. In
Ref. [29], FAM-QRPA was incorporated into the axially
symmetric Skyrme-HFB solver, based on the harmonic os-
cillator basis. To date, FAM has been applied also to the
axially symmetric coordinate-space HFB solver [30] and to
the relativistic mean-field framework [31,32]. Various appli-
cations of the FAM include descriptions of giant and pygmy
dipole excitations [33,34], efficient computation of the QRPA
matrix elements [35], and evaluation of beta-decay rates,
including the proton-neutron pairing correlations [36,37]. The
contour integration technique of FAM-QRPA was developed to
describe individual QRPA modes [38] and for a fast calculation
of the energy-weighted sum rules [39]. In addition to FAM,
the iterative Arnoldi method presents an alternative method
to solve the QRPA problem iteratively [40]. It was also
applied to the multipole excitations with pairing correlations
[41,42].

This article is devoted to FAM-QRPA methodology applied
to the GDR of the heavy rare-earth nuclei, within the Skyrme
EDF framework. Due to the open-shell nature of these nuclei,
pairing and deformation properties must be taken into account
in a systematic study. We do not assume any truncation of the
two-quasiparticle model space in the QRPA, nor the Bardeen-
Cooper-Schrieffer (BCS) approximation for the pairing, but
keep a full self-consistency between the HFB and QRPA. To
check the validity of the FAM-QRPA, the results are compared
with several sets of experimental data. We also investigate
the impact of the Thomas-Reiche-Kuhn (TRK) sum rule
enhancement factor on the isovector dipole excitation. Because
the TRK sum rule is independent of theoretical models and
only the enhancement factor (or equivalently, the isovector
effective mass) includes information on the nuclear structure,
the energy-weighted sum rule of GDR is an important
quantity which reflects the properties of EDFs [5,8,9]. The
sensitivity of GDR to the isovector effective mass is also
discussed.

We introduce the basic formalism of the Skyrme EDF and
FAM-QRPA in the next section. The results are presented and
discussed in Sec. III. Finally, we summarize this article in
Sec. IV.

II. FORMALISM

As a starting point, our HFB calculations were done in the
Skyrme EDF framework. In order to write the Skyrme energy
density, it is convenient to introduce the isoscalar and isovector
local densities

ρ0(r) = ρn(r) + ρp(r), ρ1(r) = ρn(r) − ρp(r), (1)

where ρn and ρp are the neutron and proton densities. With
these densities, the Skyrme energy density for the particle-hole

(ph) channel reads as

ESkyrme =
∑
t=0,1

[Eeven
t + Eodd

t

]
, (2)

Eeven
t = C

ρρ
t [ρ0]ρ2

t + C
ρ�ρ
t ρt�ρt + C

ρτ
t ρt τt

+C
ρ∇J
t ρt∇ · J t + CJJ

t

∑
μν

Jμν,tJμν,t , (3)

Eodd
t = Css

t [ρ0]s2
t + Cs�s

t st · �st + CsT
t st · T t

+C
s∇j
t st · (∇ × j t ) + C

jj
t j2

t , (4)

where t = 0 (1) indicates the isoscalar (isovector) components.
The time-even part Eeven is a functional of the local density
ρ, kinetic density τ , and spin-orbit densities J and Jμν,t ,
whereas the time-odd part Eodd is expressed with the spin
density s, current density j , and kinetic-spin density T . The
detailed formulation of these quantities can be found in,
e.g., Refs. [43,44]. The coupling coefficients C

ρρ
0 , etc., are

uniquely related to the well-known (t,x) parametrization of
the Skyrme force [44,45]. Also, some of coupling constants
can be connected to the properties of symmetric or asymmetric
nuclear matter, which are useful pseudo-observables for
optimization purposes of the Skyrme EDF parameters. These
pseudo-observables can be treated as alternative EDF input
parameters instead of coupling constants [46].

In the HFB calculation for the ground state of even-
even nuclei, time-reversal symmetry is usually assumed, and
hence the time-odd part of the functional does not make a
contribution to the HFB solution. When the time-reversal
symmetry becomes broken, like in the case of QRPA, the
time-odd part becomes active. If we start from the original
Skyrme force, the consequent time-odd part of the EDF has a
unique correspondence to the time-even part. In other words,
when we fix the coupling coefficients in the time-even part,
those in the time-odd part should be automatically determined.
In the EDF framework, however, a further generalization
can be considered: one may treat the time-odd coefficients
independently from the time-even ones. In this work, the
time-odd part is determined as in the case of Skyrme force.
For Coulomb energy density, the direct term is treated in the
usual manner and for the exchange part we employ the Slater
approximation.

For the particle-particle (pp) channel, which describes
nuclear pairing correlations, we employ a functional of the
density-dependent delta pairing (DDDP) energy density. That
is,

Epair =
∑
q=n,p

V
pair
q

2

[
1 − ζ

ρ0(r)

ρc

]
ρ̃2

q (r), (5)

where ρ̃ is the local pairing density and ρc = 0.16 fm−3 is the
nuclear saturation density. In this article, a mixed DDDP (ζ =
1/2) is adopted. The pairing strengths V

pair
q will be adjusted in

Sec. III.

A. Finite amplitude method

The detailed formulation of FAM-(Q)RPA can be found in
Refs. [27–29,38]. We briefly follow these works to arrange
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the formalism necessary in this work. First, we assume an
external time-dependent field, inducing a polarization on the
HFB ground state. This external field is

F̂(t) = η[F̂e−iωt + F̂†eiωt ],

F̂ = 1

2

∑
μν

[
F 20

μν(aνaμ)† + F 02
μνaνaμ

]
, (6)

where a†
μ and aν are the quasiparticle creation and annihilation

operators, respectively, and η is an infinitesimal real parameter.
In this article, F̂ is assumed to be independent of ω, and
restricted to have the form of the one-body operator. That is,

F̂ =
∑
kl

fklc
†
kcl, (7)

where c
†
k and cl are the original particle creation and annihila-

tion operators. The expressions of F 20
μν and F 02

μν in terms of the
Bogoliubov transformation can be found, e.g., in Refs. [5,28].

Time evolution of quasiparticles is described by the time-
dependent HFB equation,

i
∂

∂t
aμ(t) = [Ĥ(t) + F̂(t),aμ(t)], (8)

where the deviation from the static HFB solution is represented
as

aμ(t) = eiEμt [aμ + δaμ(t)],

δaμ(t) = η
∑

ν

a†
ν[Xνμ(ω)e−iωt + Y ∗

νμ(ω)eiωt ]. (9)

The quantities needed to obtain the multipole transition
strength are the FAM amplitudes, Xνμ(ω) and Yνμ(ω), at the
excitation energy ω. Since the external field induces density
oscillations atop of the static HFB density, the self-consistent
Hamiltonian also contains an induced oscillation: Ĥ(t) =
ĤHFB + δĤ(t), where

δĤ(t) = η[δĤe−iωt + δĤ†eiωt ],

δĤ = 1

2

∑
μν

[
δH 20

μν(ω)(aνaμ)† + δH 02
μν(ω)aνaμ

]
. (10)

Solving Eq. (8) up to the first order in η yields the so-called
FAM equations

[Eμ + Eν − ω]Xμν(ω) + δH 20
μν(ω) = −F 20

μν,

[Eμ + Eν + ω]Yμν(ω) + δH 02
μν(ω) = −F 02

μν. (11)

It is worthwhile to note that, by using the expressions of
δH 20

μν(ω) and δH 02
μν(ω) in terms of Xμν(ω) and Yμν(ω), one

can transform Eq. (11) into the matrix form of[(
A B
B∗ A∗

)
− ω

(
1 0
0 −1

)](
X(ω)
Y (ω)

)
= −

(
F 20

F 02

)
, (12)

where A and B are the well-known QRPA matrices [5]. Notice
that Eq. (12) yields the standard matrix form of QRPA when the
external field is set to zero. The solution of Eq. (12), however,
would require us to compute the QRPA matrices A and B
which generally have large dimensions, leading to a substantial
CPU time requirement. The essential trick of the FAM-QRPA

is to keep Eq. (11) and to solve the FAM amplitudes iteratively
with respect to the response of the self-consistent Hamiltonian.
This allows us to circumvent the large numerical cost of matrix
QRPA.

The response of the self-consistent Hamiltonian, δH 20
μν(ω)

and δH 02
μν(ω), can be expressed in terms of the induced fields,

δH 20
μν(ω) = {U †δh(ω)V ∗ − V †δh(ω)T U ∗

−V †δ�(ω)∗V ∗ + U †δ�(ω)U ∗}μν,

δH 02
μν(ω) = {UT δh(ω)T V − V T δh(ω)U

−V T δ�(ω)V + UT δ�(ω)∗U}μν. (13)

with the well-known HFB matrices U and V . Originally the
induced FAM-QRPA fields, δh, δ�, and δ�, were calculated
by applying numerical functional derivatives. In Ref. [47], on
the other hand, these fields were obtained through explicit
linearization of the Hamiltonian, in order not to mix the
densities with different magnetic quantum numbers K . Thanks
to this explicit linearization, the infinitesimal parameter η is
no longer needed, and the induced fields can be formulated
in a manner similar to the HFB fields. That is, δh(ω) =
h′[ρf ,κf ,κf ], δ�(ω) = �′[ρf ,κf ], and δ�(ω) = �′[ρf ,κf ],
where h′ and �′ are the linearized fields with respect to
perturbed densities. These densities can be expressed as

ρf (ω) = +UX(ω)V T + V ∗Y (ω)T U †,

ρf (ω) = +V ∗X(ω)†U † + UY (ω)∗V T ,

κf (ω) = −UX(ω)T UT − V ∗Y (ω)V †,

κf (ω) = −V ∗X(ω)∗V † − UY (ω)†UT . (14)

The procedures that provide h and � for the HFB solution
can be also utilized for the linearized fields, h′ and �′, with
a minor modification. For an iterative solution of the FAM
amplitudes, the Broyden method was utilized to obtain a rapid
convergence [48,49].

By using the FAM-QRPA amplitudes obtained through
the iteration, the multipole transition strength distribution is
expressed as

dB(F̂ ; ω)

dω
≡

∑
i>0

|〈i | F̂ | 0〉|2δ(ω − �i)

= − 1

π
Im S(F̂ ; ω), (15)

where i > 0 denotes the summation over the states with
positive QRPA energies �i > 0, and the response function
is given by S(F̂ ; ω) = tr[fρf ] [28,47]. In order to prevent the
FAM-QRPA strength from diverging at ω = �i , we employ
a small imaginary part in the energy, ω → ωγ = ω + iγ ,
corresponding to a Lorentzian smearing of � = 2γ [28]. The
explicit formulation of this smeared strength can be found in
Ref. [38]:

S(F̂ ; ωγ ) = −
∑
i>0

(
|〈i | F̂ | 0〉|2
�i − ω − iγ

+ |〈0 | F̂ | i〉|2
�i + ω + iγ

)
. (16)
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The contour integration technique is worth mentioning: dis-
crete QRPA amplitudes or various multipole sum rules can
be obtained from S(F̂ ; ωγ ) with a suitable selection of the
integration contour on a complex (ω,γ ) plane [38,39].

We use following external fields to compute the electric
isovector dipole (IVD) strength dB(D̂K ; ω)/dω:

F̂ = D̂K (K = 0,±1),

D̂K = e
NZ

A

⎡
⎣∑

i∈N

−1

N
DK (r i) +

∑
j∈Z

1

Z
DK (rj )

⎤
⎦,

with DK (r) = rY1K (r̄). In actual calculation, we replace this
operator as

DK → D+
K = (DK + D−K )/

√
2 − δ0K. (17)

Indeed, for an even-even axial nucleus, DK and D−K yield an
identical transition strength.

III. RESULTS AND DISCUSSIONS

A. Benchmark calculation

The HFB calculations were done using the SkM* Skyrme
parametrization at the ph channel [50]. This set of parameters
has been confirmed to be stable in the linear response
calculation for infinite nuclear matter [51]. Since SkM*
lacks tensor terms, corresponding time-odd terms were also
excluded. For the pp channel, the pairing strengths for neutrons
and protons were adjusted to reproduce empirical pairing gaps
of 156Dy: V pair

n = −282.0 MeV fm3 and V
pair
p = −307.9 MeV

fm3. The pairing cutoff window needed for the DDDP is fixed
to 60 MeV. We use computer code HFBTHO, which is an HFB
solver based on the harmonic oscillator (HO) basis within the
axial symmetry [52]. The imaginary part of ωγ for the FAM
strength was set to γ = 0.5 MeV, corresponding to a smearing
width of � = 1.0 MeV, unless otherwise stated.

We would like to emphasize that, in contrast to the
standard solution of the QRPA by matrix diagonalization
(MQRPA), no truncations on the QRPA quasiparticle model
space are imposed in our FAM-QRPA scheme. The only
cutoffs employed are the number of HO shells and the pairing
window; thus, self-consistency between the HFB and QRPA
is fully maintained.

Figure 1 shows a benchmark result of FAM-QRPA applied
to the GDR. Here we plotted the photoabsorption cross sections
obtained with the IVD strengths for 144,154Sm:

σabs(ω) = 4π2

�c
ω

∑
K=0,±1

dB(D̂K ; ω)

dω
. (18)

The quadrupole matter distribution deformations of the HFB
ground states are β = 0 and 0.317 for 144Sm and 154Sm,
respectively. The IVD strengths of the K = 0 and |K| = 1
modes split in 154Sm due to the ground state deformation,
whereas those are identical for spherical 144Sm. In both cases,
FAM-QRPA shows a good agreement with the experimental
data [53]: the typical frequency and width of the GDR can
be well reproduced with our model parameters, with the
smearing width of � = 1.0 MeV. The plateau distribution
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FIG. 1. Photoabsorption cross sections of 144,154Sm from the
FAM-QRPA calculation with 20 harmonic oscillator shells. The
components from the K = 0 and K = ±1 modes are separately
plotted, where K = ±1 refers to a sum of +1 and −1 modes. The total
photoabsorption cross section, calculated with 22 oscillator shells,
is also included in the plot. The experimental data are taken from
Ref. [53].

for the deformed 154Sm can be understood as a product of
the split between K = 0 and |K| = 1 modes [13,14]. Our
result also shows a good consistency with that of Ref. [13],
in which MQRPA within the coordinate-space representation
was adopted.

In this work, we have used a HO basis consisting of 20
major oscillator shells. We have confirmed that our results
are well converged by comparing to the photoabsorption cross
section computed with 22 oscillator shells, as shown in Fig. 1.
Employing more shells provides only a minor modification of
the photoabsorption cross sections, and this effect is negligibly
small compared with uncertainties originating from the used
EDF parametrization itself.

We have computed the FAM strength function within the
MPI parallelized scheme, where each part of the strength
function was distributed on a separate core, similarly to the
method in Ref. [47]. This scheme achieves a remarkable
efficiency, enabling us to compute deformed heavier systems,
where MQRPA is available only with a truncation of the model
space. Typically, a computation of both of the K modes took
about 1500 CPU hours in a multicore Intel Sandy Bridge
2.6-GHz processor system.

B. GDR in heavy rare-earth nuclei

Our survey of the GDR has been performed for even-even
rare-earth nuclei from Gd (Z = 64) to W (Z = 74) isochains.
Because several sets of experimental data are available
[54–56], they can provide a more systematic check for
FAM-QRPA GDR results. In Tables I and II, we summarize
the ground state properties of computed nuclei. The HFB
calculation with SkM* concludes that all the nuclei considered
here have rather stable prolate deformation.
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TABLE I. Ground state properties of Gd, Dy, and Er isotopes
obtained with the SkM* parametrization: axial deformation β, pairing
gaps for neutrons and protons (�n,�p), energy-weighted sum rule
from Eq. (21), m1(D̂K ), and its enhancement factor from the TRK
sum rule κ IVD (For SkM*, κNM = 0.5315).

Nuclide β �n,�p m1(D̂K ) κ IVD

(MeV)] (e2fm2MeV)

152Gd 0.235 1.09,1.19 253.9 0.3939
154Gd 0.301 1.16,0.97 256.5 0.3944
156Gd 0.331 1.08,0.89 258.9 0.3950
158Gd 0.346 1.05,0.84 261.3 0.3953
160Gd 0.355 1.04,0.80 263.6 0.3955
162Gd 0.358 1.07,0.78 265.8 0.3955
164Gd 0.358 1.06,0.76 267.9 0.3954
156Dy 0.289 1.17,0.98 261.1 0.3944
158Dy 0.320 1.13,0.88 263.7 0.3949
160Dy 0.336 1.10,0.82 266.1 0.3954
162Dy 0.344 1.09,0.78 268.5 0.3956
164Dy 0.347 1.09,0.73 270.8 0.3957
166Dy 0.349 1.06,0.69 273.0 0.3958
168Dy 0.348 1.01,0.67 275.2 0.3959
162Er 0.324 1.15,0.87 270.8 0.3953
164Er 0.334 1.14,0.81 273.3 0.3957
166Er 0.339 1.12,0.75 275.7 0.3959
168Er 0.342 1.08,0.70 278.1 0.3962
170Er 0.342 1.00,0.65 280.4 0.3964
172Er 0.337 0.97,0.63 282.6 0.3965
174Er 0.329 1.06,0.61 284.7 0.3964

Our results from FAM-QRPA are summarized in Figs. 2
and 3, in which the photoabsorption cross sections are com-
pared with experimental data, where available. We emphasize
here that experimental data in Refs. [56–58] do not correspond

TABLE II. The same as Table I but for Yb, Hf, and W isotopes.

Nuclide β �n,�p m1(D̂K ) κ IVD

(MeV) (e2fm2MeV)

168Yb 0.331 1.16,0.60 280.5 0.3961
170Yb 0.335 1.10,0.37 283.0 0.3966
172Yb 0.336 1.01,0 285.4 0.3970
174Yb 0.332 0.94,0 287.7 0.3973
176Yb 0.324 1.01,0 289.9 0.3972
178Yb 0.315 1.08,0 292.0 0.3970
174Hf 0.326 1.00,0.85 290.1 0.3965
176Hf 0.316 0.97,0.80 292.5 0.3970
178Hf 0.301 1.03,0.74 294.8 0.3971
180Hf 0.288 1.06,0.68 297.1 0.3970
182Hf 0.276 1.06,0.64 299.2 0.3969
184Hf 0.263 1.03,0.62 301.4 0.3969
180W 0.270 1.09,0.80 299.7 0.3971
182W 0.257 1.11,0.73 302.0 0.3972
184W 0.245 1.10,0.68 304.3 0.3972
186W 0.230 1.07,0.66 306.5 0.3973
188W 0.212 1.01,0.65 308.7 0.3974
190W 0.191 0.97,0.66 310.9 0.3974
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FIG. 2. Photoabsorption cross sections of Gd, Dy, and Er isotopes
as a function of photon energy. For the FAM-QRPA calculation,
the smearing width � = 1.0 MeV is used. The experimental data
sets A, B (photoabsorption), and C (neutron yield) are taken from
Refs. [54–56], respectively.

to the total photoabsorption cross section, but the photo-
neutron cross sections of (γ,n) and (γ,2n) types of reactions.
Thus, the data include only a part of total photoabsorption cross
section due to smaller number of output channels. Generally,
we find a reasonable agreement between the FAM-QRPA and
the experiments. Typical frequencies of GDR are fairly well
reproduced throughout the rare-earth isotopes heavier than
Sm. The width and the plateau top of the distribution are well
understood as a product from the splitting of K = 0 and |K| =
1 modes, corresponding to the prolate deformation commonly
found on their ground states. For 152Gd and several isotopes
of W, the width of the GDR is graphically narrower than other
nuclei, as expected due to smaller prolate deformation. In our
HFB calculations, the proton pairing collapses for 172–178Yb.
This collapse itself, however, does not make a significant
impact on the GDR, as the GDR strength distributions look
similar irrespective of the proton pairing collapse. Although
the pairing could affect the GDR indirectly through the ground
state properties (mainly deformation), their changes are small
among the rare-earth nuclei, as shown in the present study.

There is an observed deficiency in the calculated photoab-
sorption cross sections at the region of heavier rare-earth
isotopes, namely for Z � 70. For example, the calculated
photoabsorption cross section of 174Yb underestimates the
experimental data of Ref. [54] in the region ω = 12–17 MeV,
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FIG. 3. The same as Fig. 2 but for Yb, Hf, and W isotopes. The
experimental data sets A, B (photoabsorption), D (neutron yield), and
E (neutron product) are taken from Refs. [54,55,57,58], respectively.
For Yb and Hf, the results obtained with the smearing width of
� = 0.5 MeV are also plotted with dotted lines.

in which GDR becomes noticeably strong. A similar kind of
GDR deficiency with Skyrme EDFs was reported in Ref. [59].

In Fig. 3, we have also plotted results for the Yb and Hf
isotopes by using a smaller smearing width: � = 0.5 MeV.
With this smaller width, we can reproduce the cross section of
the neutron yield up to ω ≈ 13 MeV, which includes the first
peak of the experimental data of Refs. [57,58]. The second
peak of the neutron yield cross section may be attributable to
the opening of the two-neutron emission channel: for 174Yb,
for example, that peak is located at ω = 15 MeV, which is just
above the two-neutron separation energy. With � = 0.5 MeV,
however, we could not achieve a complete improvement of
aforementioned deficiency, and the total photoabsorption cross
section remains underestimated. In Fig. 4, we also show
that the narrower width of � = 0.3 MeV leads computed
photoabsorption cross sections to overshoot the experimental
values at the peak positions, whereas a discrepancy at other
frequencies remains. Consequently, the GDR deficiency found
here is not improved by simply changing the smearing pa-
rameter �. Further systematic experiments of photoabsorption
cross section, with improved accuracy, would be helpful by

 0

 100

 200

 300

 400

 500

 600

 5  10  15  20  25

P
ho

to
ab

so
rp

tio
n 

C
ro

ss
 S

ec
tio

n 
(m

b)

ω (MeV)

174Yb

Γ=0.3 MeV
Γ=0.5 MeV
Γ=1.0 MeV

Exp. A
Exp. D

FIG. 4. Photoabsorption cross sections of 174Yb obtained with
different values of the smearing width �. The shown experimental
data are the same as those in Fig. 3.

providing a more complete testing ground for theoretical
models.

Theoretical deficiency of the GDR may be connected to
the essential properties of the model. In order to remedy
this deficiency, one could consider, e.g., beyond-QRPA effects
or systematic adjustment of the EDF parameters. These are,
however, beyond the scope of this article. Alternatively, we
discuss a role of the TRK sum rule enhancement factor κ IVD

and its role in the isovector dipole excitation [8,9]. This
quantity can be related to the isovector effective mass of
infinite nuclear matter (INM), which can be used as an input
parameter to define the Skyrme EDF parameters [46]. Because
there has been some ambiguity about the empirical value of
this parameter, knowledge of its effect on GDR will be also
profitable for the future optimization of the EDF parameters.

C. Energy-weighted sum rule

To discuss the sensitivity of GDR to the model parameters,
we investigate the energy-weighted sum rule (EWSR), defined
as

m1(D̂K ) =
∫

ω
dB(D̂K ; ω)

dω
dω . (19)

In terms of the transition matrix elements, it can be rewritten
as

m1(D̂K ) =
∑
i>0

�i |〈i|D̂K |0〉|2 . (20)

It is well known that, by applying the Thouless theorem [60],
the EWSR based on the QRPA can be replaced with the
expectation value of the double commutator of the HFB ground
state [61,62]. For the present case this reads as

m1(D̂K ) = 1

2
〈0|[D̂K,[Ĥ ,D̂K ]]|0〉

= (1 + κ IVD)
e2

�
2

2m

NZ

A

3

4π
, (21)
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where κ IVD is the enhancement factor due to the momentum
dependence of the effective interaction. For the Skyrme force,
it can be given as

κ IVD = 2m

�2

(
C

ρτ
0 − C

ρτ
1

) A

NZ

∫
ρn(r)ρp(r)d r. (22)

For the IVD mode, the EWSR has the same value for K = 0
and 1 cases, even if the ground state is deformed. Note also
that, for INM, κNM = 2m(Cρτ

0 − C
ρτ
1 )ρc/�

2 is obtained.
Before going to applications, we check the validity of

Eq. (21) in a generalized EDF framework [39]. When the
EDF is formally generalized, and has no correspondence with
respect to the underlying effective force, the Thouless theorem
is not guaranteed to remain valid. Because we employed the
Skyrme EDF combined with the mixed DDDP, the EWSR
from actual QRPA calculations can deviate from Eq. (21).
In Ref. [39], the authors showed that the Thouless theorem
provides a reasonable approximation to the EWSR of the
isoscalar/isovector monopole and quadrupole modes, even
when Skyrme EDF lacks exact correspondence with respect
to the underlying effective interaction but still holds the local
gauge invariance. Here we give a similar test for the IVD mode.

For 174Yb, the energy-weighted sum rule, integrated di-
rectly from the transition strength function up to ω = 50 MeV,
yields m1(D̂K ) = 282.7 and 282.1 e2 fm2 MeV for K = 0 and
K = 1 modes, respectively. Because of the deformation and
the resultant splitting of K = 0 and K = 1 strengths, there
is a small difference between the two values. The contour
integration technique of the complex-energy FAM, developed
as an efficient tool to compute the sum rules in Ref. [39],
yields m1(D̂K=0) = 288.0 e2 fm2 MeV with an integration
contour radius of 200 MeV. On the other hand, the double
commutator procedure of Eq. (21) gives m1(D̂K=0,±1) =
287.7 e2 fm2 MeV, with enhancement factor of κ IVD = 0.397,
when using HFB proton and neutron densities.

We find the value from the double commutator method
being consistent with those from the FAM-QRPA calculation.
Consequently, the Thouless theorem can provide a reliable
approximation of the IVD sum rule. The computational cost
for the double commutator procedure is drastically lighter
compared to the FAM-QRPA, since it requires information
only about the HFB state.

We have summarized the EWSR values and enhancement
factors of Eqs. (21) and (22) in Tables I and II. It is clearly
shown that the enhancement factor for the TRK sum rule is
almost constant in this region of the nuclear chart. The ratio of
two enhancement factors,

κ IVD

κNM
= A

NZρc

∫
ρn(r)ρp(r)d r , (23)

is approximately 0.74 for rare-earth systems calculated here
with the SkM* Skyrme parametrization. This is simply due
to the similar value obtained from the density integration
of Eq. (23), with only a limited variation on the proton and
neutron density profiles with respect of N and Z.

In Fig. 5, we plot the enhancement factor κ IVD and the
total HFB energy EHFB as functions of the axial deforma-
tion parameter β for 174Yb. These are obtained from the
HFB calculation with a constraint on β. Approximately, the
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FIG. 5. The total HFB energy and the IVD enhancement factor
of 174Yb as functions of the axial deformation. The HFB ground state
is indicated by the vertical dotted line.

minimum of the total HFB energy corresponds to the max-
imum of κ IVD. This can be understood mainly in terms of
the symmetry energy, which favors a large overlap between
neutrons and protons. Due to other ingredients, especially
the Coulomb energy, the true ground state and maximum
of κ IVD do not exactly coincide. This curve shows, however,
that the IVD enhancement factor is not very sensitive to the
details of the ground state deformation. Next, we investigate
if the deficiency against the experimental photoabsorption
data found in 174Yb could be improved by changing the κNM

parameter.

D. Sensitivity to enhancement factor

In the remaining part of this section, we investigate the
sensitivity of GDR to the EDFs with different κNM values. The
Skyrme parametrizations suited to this purpose can be found in
Ref. [44], where the authors optimized Skyrme parameters by
assuming systematic constraints on various INM properties.
The unconstrained parametrization, SV-min, was optimized
without constraints, and the SV-bas parametrization was a base
starting point for INM parameter variation. The parametriza-
tions with a variation on κNM were introduced as SV-kap60 and
SV-kap20. Because these constrained parametrizations were
otherwise optimized exactly in the same manner as SV-bas,
we can check the effect of κNM on the GDR in a systematic
manner. The exact value of κNM as an input parameter for
each functional is present in Table III. Note that the larger
value of the enhancement factor corresponds to the lighter
isovector effective mass (κNM = m/m∗

v − 1) [9,44]. Except
for the interaction parametrization employed, the numerical
conditions are the same as in the previous calculations.

In Table III, the EWSR of 174Yb obtained with SkM*,
SV-kap20, SV-bas, and SV-kap60 are summarized with the
corresponding enhancement factors. As naturally expected
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TABLE III. The TRK enhancement factor for INM, κNM, the
isovector effective mass, m∗

v/m, and the ground state properties
of 174Yb obtained with various Skyrme EDFs. Note that m1(D̂K )
obtained with the double-commutator procedure, Eq. (21), is the
same for the different values of the magnetic quantum number K .

Param. κNM m∗
v/m 174Yb (g.s.)

m1(D̂K=0,±1) κ IVD β

(e2fm2MeV)

SkM* 0.5315 0.653 287.7 0.3973 0.312
SV-kap20 0.2 0.834 236.1 0.1466 0.337
SV-bas 0.4 0.715 266.5 0.2942 0.336
SV-kap60 0.6 0.625 297.1 0.4429 0.319

from the definitions of κNM and κ IVD [9,39,44], the EWSR
increases with the enhancement factor of INM; in other words,
with the reduction of the isovector effective mass. The HFB
ground states computed with three SV functionals are similarly
deformed. Thus, the density integration of Eq. (23) is also
similar for all three functionals, yielding the common ratio of
κ IVD/κNM ∼= 0.74.

In Fig. 6, IVD transition strengths obtained with SV-kap20,
SV-bas, and SV-kap60 are plotted. One can clearly find that
an increment of the enhancement factor leads to a shift of the
IVD strength towards the higher energy region, as pointed out
in Ref. [44] for the GDR of doubly-magic 208Pb. Conversely,
the shifted strength trivially yields an enhanced value due to its
energy-weight in the EWSR. That is, if the isovector effective
mass becomes lighter, the corresponding excitation energies
becomes higher. This can be qualitatively explained within an
analogy to the single-particle energies of the HO potential,
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which have the same curvature, but different particle masses.
From our calculations, the form of the ground state density
is found to be insensitive to κNM. Thus, in this kind of case,
the excitation energies are mainly determined by the effective
mass for the collective motion.

The energy interval between the K = 0 and K = 1 peaks
is not sensitive to κNM, due to similar deformation parameters
listed in Table III. It is also noticeable that the total amplitude
of the transition strength function is not significantly changed
for different parametrizations, in both K = 0 and K = 1 cases.
Thus, only the position of the peak is sensitive to κNM. From
these results, we expect the mean frequency of GDR to be
a suitable observable in order to constrain isovector effective
mass parameter during EDF optimization.

The photoabsorption cross sections for SV-EDFs are plotted
in Fig. 7. The shift of GDR structure to the high-energy
region is again observed by the increase of κNM. The SV-
kap20 functional reproduces the experimental data well up to
ω = 11 MeV, whereas the general structures match best to the
SV-bas result, which corresponds to κNM = 0.4.

On the other hand, the GDR deficiency against the ex-
perimental data still remains: the calculated total photoab-
sorption cross section cannot be improved by changing the
enhancement factor. In order to improve current EDF models,
a parameter optimization, combined with an input data on the
GDR position and magnitude, may help the situation.

IV. SUMMARY

We have performed a systematic analysis of the GDR
in heavy rare-earth elements, including neutron-rich and de-
formed isotopes. The calculations were handled in the recently
developed parallel FAM-QRPA scheme, in combination with
the Skyrme EDF, without any additional truncations on the
two-quasiparticle model space. This scheme enabled us to
perform fully self-consistent QRPA calculations efficiently
and free from the spurious effects due to the broken self-
consistency.

The mean energy and width, as well as the plateau shape
of the photoabsorption cross section, have been fairly well
reproduced for nuclei considered. However, some deficiency
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in the calculated total photoabsorption cross section was seen
for Z � 70 isotopes.

We also investigated the behavior of GDR by changing the
TRK enhancement factor, connected to the isovector effective
mass. It is clearly shown that an increment of the enhancement
factor shifts the GDR distribution towards the higher-energy
region, corresponding to the lighter isovector effective mass.

The deficiency of GDR total photoabsorption cross section,
with respect to the experimental data, remains an open
question. This deficiency is noticeable in the region of isotopes
heavier than Er. This situation could not be improved by
tuning smearing width or κNM. Several possibilities of further
improvements can be proposed. The first is to expand the
framework to cover the dynamics beyond the QRPA, as well
as the other multipole degrees of freedom. Especially, the
octupole softness of systems could play a role at levels higher
than the RPA. Another direction of progress is to perform
a more systematic optimization of EDF parameters, and to
use GDR data on deformed nuclei as an input. Especially,
the tangled effect of the symmetry energy and its slope
with the isovector effective mass is expected to be important
[9,15,63].

Our FAM-QRPA scheme could be also employed to
investigate the low-lying excitations or the pygmy strength. For
the excitation energies as well as the partial sum rules of these
resonances, not only the particle-hole part but also the pairing
part of the EDF is expected to contribute notably. Especially
for the low-lying excitations of loosely bound nuclei, the
HFB method has an advantage over the BCS method for the
treatment of pairing correlations, especially for nuclei close to
the neutron drip line [64,65]. For this purpose, FAM-QRPA
embedded into the coordinate-space HFB solver could be a
good choice of method [30].
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the FIDIPRO programme. We acknowledge the CSC-IT Center
for Science Ltd., Finland, and the COMA (PACS-IX) System at
the Center for Computational Sciences, University of Tsukuba,
Japan, for the allocation of computational resources.

[1] A. B. Migdal, J. Phys. (USSR) 8, 331 (1944).
[2] M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).
[3] H. Steinwedel and J. H. D. Jensen, Z. Naturforsch. 5, 413 (1950).
[4] M. N. Harakeh and A. van der Woude, Giant Resonances:

Fundamental High-Frequency Modes of Nuclear Excitation
(Oxford University Press, London, 2001).

[5] P. Ring and P. Schuck, The Nuclear Many-Body Problems
(Springer-Verlag, Berlin, Germany, 1980).

[6] G. F. Bertsch and R. A. Broglia, Oscillations in Finite Quantum
Systems (Cambridge University Press, Cambridge, UK, 1994).

[7] M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97
(2007).

[8] P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).
[9] P.-G. Reinhard, Nucl. Phys. A 649, 305 (1999).

[10] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713
(1975).

[11] D. Pena Arteaga, E. Khan, and P. Ring, Phys. Rev. C 79, 034311
(2009).

[12] I. Daoutidis and S. Goriely, Phys. Rev. C 86, 034328 (2012).
[13] K. Yoshida and T. Nakatsukasa, Phys. Rev. C 83, 021304 (2011).
[14] K. Yoshida and T. Nakatsukasa, Phys. Rev. C 88, 034309 (2013).
[15] W. Kleinig, V. O. Nesterenko, J. Kvasil, P.-G. Reinhard, and

P. Vesely, Phys. Rev. C 78, 044313 (2008).
[16] M. Matsuo, K. Mizuyama, and Y. Serizawa, Phys. Rev. C 71,

064326 (2005).
[17] T. Oishi, K. Hagino, and H. Sagawa, Phys. Rev. C 84, 057301

(2011).
[18] N. D. Dang and N. Q. Hung, J. Phys. G 40, 105103 (2013).
[19] S. Ebata, T. Nakatsukasa, and T. Inakura, Phys. Rev. C 90,

024303 (2014).
[20] S. Ebata, T. Nakatsukasa, and T. Inakura, Phys. Rev. C 92,

049902(E) (2015).
[21] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607

(2003).
[22] J. Terasaki and J. Engel, Phys. Rev. C 82, 034326 (2010).

[23] J. Terasaki and J. Engel, Phys. Rev. C 84, 014332 (2011).
[24] V. O. Nesterenko, J. Kvasil, and P.-G. Reinhard, Phys. Rev. C

66, 044307 (2002).
[25] V. O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.-G.

Reinhard, and D. S. Dolci, Phys. Rev. C 74, 064306 (2006).
[26] V. O. Nesterenko, W. Kleinig, J. Kvasil, P. Veselý, and P.-G.
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C 88, 034314 (2013).

034329-10

http://dx.doi.org/10.1103/PhysRevC.86.024303
http://dx.doi.org/10.1103/PhysRevC.86.024303
http://dx.doi.org/10.1103/PhysRevC.86.024303
http://dx.doi.org/10.1103/PhysRevC.86.024303
http://dx.doi.org/10.1103/PhysRevC.86.014307
http://dx.doi.org/10.1103/PhysRevC.86.014307
http://dx.doi.org/10.1103/PhysRevC.86.014307
http://dx.doi.org/10.1103/PhysRevC.86.014307
http://dx.doi.org/10.1103/PhysRevC.79.034310
http://dx.doi.org/10.1103/PhysRevC.79.034310
http://dx.doi.org/10.1103/PhysRevC.79.034310
http://dx.doi.org/10.1103/PhysRevC.79.034310
http://dx.doi.org/10.1103/PhysRevC.69.014316
http://dx.doi.org/10.1103/PhysRevC.69.014316
http://dx.doi.org/10.1103/PhysRevC.69.014316
http://dx.doi.org/10.1103/PhysRevC.69.014316
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1103/PhysRevC.92.051302
http://dx.doi.org/10.1103/PhysRevC.92.051302
http://dx.doi.org/10.1103/PhysRevC.92.051302
http://dx.doi.org/10.1103/PhysRevC.92.051302
http://dx.doi.org/10.1103/PhysRevB.38.12807
http://dx.doi.org/10.1103/PhysRevB.38.12807
http://dx.doi.org/10.1103/PhysRevB.38.12807
http://dx.doi.org/10.1103/PhysRevB.38.12807
http://dx.doi.org/10.1103/PhysRevC.78.014318
http://dx.doi.org/10.1103/PhysRevC.78.014318
http://dx.doi.org/10.1103/PhysRevC.78.014318
http://dx.doi.org/10.1103/PhysRevC.78.014318
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1103/PhysRevC.85.054317
http://dx.doi.org/10.1103/PhysRevC.85.054317
http://dx.doi.org/10.1103/PhysRevC.85.054317
http://dx.doi.org/10.1103/PhysRevC.85.054317
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(74)90373-X
http://dx.doi.org/10.1016/0375-9474(81)90443-7
http://dx.doi.org/10.1016/0375-9474(81)90443-7
http://dx.doi.org/10.1016/0375-9474(81)90443-7
http://dx.doi.org/10.1016/0375-9474(81)90443-7
http://dx.doi.org/10.1103/PhysRev.185.1576
http://dx.doi.org/10.1103/PhysRev.185.1576
http://dx.doi.org/10.1103/PhysRev.185.1576
http://dx.doi.org/10.1103/PhysRev.185.1576
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1016/0029-5582(61)90364-9
http://dx.doi.org/10.1016/0029-5582(61)90364-9
http://dx.doi.org/10.1016/0029-5582(61)90364-9
http://dx.doi.org/10.1016/0029-5582(61)90364-9
http://dx.doi.org/10.1103/PhysRevC.7.2281
http://dx.doi.org/10.1103/PhysRevC.7.2281
http://dx.doi.org/10.1103/PhysRevC.7.2281
http://dx.doi.org/10.1103/PhysRevC.7.2281
http://dx.doi.org/10.1103/PhysRevC.66.024309
http://dx.doi.org/10.1103/PhysRevC.66.024309
http://dx.doi.org/10.1103/PhysRevC.66.024309
http://dx.doi.org/10.1103/PhysRevC.66.024309
http://dx.doi.org/10.1103/PhysRevC.85.041302
http://dx.doi.org/10.1103/PhysRevC.85.041302
http://dx.doi.org/10.1103/PhysRevC.85.041302
http://dx.doi.org/10.1103/PhysRevC.85.041302
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1103/PhysRevC.88.034314
http://dx.doi.org/10.1103/PhysRevC.88.034314
http://dx.doi.org/10.1103/PhysRevC.88.034314
http://dx.doi.org/10.1103/PhysRevC.88.034314



