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Isoscalar dipole transition as a probe for asymmetric clustering
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Background: The sharp 1− resonances with enhanced isoscalar dipole transition strengths are observed in many
light nuclei at relatively small excitation energies, but their nature has been unclear.
Purpose: We show those resonances can be attributed to the cluster states with asymmetric configurations such
as α + 16O. We explain why asymmetric cluster states are strongly excited by the isoscalar dipole transition. We
also provide a theoretical prediction of the isoscalar dipole transitions in 20Ne and 44Ti.
Method: The transition matrix is analytically derived to clarify the excitation mechanism. The nuclear model
calculations by Brink–Bloch wave function and antisymmetrized molecular dynamics are also performed to
provide a theoretical prediction for 20Ne and 44Ti.
Results: It is shown that the transition matrix is as large as the Weisskopf estimate even though the ground state is
an ideal shell-model state. Furthermore, it is considerably amplified if the ground state has cluster correlation. The
nuclear model calculations predict large transition matrix to the α + 16O and α + 40Ca cluster states comparable
with or larger than the Weisskopf estimate.
Conclusions: We conclude that the asymmetric cluster states are strongly excited by the isoscalar dipole transition.
Combined with the isoscalar monopole transition that populates the 0+ cluster states, the isoscalar transitions are
promising probes for asymmetric clusters.
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I. INTRODUCTION

The observed electric monopole (E0) and isoscalar (IS)
monopole strength distributions of light nuclei [1–14] show
that a considerable amount of the strength fractions appears
at relatively small excitation energy as sharp resonances. It
was known that many of those resonances are associated
with the α cluster states such as the Hoyle state of 12C
[15–24], the α + 12C cluster states in 16O [25,26], the α + 16O
cluster states in 20Ne [27], and the α + α + t cluster state
in 11B [28–30]. Therefore, the IS monopole transition has
been utilized as a probe to search for the cluster states in
light nuclei. Later, Yamada et al. [31] clearly explained the
enhancement mechanism of the monopole transition from the
ground state to the cluster states. They showed, by exploiting
the Bayman–Bohr theorem [32], that the degrees of freedom
of cluster excitation are embedded in the ground state, and the
monopole operator activates them to strongly excite the cluster
states. This finding boosted the studies of the cluster states
by using the monopole transition as a probe. In these days,
various cluster states in stable and unstable nuclei [33–40] are
discussed on the basis of their enhanced monopole strengths.

Among the various cluster states, the cluster systems
with asymmetric configuration must have the 1− state that
constitute the parity doublet together with the 0+ cluster
state. For example, the 1− state of 16O at 9.6 MeV and
that of 20Ne at 5.8 MeV are the evidence of the asymmetric
clustering with α + 12C and α + 16O configurations [41].
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Therefore, identifying the 1− cluster state is a key to prove
asymmetric clustering. In the case of N �= Z nuclei, the
enhanced electric-dipole (E1) transition was suggested as a
probe for such 1− states [42]. The 1− cluster states with the
α + 14C configuration in 18O were experimentally searched
by using the E1 strength as a probe [43,44], in addition to
the ordinary experimental methods such as α scattering and
breakup [45–48]. The α clustering in the actinides [49–51]
were also investigated in the same literature. Recently, the
α clustering in 212Po [52–54] and the rare-earth nuclei [55]
were also discussed based on their enhanced low-lying E1
strengths.

In the case of the N = Z nuclei for which we expect a
rich variety of clustering, the E1 transition is not available
and we need other probes. As an alternative, one may consider
the IS dipole transition, because it populates 1− states and
has an operator form that is similar to the IS monopole
transition. Furthermore, its strength distributions measured for
light nuclei [4–6,10,11,13,35,36] show the existence of the
sharp resonances with enhanced strengths at relatively small
excitation energies well below the giant resonance. In a recent
experimental study [35], the observed low-lying resonances
in 32S are conjectured to be the α + 28Si cluster states,
because of their enhanced IS dipole transition strength from
the ground state. Very recently, Kanada–En’yo also discussed
the enhancement of the IS dipole transition strength of the α
cluster states in 12C based on a theoretical calculation [56].
However, the excitation mechanism of the IS dipole transition
and the relationship to the cluster states are still unclear and
must be clarified to promote theoretical and experimental
studies.
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For this purpose, by using α + 16O and α + 40Ca cluster
states in 20Ne and 44Ti as examples, we investigate the
excitation mechanism of the IS dipole transition from the
ground state to the asymmetric cluster states. We first discuss
an analytic expression of the IS transition matrix from the
shell-model ground state to the cluster states. It is found
that the transition matrix is enlarged for asymmetric cluster
systems and becomes as large as the Weisskopf estimate, even
if the ground state is an ideal shell-model state. Furthermore,
a simple numerical estimate using the Brink–Bloch wave
function [57] shows that the matrix is considerably amplified
if the ground state has cluster correlation.

To provide more realistic prediction of the IS dipole transi-
tion strength in 20Ne and 44Ti, we also performed microscopic
nuclear model calculations by using the generator coordinate
method with the Brink–Bloch wave function (Brink–Bloch
GCM) and antisymmetrized molecular dynamics (AMD)
[58,59]. AMD is able to describe the distortion of the clusters
and reasonably explains the observed excitation spectra of the
ground band and cluster bands for both nuclei. The AMD result
shows that only the 1− states having the α + 16O or α + 40Ca
cluster structure have a large transition matrix comparable to
or larger than the Weisskopf estimate, and other non-cluster 1−
states are insensitive. From these results, we conclude that the
IS dipole transition can strongly excite the 1− cluster states and
is a promising probe for asymmetric clustering when combined
with the IS monopole transition that excites 0+ cluster
states.

This paper is organized as follows: In Sec. II, we derive
an analytic expression for the IS dipole transition matrix. We
also perform simple numerical estimation of the transition
matrix using the Brink–Bloch wave function. The microscopic
models, Brink–Bloch GCM and AMD, are introduced in
Sec. III, and the results obtained with these models are
discussed in Sec. IV. The final section summarizes this
study.

II. ESTIMATES OF ISOSCALAR DIPOLE
TRANSITION MATRIX

In this section, by using the shell-model and cluster-model
wave functions, we estimate the magnitude of the IS dipole
transition matrix between the ground and excited 1− states
of 20Ne and 44Ti having asymmetric cluster structure with
α + 16O and α + 40Ca configurations.

By assuming that the ground state is described by a shell-
model wave function, we first derive an analytical expression
for the transition matrix and show that it is comparable with the
Weisskopf estimate. We also show that the transition matrix
is considerably amplified when the ground state has cluster
correlation.

A. Analytical estimate of transition matrix

1. Wave functions of ground state and nodal
and angular excited cluster states

The ground states of 20Ne and 44Ti are dominated by the
(0d1s)4 and (0f 1p)4 configurations on top of the closed-shell
cores 16O and 40Ca. The shell-model calculations [60–65]

showed that the ground state of 20Ne is dominated by
the SU(3) irreducible representation of (λ,μ) = (8,0), and
44Ti is by the (12,0) representation in the Elliott’s SU(3)
model [66]. An important fact here is that these shell-model
wave functions are equivalently expressed by the α + 16O
and α + 40Ca cluster-model wave functions owing to the
Bayman–Bohr theorem [32]:

�(g.s.) = c0√
μN0

A′{RN000(r)φ1φ2
}
, (1)

c0 =
√

C1!C2!/A!,

μN = 〈RNlm(r)φ1φ2|A′{RNlm(r)φ1φ2}〉. (2)

Here, the internal wave functions of α cluster (with mass C1)
and 16O or 40Ca cluster (with mass C2) denoted by φ1,φ2

are the harmonic oscillator wave functions with the oscillator
parameter ν = mω/(2�). The wave function of the inter-
cluster motion is also the harmonic oscillator wave function
RNlm(r) = RNl(r)Ylm(r̂) but its oscillator parameter is scaled
by the reduced mass ν ′ = (C1C2/A)ν. The principal quantum
number of the intercluster motion is equal to the lowest
Pauli-allowed values: N0 = 8 for 20Ne and N0 = 12 for 44Ti
[the nodal quantum numbers n0 = (N0 − l)/2 are 4 and 6].

As emphasized in Ref. [31], this equivalence of the shell-
model and cluster-model wave functions implies that the
degrees-of-freedom of cluster excitation are embedded even
in an ideal shell-model ground state. For example, the nodal
excitation of the intercluster motion yields the excited 0+ state,

�(0+
ex) =

∞∑
N=N0+2

eN

c0√
μN

A′{RN00(r)φ1φ2}, (3)

where the nodal quantum number of intercluster motion is
increased relative to the ground state and, hence, the principal
quantum number N must be equal to or larger than N0 +
2. Thus, the states with larger values of N are coherently
superposed with coefficients eN . The 0+

4 state of 20Ne around
8.7 MeV [67] and 0+ states of 44Ti observed around 11 MeV
[68,69] are attributed to this class of nodal excited cluster
states. In Ref. [31], taking 12C and 16O as examples, it was
shown that the IS monopole transition matrix from the ground
state to the nodal excited cluster states is large.

Besides the nodal excitation, the angular excitation of the
intercluster motion also takes place. For example, the angular
excitation with �l = 1 (combined with the nodal excitation)
yields the 1− state,

�(1−) =
∞∑

N=N0+1

fN

c0√
μN

A′{RN10(r)φ1φ2}, (4)

where the principal quantum number N must be equal to
or larger than N0 + 1. The 1−

1 state of 20Ne at 5.8 MeV
[67] and 1− states of 44Ti observed at 6.2 MeV and around
12 MeV [68–70] are attributed to this class of angular excited
cluster state. Since the angular excitation with odd-number
angular momenta (negative-parity states) is allowed only in
the asymmetric cluster systems (C1 �= C2), the 1− state has
been regarded as evidence of the asymmetric clustering [41].
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2. Analytical expression of transition matrix

By using the wave functions described by Eqs. (1) and (4),
we derive an analytic expression for the IS dipole transition
between the ground and the angular excited 1− cluster states.
The IS dipole operator MIS1

μ , reduced matrix element M IS1,
and transition probability B(IS1) are

MIS1
μ =

A∑
i=1

(r i − rc.m.)
2Y1μ(r i − rc.m.), (5)

M IS1 = 〈1−||MIS1||0+
1 〉 =

√
3〈1−,Jz|MIS1

Jz
|0+

1 〉, (6)

B(IS1; 0+
1 → 1−) = |M IS1|2, (7)

where r i denotes the ith nucleon coordinate, while rc.m.

denotes the center of mass of the system. The solid spherical
harmonics are defined as Yλμ(r) ≡ rλYλμ(r̂).

Applying the wave functions (1) and (4) to Eq. (6), the
reduced matrix element is given as

M IS1 =
√

3〈�(1−)|MIS1
0 |�(g.s.)〉

=
∑

N=N0+1

√
3fN√

μN0μN

× 〈MIS1
0 RN10(r)φ1φ2

∣∣A′{RN000(r)φ1φ2
}〉

. (8)

To evaluate the last matrix element, we rewrite MIS1
μ in

terms of the internal coordinates ξ i of each cluster and the
intercluster coordinate r , which are defined as

RC1 ≡ 1

C1

∑
i∈C1

r i , RC2 ≡ 1

C2

∑
i∈C2

r i , (9)

ξ i ≡
{

r i − RC1 , i ∈ C1
r i − RC2 , i ∈ C2,

(10)

r ≡ RC1 − RC2 , (11)

where the center of mass of clusters RC1 and RC2 are intro-
duced. With these coordinates, as explained in Appendix A,
MIS1

μ is expressed as

MIS1
μ =

∑
i∈C1

ξ 2
i Y1μ(ξ i) +

∑
i∈C2

ξ 2
i Y1μ(ξ i) −

√
32π

9

⎧⎨⎩C2

A

[∑
i∈C1

Y2(ξ i) ⊗ Y1(r)

]
1μ

− C1

A

[∑
i∈C2

Y2(ξ i) ⊗ Y1(r)

]
1μ

⎫⎬⎭
+ 5

3

(
C2

A

∑
i∈C1

ξ 2
i − C1

A

∑
i∈C2

ξ 2
i

)
Y1μ(r) − C1C2(C1 − C2)

A2
r2Y1μ(r). (12)

This expression makes it clear that MIS
μ will activate the degrees of freedom of cluster excitation embedded in the ground state. It

will generate angular excited cluster states with Jπ = 1−, because if operated on the ground-state wave function given in Eq. (1),
the terms depending on Y1μ(r) and r2Y1μ(r) will induce the nodal and angular excitation of the intercluster motion.

By substituting Eq. (12) into Eq. (8), one finds that the first line of Eq. (12) identically vanishes because it involves the internal
excitation of clusters. Hence, only the second line has nonvanishing matrix element, as given below (see Appendix B for the
derivation):

M IS1 =
√

3

4π

C1C2

A

[
fN0+1

√
μN0

μN0+1

{
5

3

(〈r2〉C1
− 〈r2〉C2

)〈
RN00

∣∣r∣∣RN0+11
〉− C1 − C2

A
〈RN00|r3|RN0+11〉

}
− C1 − C2

A
fN0+3

√
μN0

μN0+3

〈
RN00

∣∣r3
∣∣RN0+31

〉]
, (13)

where 〈r2〉C1
and 〈r2〉C2

are the square of the root-mean-square
radius of the clusters, and the matrix elements of the harmonic
oscillator are given as

〈
RN00

∣∣r∣∣RN0+11
〉 = √

N0 + 3

4ν ′ ,

〈
RN00

∣∣r3
∣∣RN0+11

〉 = 3N0 + 5

4ν ′

√
N0 + 3

4ν ′ ,

〈
RN00

∣∣r3
∣∣RN0+31

〉 = −
√

(N0 + 2)(N0 + 5)

4ν ′

√
N0 + 3

4ν ′ . (14)

From Eqs. (13) and (14), we find following properties:
(1) The transition matrix is proportional to 〈r2〉C1 − 〈r2〉C2

or (C1 − C2)/A, which means that it is amplified for the

asymmetric cluster states. Therefore, we expect that the IS
dipole transition is a good probe for asymmetric clustering.
(2) For the cluster states dominated by the 1�ω configuration,
the first line of Eq. (13) dominantly contributes, while the
second line becomes major for the 3�ω excited cluster states.
(3) From Eq. (14), the matrix element becomes larger as the
oscillator parameter ν ′ decreases, which means an increase in
the size of the relative wave function and in the intercluster
distance.

3. Estimate of matrix element

We are now able to estimate the magnitude of the IS
dipole transition matrix. We adopted the values listed in
Table I. Here, the oscillator parameters ν = 0.16 fm−2 for
20Ne and 0.12 fm−2 for 44Ti are determined to minimize
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TABLE I. List of the quantities used to evaluate Eq. (13). Radii
of α, 16O, and 40Ca clusters are calculated from the measured charge
radii given in Ref. [71] and listed in units of fm2. The oscillator
parameters ν and ν ′ are in units of fm−2. Other quantities are
dimensionless.

N0 μN0
a μN0+1 μN0+3 〈r2〉C1

〈r2〉C2

20Ne 8 0.229 0.344 0.620 (1.46)2 (2.57)2

44Ti 12 0.069 0.157 0.372 (1.46)2 (3.37)2

ν ν ′ fN0+1 fN0+3

20Ne 0.16 0.51
√

0.39 −√
0.28

44Ti 0.12 0.44
√

0.23 −√
0.26

aμN defined in Eq. (2) is the so-called eigenvalue of the RGM norm
kernel and is analytically calculable. The values listed in the table are
taken from Ref. [72].

the ground-state energies as explained in Sec. III. And the
oscillator parameter of the relative wave function is scaled by
the reduced mass as ν ′ = C1C2ν/A. The coefficients fN0+1

and fN0+3 are estimated by the AMD calculation, which is
also explained in Sec. III. For other quantities, an analytical
calculation is possible or an experimental value is available.
Assignment of those values to Eq. (13) yields the estimate of
20Ne:

M IS1( 20Ne) = 3.08f9 − 7.36f11 = 5.82 fm3, (15)

and for 44Ti,

M IS1( 44Ti) = 13.3f13 − 16.2f15 = 14.6 fm3. (16)

Note that fN0+1 and fN0+3 usually have opposite signs for
angular excited cluster states, as explained in Appendix C, so
the first and second terms in Eqs. (15) and (16) contribute
additively to enlarge the matrix element.

These results are compared with the single-particle esti-
mates. Assuming a constant radial wave function as usual, the
Weisskopf estimate is given as

M IS1
WU =

√
3

4π

3

6
(1.2A1/3)3 � 0.422A fm3. (17)

It is approximately 8.44 fm3 for 20Ne and 18.6 fm3 for 44Ti,
which are slightly larger than but comparable to Eqs. (15) and
(16).

Thus, the angular excited cluster states have a strong IS
dipole transition from the ground state comparable to the
Weisskopf estimate, even if the ground state is not a cluster
state but an ideal shell-model state. Since the single-particle
transition is usually fragmented into many states, only the
asymmetric cluster states can have strong transition strengths.
Furthermore, as we will show below, the strength is further
amplified if the ground state has cluster correlation.

B. Amplification of transition matrix owing
to clustering of ground state

Here we show that the magnitude of M IS1 is considerably
amplified compared with the estimates made in the previous
section if the ground state has cluster correlation. To demon-
strate this, we employ Brink–Bloch wave function [57], which

is composed of clusters C1 and C2 placed at −C2/AD and
C1/AD with the intercluster distance D,

�BB(D) = n0A′
{
ψC1

(
−C2

A
D
)

ψC2

(
C1

A
D
)}

,

D = (0,0,D), (18)

where ψC1 and ψC2 denote the wave functions of clusters repre-
sented by the harmonic oscillator wave functions that include
their center-of-mass coordinates. The oscillator parameters
are ν = 0.16 and 0.12 fm−2 for 20Ne and 44Ti, respectively.
Equation (18) is projected onto the eigenstate of parity and
angular momentum,

�π
BB(D) = 1 + πPx

2
�BB(D), π = ±, (19)

�lπ
BB(D) = 2l + 1

8π2

∫
d�Dl∗

M0(�)R(�)�π
BB(D). (20)

Here Px , Dl
MK (�), and R(�) denote the parity operator, the

Wigner D function, and the rotation operator. It is known that
the Brink–Bloch wave function can be transformed into the
form of Eqs. (1), (3), and (4) [72],

�lπ
BB(D) = φc.m.(rc.m.)n0A′{ χBB(r)φ1φ2 }, (21)

φc.m.(rc.m.) =
(

2Aν

π

)3/4

e−Aνr2
c.m. ,

χBB(r) =
∑
N

ANl

(ν ′D2)N/2

√
N !

e−ν ′D2/2RNl0(r), (22)

ANl = (−)(N−l)/2

√
(2l + 1)N !

(N − l)!!(N + l + 1)!!
, (23)

where φc.m.(rc.m.) is the center-of-mass wave function, and the
wave function of the intercluster motion χBB(r) is expanded by
the harmonic oscillator wave functions. From this expression,
we can see that Brink–Bloch wave function becomes identical
to Eq. (1) in the limit D → 0 and, hence, equals the shell-
model wave function. Of course, as D increases, the wave
function exhibits stronger clustering.

By using the Brink–Bloch wave functions for α +
16O ( 20Ne) and α + 40Ca ( 44Ti) systems, we calculated the
transition matrix:

M IS1
BB (D0,D1)

=
√

3
〈
�1−

BB(D1)
∣∣MIS1

0

∣∣�0+
BB(D0)

〉√〈
�0+

BB(D0)
∣∣�0+

BB(D0)
〉〈
�1−

BB(D1)
∣∣�1−

BB(D1)
〉 . (24)

The result is shown in Fig. 1 where the ratio of the transition
matrix to the Weisskopf estimate given by Eq. (17) is
plotted as function of the intercluster distances D0 in the
ground state and D1 in the 1− state. In both systems, we
see that, even for small values of D0 and D1, M IS1

BB is
larger than the Weisskopf estimates. It is impressive that the
matrix element is considerably amplified as both D0 and D1

increase.
By the more detailed calculations explained in the next

section, the position of the ground and 1− states are estimated

034319-4



ISOSCALAR DIPOLE TRANSITION AS A PROBE FOR . . . PHYSICAL REVIEW C 93, 034319 (2016)

2.02.0
2.0

4.0
4.0

6.0
6.0

8.010.0
14.0 10.0

1

2

3

4

5

6

2 3 4 5 6

(a) (b)

2

3

4

5

6

1 2 3 4 5 6

[f
m

]

[f
m

]

[fm][fm]

FIG. 1. The ratio of the transition matrix to the Weisskopf
estimate, M IS1

BB /M IS1
WU, as function of the intercluster distances in

the ground state D0 and in the 1− state D1. Panel (a) is for the
α + 16O ( 20Ne) system, while panel (b) is for the α + 40Ca ( 44Ti)
system. The circles show the approximate positions of the ground and
excited 1− states obtained by the Brink–Bloch GCM (filled circles)
and AMD (open circles) calculations given in Sec. IV.

approximately at the open circles in Fig. 1. Therefore,
the transition strength is indeed considerably amplified and
regarded as a good probe for asymmetric clustering.

III. MICROSCOPIC NUCLEAR MODELS

To provide realistic and reliable results for the IS dipole
transition of 20Ne and 44Ti, we performed two microscopic
nuclear model calculations which we explain in this section.
The first is the Brink–Bloch GCM and the other is AMD.
The Brink–Bloch GCM can properly describe the intercluster
motion. In addition to this, AMD can also describe the the
polarization and distortion of clusters.

In both theoretical models, the following microscopic
A-body Hamiltonian is commonly used:

H =
A∑

i=1

t(i) +
A∑

i<j

vn(ij ) +
Z∑

i<j

vC(ij ) − tc.m., (25)

where the Gogny D1S interaction [73] is used as an effective
nucleon-nucleon interaction vn. The Coulomb interaction vC

is approximated by a sum of seven Gaussians. The center-of-
mass kinetic energy tc.m. is exactly removed.

A. Generator coordinate method
with Brink-Bloch wave function

The Brink–Bloch GCM uses Eq. (20) as the basis func-
tion and employs the intercluster distance D as generator
coordinate. The width parameter ν is so chosen to minimize
the ground-state energy, which is found to be ν = 0.16 and
0.12 fm−2 for 20Ne and 44Ti, respectively. In the practical
calculation, D is discretized ranging from 1.0 to 12.0 fm
with an interval of 0.5 fm, which generates 23 basis functions
�lπ

BB(Di), i = 1, . . . ,23.
To describe the ground and α + 16O cluster states, the basis

functions are superposed,

�lπ
Mp =

∑
i

gip�lπ
BB(Di). (26)

By solving the following Griffin–Hill–Wheeler equation
[74,75], we obtain the eigenenergy Ep and the coefficients
of the superposition gip:∑

i ′
Hlπ

ii ′ gi ′p = Elπ
p

∑
i ′

Nlπ
ii ′ gi ′p, (27)

Hlπ
ii ′ = 〈

�lπ
BB(Di)

∣∣Ĥ ∣∣�lπ
BB(Di ′)

〉
, (28)

Nlπ
ii ′ = 〈

�lπ
BB(Di)

∣∣�lπ
BB(Di ′)

〉
. (29)

By using the thus-obtained wave functions for the ground and
excited 1− states, the reduced matrix element given in Eq. (6)
is directly calculated.

B. Antisymmetrized molecular dynamics

In the AMD model [58,59], each nucleon is represented by
a localized Gaussian wave packet,

ϕi(r) = exp

{
−

∑
σ=x,y,z

νσ

(
rσ − Ziσ√

νσ

)2
}

χiξi,

(30)
χi = aiχ↑ + biχ↓, ξi = proton or neutron,

where χi and ξi represent spin and isospin wave functions, re-
spectively. The intrinsic wave function is a Slater determinant
of nucleon wave packets,

�int = A{ϕ1ϕ2 · · · ϕA}. (31)

The parameters of the intrinsic wave function, Zi , ai , bi ,
and νσ , are determined by the energy minimization explained
below.

Before the energy minimization, the intrinsic wave function
is projected to the eigenstate of the parity,

�π = 1 + πPx

2
�int, π = ±. (32)

Then, the above-mentioned parameters are determined to
minimize the expectation value of the Hamiltonian Ẽ that
is defined as

Ẽ = 〈�π |Ĥ |�π 〉
〈�π |�π 〉 + Vc, (33)

Vc = vβ(〈β〉 − β0)2 + vγ (〈γ 〉 − γ0)2. (34)

Here the potential Vc is added to impose the constraint on
the quadrupole deformation of intrinsic wave function that
is parametrized by 〈β〉 and 〈γ 〉 as defined in Ref. [76]. The
magnitudes of vβ and vγ are chosen large enough so that 〈β〉
and 〈γ 〉 are, after the energy minimization, equal to β0 and
γ0, respectively. By the energy minimization, we obtain the
optimized wave function �π

int(β0,γ0) for discretized sets of
(β0,γ0) on the triangular lattice in β-γ plane. The lattice size
is 0.05 and the calculation is performed up to β = 0.9.

After the energy minimization, we project out an eigenstate
of angular momentum and perform the GCM calculation by
using the quadrupole deformation parameters β0 and γ0 as
the generator coordinates. We also included the Brink–Bloch
wave functions �Jπ

BB(Di) as the basis functions of GCM. For
simplicity, we denote by �i this set of basis functions. Because
the AMD wave function is not necessarily axially symmetric,
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nonzero values of K quantum number and their mixing must
be taken into account. Hence the equation for the angular
momentum projection and the Griffin–Hill–Wheeler equation
are

�Jπ
MKi = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�)�π
i , (35)

and

�Jπ
Mp =

∑
Ki

gKip�Jπ
MKi, (36)

∑
i ′K ′

HJπ
KiK ′i ′gK ′i ′p = EJπ

p

∑
i ′K ′

NJπ
KiK ′i ′gK ′i ′p, (37)

HJπ
KiK ′i ′ = 〈

�Jπ
MKi

∣∣Ĥ ∣∣�Jπ
MK ′i ′

〉
, (38)

NJπ
KiK ′i ′ = 〈

�Jπ
MKi

∣∣�Jπ
MK ′i ′

〉
. (39)

By using the wave function given in Eq. (36) the transition
matrix element is calculated.

For a better understanding of the results presented in the
next section, it is helpful to note the differences between
the Brink–Bloch GCM and AMD. First, because nucleons are
treated as independent wave packets, AMD is able to describe
various the non-cluster states as well as the cluster states,
while the Brink–Bloch GCM is not. Second, for the same
reason, AMD is capable of describing the polarization and
distortion of clusters. Finally, since the Brink–Bloch wave
functions are also employed as the basis function, the AMD
includes the Brink–Bloch GCM as a part of its model space. In
short, in the AMD, the distortion of clusters and the coupling
between the cluster states and non-cluster states are taken into
account.

C. Projection of antisymmetrized-molecular-dynamics
wave function to Brink–Bloch wave function

As explained above, the AMD wave function is an admix-
ture of the cluster and non-cluster wave functions. To identify
the cluster state from AMD results, it is convenient to introduce
an approximate projector to the Brink–Bloch wave function,

PBB =
∑
ij

∣∣�Jπ
BB(Di)

〉
(B−1)ij

〈
�Jπ

BB(Dj )
∣∣, (40)

where B−1 is the inverse of the overlap matrix B defined
as Bij = 〈�Jπ

BB(Di)|�Jπ
BB(Dj )〉. With this projector, the AMD

wave function (36) is projected onto Brink–Bloch wave
function,

PBB�Jπ
Mp =

∑
i

Gi�
Jπ
BB(Di), (41)

Gi =
∑

j

(B−1)ij
〈
�Jπ

BB(Dj )
∣∣�Jπ

Mp

〉
. (42)

By substituting Eqs. (21)–(23) into the right-hand side of
Eq. (41) and by comparing it with Eq. (4), we calculated the
coefficient of superposition fN0+1 and fN0+3 given in Table I.
The projector is also used to evaluate the amount of the cluster
component in the AMD wave function, which is defined as

S = 〈
�Jπ

Mp

∣∣PBB

∣∣�Jπ
Mp

〉
. (43)

When this value is sufficiently large, the excited state may be
regarded as a cluster state.

We also explain how we estimated the intercluster distances
D0 and D1 which are shown by circles in Fig. 1. We calculate
the overlap between the GCM wave functions �Jπ

Mp for the
ground and 1− states and the Brink–Bloch wave function
�Jπ

BB(Di), ∣∣〈�Jπ
Mp

∣∣�Jπ
BB(Di)

〉∣∣2〈
�Jπ

BB(Di)
∣∣�Jπ

BB(Di)
〉 ,

and regard the distance Di at which the overlap has its
maximum as D0 or D1.

IV. MICROSCOPIC MODEL CALCULATIONS
FOR ISOSCALAR DIPOLE TRANSITION

In this section, we discuss the IS dipole transitions in
20Ne and 44Ti studied by Brink–Bloch GCM and AMD.
In Refs. [77–79], the cluster and non-cluster states of 20Ne
and 44Ti have already been discussed based on the AMD
calculation, and the reader is directed to those references for
more detail. Here we focus on the α + 16O and α + 40Ca
cluster states and discuss the IS dipole transitions from the
ground state to those cluster states.

A. α + 16O cluster states in 20Ne

The α + 16O cluster states in 20Ne have been studied in
detail by many authors [77,78,80–88] and well established.

The observed α + 16O cluster bands are summarized in
Fig. 2 together with the results of Brink–Bloch GCM and
AMD. The 0+

4 state observed at 8.7 MeV (4 MeV above the α
threshold) has large α decay width comparable with the Wigner
limit and is known as the nodal excited cluster state described
by the wave function of Eq. (3). A rotational band is built on
this state, which hereafter we call the “nodal excited band.”
The 1−

1 state at 5.8 MeV (1.1 MeV above the α threshold) also
has large α decay width and is known as the angular excited
cluster state described by the wave function of Eq. (4). This
1−

1 state is of particular importance because it is regarded as
the evidence for the asymmetric clustering with the α + 16O
configuration. On this state, the negative-parity band is built.

It is well known that the ground band is the positive-parity
partner of the negative-parity band, and those two bands
constitute the parity doublet [41]. This means that the ground
state has non-negligible cluster correlation. Therefore, on the
basis of the discussion made in in Sec. II B, we expect that the
IS dipole transition to the 1−

1 state is considerably amplified.
Next, we examine the theoretical results. In the case of

20Ne, it was easy to identify the α + 16O cluster states from
the AMD results, because all of the states shown in Fig. 2 have
large values of S defined in Eq. (43). For example, S = 0.69,
0.90, and 0.81 for the ground, 1−

1 , and 0+
4 states, respectively.

It is interesting to note the difference between the Brink–
Bloch GCM and AMD results. The Brink–Bloch GCM fails
to reproduce the energy of the ground band, while AMD
reasonably describes it, that indicates the importance of the
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FIG. 2. The observed and calculated α + 16O cluster states in
20Ne classified into three rotational bands. Energy is measured from
the α threshold located at 4.7 MeV above the ground state. In the AMD
result, the 6+ member state of the nodal excited band is fragmented
into two states due to the coupling with non-cluster configurations.

cluster distortion effect. As discussed in the AMD study [77],
the spin-orbit interaction and the formation of mean field
dissolve the α cluster. As a result, the radius of the ground state
is reduced to 2.98 fm in AMD from 3.27 fm in Brink–Bloch
GCM. They also reduces the estimated intercluster distance
D in AMD as listed in Table II. Hence, the overlap between
the ground-state wave functions of AMD and Brink–Bloch
GCM is not large and is approximately 46%. On the other
hand, both theoretical models give reasonable description for
negative-parity and nodal excited bands. Therefore, we can
regard that the distortion effect is less important and almost
ideal clustering is realized in the 0+

4 and 1−
1 states, for which

both theoretical models yielded large intercluster distances.
For example, the radius of the 1− state calculated by AMD and
Brink–Bloch GCM are close to each other (3.26 fm in AMD
and 3.33 fm in Brink–Bloch GCM) and their wave functions
have large overlap amounting to 87%.

The calculated IS dipole transition matrix from the ground
state to the 1− states are listed in Table II. It is evident that

TABLE II. The estimated intercluster distance of the ground and
the α + 16O cluster states in units of fm, and the IS dipole and
monopole transition matrix from the ground state to the 1−

1 and 0+
4

states in units of fm3 and fm2. Numbers in parentheses are the ratio
to the Weisskopf estimates.

D0 D1 D(0+
4 ) M IS1 M IS0

Brink–Bloch GCM 5.0 5.5 6.5 90.2 (10.7) 46.4 (7.3)
AMD 4.0 5.0 6.0 38.0 (4.5) 16.0 (2.5)
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FIG. 3. The observed and calculated α + 40Ca cluster states in
44Ti classified into four rotational bands. Energy is measured from
the α threshold located at 5.1 MeV above the ground state. In the
experiment and AMD results, the member states of the nodal excited
band and negative-parity band II are fragmented into several levels,
and the weighted averages of those levels are shown in the figure.

the transition is greatly enhanced compared to Weisskopf
estimates. In particular, Brink–Bloch GCM yielded huge
values, which is due to the too-weak binding of the ground state
leading to the overestimate of the radius and cluster correlation
of the ground state. If the cluster-distortion effect is taken into
account by AMD, the strength is somewhat reduced but still
much larger than the Weisskopf estimate. We also note that
the nodal excited state (0+

4 ) has a large monopole transition
matrix, as expected. Therefore, the present results suggest that
both of the positive- and negative-parity cluster states can be
strongly generated by the IS monopole and dipole transitions
from the ground state and, hence, those transitions will be good
signatures of the asymmetric clustering.

B. α + 40Ca cluster states in 44Ti

The α + 40Ca cluster states in 44Ti have also been studied
by many authors [68–70,79,89–98], but the situation is more
complicated than the case of 20Ne. The theoretical and
experimental studies are summarized in a review paper [99],
and our discussion is based on the assignment given therein.

Figure 3 shows the observed candidates of α + 40Ca cluster
states together with the present theoretical results. Based on
the α-transfer experiment, four rotational bands including the
ground band were classified as α + 40Ca cluster bands. The 1−
state observed at 6.2 MeV (1.1 MeV above the α threshold) is
strongly populated by the α-transfer reaction [70,89] and is the
angular excited cluster state dominated by the 1�ω excitation
of the intercluster motion. Although it is not the yrast 1− state,
we call this state the 1−

I state in the following. On this 1−
I state,
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a rotational band which we call the “negative-parity band I” is
built.

A couple of candidates of the nodal excited 0+ state are
reported around 11.0 MeV (5.9 MeV above the α threshold)
by the α elastic scattering [94] and the α-transfer reaction
[68,69,89]. Those data suggest that the nodal excited cluster
state may be fragmented into several states due to the coupling
with other non-cluster configurations. In Fig. 3, by taking the
average, the nodal excited state is plotted as a single state
which we call the 0+

II state. On this 0+
II state the nodal excited

band is built.
Around 12 MeV in excitation energy, another group of

1− states having large α spectroscopic factors are reported
[68,69,89]. Again, observed α spectroscopic factors are
fragmented into several levels and the averaged value which
we call the 1−

II state is shown in the figure. Although the
assignment is not so firm, another negative-parity band is
suggested on this state which we denote by “negative-parity
band II.” The excitation energy of this band plausibly agrees
with the cluster-model calculation which suggests the 3�ω
excitation of the intercluster motion.

The information on the α + 40Ca cluster states is sum-
marized as follows: First, the ground and the negative-parity
band I built on the 1−

I state at 6.2 MeV constitute a parity
doublet. Second, the nodal excited band built on the 0+

II state
around 11 MeV and the negative-parity band II on the 1−

II
state around 12 MeV may constitute another parity doublet.
The first doublet is dominated by the 0 and 1�ω excitations of
the intercluster motion, while the second doublet is dominated
by the 2�ω and 3�ω excitations.

Next, we discuss the results of the Brink–Bloch GCM.
The Brink–Bloch GCM seriously overestimates the energies
of the observed cluster bands as well as the ground band.
This is because of the neglect of the spin-orbit interaction
and the formation of mean field which considerably dissolves
α cluster in 44Ti and gains additional binding energy [79].
Indeed, if we take into account those effects by using AMD,
the ground-state radius is decreased to 3.52 fm from 3.68 fm
in Brink–Bloch GCM, and the intercluster distance D is also
considerably decreased, as listed in Table III. As a result, the
overlap between the ground-state wave functions of AMD and
Brink–Bloch GCM is as small as 29%. Because of too-large

TABLE III. The estimated intercluster distance of the ground
and the α + 40Ca cluster states in units of fm, and the IS
dipole and monopole transition matrix from the ground state to the
1−

I , 1−
II , and 0+

II states in units of fm3 and fm2. Intercluster distances
D(0+

II ) and D(1−
II ) are the averaged values of the fragmented levels,

while the transition matrix M IS0(0+
II ) and M IS1(1−

II ) are their sum.
Numbers in parentheses are the ratio to the Weisskopf estimates.

D0 DI D(0+
II ) D(1−

II )

Brink–Bloch GCM 5.5 6.0 7.0 7.5
AMD 2.5 5.0 6.0 7.0

M IS1(1−
I ) M IS0(0+

II ) M IS1(1−
II )

Brink–Bloch GCM 217.5 (11.7) 47.2 (4.4) 91.6 (4.9)
AMD 24.7 (1.3) 19.9 (1.8) 16.7 (0.9)
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FIG. 4. (a) The amount of the cluster component S of the ground
and 1− states obtained by AMD. (b) The ratio of IS dipole transition
matrix M IS1 to the Weisskopf estimate. (c) Same as panel (a) but for
the 0+ states. (d) Same as panel (b) but for the IS monopole transition.

intercluster distance, Brink–Bloch GCM yields the huge dipole
and monopole transition matrix listed in Table III which may
be over-amplified and unrealistic.

In the AMD results, the member states of the nodal excited
band and negative-parity band II are fragmented into several
states, as reported by experiment. Therefore, for the states
shown in Fig. 3 and the intercluster distances listed in Table III,
we show the averaged values weighted by the amount of the
cluster component S given by Eq. (43). By taking the distortion
effect into account, AMD gives a reasonable description of
the ground and cluster bands. All states gain large binding
energy compared with the Brink–Bloch GCM, and their
intercluster distances, in particular that of the ground state,
are considerably reduced. This strong distortion is mainly due
to the spin-orbit interaction and to the formation of the mean
field.

Since the nodal excited band and the negative-parity band
II are fragmented, we discuss the transition matrix by referring
to the distribution of the amount of the cluster component S.
Figure 4(a) shows S of the ground and 1− states as function
of energy relative to the α threshold. The ground state has,
despite the strong cluster distortion, a considerable amount
of cluster component S = 0.39. However, we note that this
does not necessarily mean prominent clustering in the ground
state. Most of this cluster component is the wave function
given in Eq. (1) and hence is identical to the shell-model wave
function. The first angular excited state (the 1−

I state), located
4 MeV above the threshold, has a larger value of S = 0.59. The
second angular excited state (the 1−

II state) is fragmented into
three levels around 10 MeV above the threshold. If we sum
up those fragments, it amounts to S = 0.78. The IS dipole
transition matrix from the ground state to 1− states is shown
in Fig. 4(b). It is clear that both of the angular excited states
are strongly excited, because the IS dipole transition brings
about 1�ω and 3�ω excitation of the intercluster motion, as
shown by Eq. (12). It must be noted that many non-cluster 1−
states are obtained between the ground and 1−

II states in the
AMD calculation, but none of them have a transition matrix
comparable to the Weisskopf estimate. This result shows that
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the IS dipole transition is sensitive to angular excited 1− states,
despite the cluster distortion and fragmentation.

As for the 0+ states and the monopole transition, almost
the same conclusion can be drawn. Figure 4(c) shows the
amount of cluster component in the 0+ states. Around 8 MeV,
the nodal excited 0+

II state is fragmented into three levels,
which amount to S = 0.6. Again, we see the amount of cluster
component S and transition matrix are strongly correlated. The
nodal excited states have large IS monopole transition matrix,
while non-cluster states are insensitive. From those results,
we conclude that the IS monopole and dipole transitions are
good probes for asymmetric clustering. Since both transitions
can be measured simultaneously by α inelastic scattering, the
experimental and theoretical survey looks promising.

We also comment on the giant resonances, which may exist
at an energy region similar to that of the 1−

II and 0+
II states.

Because the peak of the giant resonance may overlap with
those states, those nodal excited doublets may not be visible
in the real situation. Nevertheless, we expect that it is possible
to identify those cluster states, because they will dominantly
decay by α emission, while the giant resonance decays by
neutron emission.

V. SUMMARY

In this study, we have discussed the IS dipole transitions
in 20Ne and 44Ti that have α + 16O and α + 40Ca cluster
states. In such asymmetric-cluster systems, the existence of
the angular excited 1− cluster states is a key to prove their
asymmetric structure. We have shown that the isoscalar dipole
transition from the ground state strongly populates those
asymmetric cluster states and, hence, it is regarded as a good
probe for such 1− states.

We first performed analytical calculations to estimate the
magnitude of the transition matrix. By rewriting the IS dipole
operator in terms of the internal coordinates within clusters and
the intercluster coordinate, it was shown that the transition
brings about the 1�ω and 3�ω excitation to the intercluster
motion. Therefore, the IS dipole transition has the potential
to activate the degrees of freedom of the cluster excitation
embedded in the ground state to populate the angular excited
1− cluster states.

By assuming that the ground state is described by a shell-
model wave function, we derived an analytical expression of
the IS transition matrix and demonstrated that the transition
matrix is indeed enhanced and is on the order of the Weisskopf
estimate, even if the ground state has an ideal shell-model
structure. We also performed a simple numerical calculation
by using the Brink–Bloch wave function to show that the
transition matrix is amplified in order of magnitude if the
ground state has cluster correlation.

To provide realistic and reliable results for IS monopole and
dipole transitions in 20Ne and 44Ti, nuclear structure calcu-
lations using Brink–Bloch GCM and AMD were performed.
By taking cluster distortion into account, AMD reasonably
describes the energies of those cluster states. It was shown
that, despite cluster distortion, the nodal and angular excited
cluster states are strongly excited by the IS monopole and
dipole transitions, so we conclude that the monopole and dipole
transitions are promising probes for asymmetric clustering.
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APPENDIX A: ISOSCALAR DIPOLE OPERATOR
REPRESENTED BY INTERNAL AND INTERCLUSTER

COORDINATES

We consider the A nucleon system composed of the
clusters with mass C1 and C2 (C1 + C2 = A) and wish to
express MIS1

μ in terms of the internal coordinates ξ i within
each cluster and the intercluster coordinate r . Noting the
relations RC1 − rc.m. = C2/Ar and RC2 − rc.m. = −C1/Ar ,
the IS dipole operator is rewritten as follows:

MIS1
μ =

A∑
i=1

(r i − rc.m.)
2Y1μ(r i − rc.m.)

=
∑
i∈C1

(
ξ i + C2

A
r
)2

Y1μ

(
ξ i + C2

A
r
)

+
∑
i∈C2

(
ξ i − C1

A
r
)2

Y1μ

(
ξ i − C1

A
r
)

=
∑
i∈C1

ξ 2
i Y1μ(ξ i) +

∑
i∈C2

ξ 2
i Y1μ(ξ i) +

(
C2

A

∑
i∈C1

ξ 2
i − C1

A

∑
i∈C1

ξ 2
i

)
Y1μ(r) − C1C2(C1 − C2)

A2
r2Y1μ(r)

+ 2
C2

A

∑
i∈C1

(ξ i · r)Y1μ(ξ i) − 2
C1

A

∑
i∈C2

(ξ i · r)Y1μ(ξ i), (A1)

where the relations
∑

i∈C1
ξ i = ∑

i∈C2
ξ i = 0 and Y1μ(αa + βb) = αY1μ(a) + βY1μ(b) are utilized. By using the identities,

a · b = −4π/
√

3[Y1(a) ⊗ Y1(b)]00, [Y1(a) ⊗ Y1(a)]1μ = 0, and [Y1(a) ⊗ Y1(a)]2μ = √
3/10πY2μ(a), the term in the last line
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of Eq. (A1) reads

(ξ i · r)Y1μ(ξ i) = − 4π√
3

[Y1(ξ i) ⊗ [Y1(ξ i) ⊗ Y1(r)]0]1μ

= − 4π√
3

∑
l=0,1,2

√
2l + 1

{
1 1 l
1 1 0

}
[[Y1(ξ i) ⊗ Y1(ξ i)]l ⊗ Y1(r)]1μ

=1

3
ξ 2

i Y1μ(r) −
√

8π

9
[Y2(ξ i) ⊗ Y1(r)]1μ. (A2)

We see that Eqs. (A1) and (A2) yield Eq. (12).

APPENDIX B: DERIVATION OF ISOSCALAR
DIPOLE MATRIX ELEMENT

Here, we derive Eq. (13) from Eqs. (8) and (12) in a similar
way as done in Ref. [31]. First, we show that the terms in
Eq. (12) that involves Y1μ(ξ i) and Y2μ(ξ i) identically vanish
in the case of the system composed of two LS closed-shell
(more strictly, SU(3) scalar) clusters. This is easily proved by
counting the principal quantum numbers.

For example, the first term of Eq. (12) yields a matrix
element proportional to〈

RN10(r)

(∑
i∈C1

ξ 2
i Y10(ξ i)φ1

)
φ2

∣∣∣∣∣A′{RN000(r)φ1φ2
}〉

.

Denoting the principal quantum number of φ1,φ2 as NC1 ,NC2 ,
the principal quantum number of the ket state is equal to N0 +
NC1 + NC2 . On the other hand, that of the bra state is equal to
or larger than N + NC1 + NC2 + 1, because

∑
i∈C1

ξ 2
i Y10(ξ i)

induces at least 1�ω excitation of φ1. Since N is equal to or
larger than N0 + 1, the principal quantum number of the bra
state is larger than that of the ket state, so this matrix element
vanishes. In the same way, the third term of the first line yields〈
RN10(r)Y1m(r)

(∑
i∈C1

Y2−m(ξ i)φ1

)
φ2

∣∣∣∣∣A′{RN000(r)φ1φ2
}〉

.

(B1)

The quantum number of
∑

i∈C1
Y2−m(ξ i)φ1 is at least NC1 + 2,

because
∑

i∈C1
Y2−m(ξ i) generates 2+ states of the LS closed-

shell nucleus φ1 which involves at least a 2�ω excitation.
Combined with the quantum number of the intercluster motion
which is at least N − 1, we again find that the quantum number
of the bra state is larger than that of the ket state. Thus, terms
that involve the internal cluster excitation vanish.

However, for the open-shell (non SU(3) scalar) clusters, it
must be noted that Eq. (B1) does not vanish and can be very
large. A typical example is the 12C cluster. For such clusters,
the wave function in parentheses in Eq. (B1) is written as∑

i∈12C

Y2−m(ξ i)φ12C(0+
1 )

= 〈φ12C(2+
1 )|

∑
i∈12C

Y2−m(ξ i)|φ12C(0+
1 )〉φ12C(2+

1 )

+ other excited 2+ states. (B2)

Since φ12C(2+
1 ) has the same principal quantum number

as the ground state φ12C(0+
1 ) and the matrix element

〈φ12C(2+
1 )|∑i∈12C Y2−m(ξ i)|φ12C(0+

1 )〉 is proportional to the
large E2 matrix element, Eq. (B1) can be comparable or even
larger than the last two terms of Eq. (12). We conclude that,
if the cluster nucleus has the rotational or vibrational ground
band with an enhanced E2 transition, the internal excitation
of the cluster from 0+ to 2+ can have a large contribution to
IS dipole excitation.

Now we evaluate the nonvanishing contribution from the
last two terms of Eq. (12). The first of these terms yields the
the matrix element proportional to〈

RN10(r)Y10(r)

(∑
i∈C1

ξ 2
i φ1

)
φ2

∣∣∣∣∣A′{RN000(r)φ1φ2
}〉

. (B3)

Note that, in the bra state, the IS monopole operator
∑

i∈C1
ξ 2
i

induces 0 or 2�ω excitation of φC1 ,∑
i∈C1

ξ 2
i φ1 =〈φ1|

∑
i∈C1

ξ 2
i |φ1〉φ1+2�ω excited 0+ states. (B4)

and Y10(r) brings about the angular excitation of the interclus-
ter motion with ±1�ω, i.e., the principal quantum number of
the intercluster motion is equal to N ± 1. Again we count the
quantum numbers and find that Eq. (B3) is nonzero only when
N = N0 + 1, otherwise the principal quantum number of the
bra state is larger than that of the ket state. From Eq. (B4) and
the identities

RN10(r)Y1m(r) =
√

1

4π
rRN1(r)Y00(r̂) +

√
1

5π
rRN1(r)Y20(r̂),

(B5)

rRN1(r) =
∑
N ′

〈RN ′0|r|RN1〉RN ′0(r), (B6)

Eq. (B3) is calculated as√
1

4π
〈φ1|

∑
i∈C1

ξ 2
i |φ1〉

∑
N ′

〈RN ′0|r
∣∣RN0+11

〉
× 〈

RN ′0(r)Y00(r̂)φ1φ2

∣∣A′{RN00(r)Y00(r̂)φ1φ2
}〉

=
√

1

4π
C1〈r2〉C1

〈
RN00

∣∣r∣∣RN0+11
〉
μN0 , (B7)

where 〈r2〉C1
is the square of the root-mean-square radius of

φC1 .
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Finally, the last term in Eq. (12) yields〈RN10(r)r2Y10(r)φ1φ2

∣∣A′{RN000(r)φ1φ2
}〉

, (B8)

where r2Y10(r) brings about the nodal and angular excitations
of the intercluster motion with ±1�ω or ±3�ω, and hence the
matrix element vanishes except for N = N0 + 1 and N0 + 3
cases. By a similar calculation, one finds that Eq. (B8) is equal
to √

1

4π

〈
RN00

∣∣r3|RN1〉μN0 , (B9)

where N is N0 + 1 or N0 + 3. From those results, we obtain
an analytic expression for the reduced matrix element given in
Eq. (13).

APPENDIX C: SIGN OF f N0+1 AND fN0+3

The coefficients fN0+1 and fN0+3 in Eq. (4) usually have
opposite sign for cluster states. To show it, we first approximate
the wave function of angular excited cluster state Eq. (4) as the
Brink–Bloch wave function given in Eqs. (20) and (21). This
approximation may be justified because those wave functions
have largely overlap each other with the proper choice of R.
For example, in the case of 20Ne, the overlap between the
Brink–Bloch wave function with R = 5.0 fm and the AMD
wave function for the 1−

1 state amounts to 82%.
Given that the approximation is reasonable, we substitute

Eq. (22) into Eq. (21) and compare it with Eq. (4). As a result,
one finds that the sign of fN is equal to that of ANl defined
by Eq. (23). Therefore, fN0+1 and fN0+3 should have opposite
sign, if the angular excited state is well approximated by the
Brink–Bloch wave function.
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