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Boson description of low-lying collective states in 128Ba
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The low-lying collective states in 128Ba are investigated microscopically by means of the boson expansion
theory with the self-consistent effective interactions. Calculated level structures and electromagnetic properties
are compared with the experimental data. Theoretical structures of the collective wave functions are illustrated
in detail for 0+

1 , 0+
2 , 0+

3 , 2+
1 , 2+

2 , and 2+
3 states. In the present results, the main contribution to the 0+

2

state of 128Ba comes from the three-phonon component, and the two-phonon component is rather dominant
in the 0+

3 state. The description of the wave functions is compared to the results of the general collective
model.

DOI: 10.1103/PhysRevC.93.034315

I. INTRODUCTION

The neutron-deficient Ba nuclei are known as typical
examples of transitional nuclei and provide a good testing
ground for various theoretical models of nuclear collective
motions [1–5]. There have been suggestions that some of
the lighter Ba nuclei could have nearly-γ -unstable structures
[6–9]. In this mass region, attention has been focused on
the interplay of γ softness and triaxiality [3,10–12], and
there have been interesting discussions on the nature of the
low-lying 0+ states [4,13–15]. It was noticed [4,13] that the
low-lying 0+ states in the A = 130 mass region could have a
more complicated nature than the one implied by the simple
geometrical interpretation in terms of β or (two-phonon) γ
vibrations. Asai et al. [14] identified, in the EC/β+ experiment
with a high-efficiency detector system, the 0+

2 states and a
number of higher-excited 0+ states in 124,126,128,130Ba and
clarified that the level energy of the 0+

2 state in neutron-
deficient Ba nuclei has a minimum at N = 72. It was suggested
[14] that the energy staggering index [13] of the quasi-γ band
indicates the highest degree of γ instability at 128Ba in this
region, which may be associated with the lower 0+

2 level energy
around 128Ba.

As pointed out by Petkov et al. [16], it has been an
open and challenging problem for the microscopic collective
models to describe in a consistent way all observed properties
of the low-lying collective states. We have been interested
in this problem and, for the structures of the low-lying
collective states in Ba isotopes, we reported in Refs. [17–19]
results of our studies based on the boson expansion theory
(BET) along the lines of Kishimoto–Tamura [1,20,21]. In the
previous reports, calculated potential surfaces, level energies,
electromagnetic and several related properties have been
presented and discussed, but there has been few illustrations
of the structures of the collective wave functions. Thus it is
advisable to take an overall look at the above problem from the
present point of view having detailed descriptions of the wave
functions of low-lying collective states. The present paper is
devoted to this purpose and aims at illustrating the structures
of boson wave functions, which hopefully help to understand
microscopically the features of the low-lying collective states
in 128Ba.

II. THEORETICAL FRAMEWORK

The theoretical framework is discussed in detail in
Refs. [19,22]; here it is described only briefly. The calculation
in this paper is performed based on the normal-ordered linked-
cluster BET of Kishimoto–Tamura [1,20,21] with several
refinements developed in Refs. [23,24]. The BET allows one to
take into account higher-order terms neglected in the random-
phase approximation (RPA), and the adiabatic condition for
particle motions can be avoided. It is a very promising method
for the microscopic description of anharmonicities in nuclear
quadrupole collective motions, if the coupling to noncollective
states are faithfully included in the calculation.

The model Hamiltonian with which the present analyses
start is given in fermion operators as Eq. (1) of Ref. [19].
The single-particle base is constructed by using the spherical
limit of the Nilsson Hamiltonian [25], and the model space
is spanned by 2p1/2, 2p3/2, 1f5/2, 3s1/2, 2d3/2, 2d5/2, 1g7/2,
1g9/2, and 1h11/2 orbits for protons and by 3s1/2, 2d3/2, 2d5/2,
1g7/2, 2f7/2, 1h9/2, 1h11/2, and 1i13/2 orbits for neutrons.

The residual interactions comprised in the fermion Hamil-
tonian are the monopole- and quadrupole-pairing interactions,
the quadrupole-quadrupole (QQ) interaction, and the effective
three- and four-body interactions. The effective many-body
interactions have been introduced as the higher-order terms
of the QQ interaction to recover the saturation and the
self-consistency between the density and the potential in
higher-order accuracy (nuclear self-consistency) [26–31]. The
same type of many-body interactions have been independently
derived by Marshalek [32], and the three-body interaction has
been applied to study anharmonicities in nuclear quadrupole
collective motions by several authors [33–36].

Strengths of the monopole-pairing interactions, G0(p) for
protons and G0(n) for neutrons, are determined to fit the
experimental gap energies through the BCS gap equation.
The adopted strengths in the present calculations are G0(p) =
24.37/A MeV for protons and G0(n) = 21.74/A MeV for neu-
trons, and corresponding gap energies are �p = 1.333 MeV
and �n = 1.366 MeV, respectively. These strengths are nearly
compatible with the systematics proposed by Copnell et al.
[37] and are in between the two different parameter sets,
the standard pairing strengths (SPS) and the weak pairing
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FIG. 1. The two-quasiparticle probabilities in the adiabatic col-
lective Tamm–Dancoff mode for the case of 128Ba are plotted against
the two-quasiparticle energies. The scripts π and ν are attached to
distinguish the proton components (solid red lines) and the neutron
components (dotted blue lines).

strengths (WPS) investigated in the microscopic calculations
by Rohoziński et al. [2].

The strengths of the quadrupole-pairing interactions
are parametrized as g′

2(p) = G2(p)/Gself
2 (p), g′

2(n) =
G2(n)/Gself

2 (n), where Gself
2 (p) for protons and Gself

2 (n) for
neutrons are the self-consistent strengths of the quadrupole-
pairing interaction to recover the local Galilean invariance in
the RPA order [38]. The strengths of the QQ interaction and
its higher-order terms χ (2), χ (3), and χ (4) are parametrized as
f2 = χ (2)/χ self

2 , f3 = χ (3)/χ self
3 , f4 = χ (4)/χ self

4 , where χ self
2 ,

χ self
3 , and χ self

4 are the self-consistent values of χ (2), χ (3), and
χ (4), respectively, which are derived in Ref. [31]. In the present
analyses, to reduce the number of free parameters, these
parameters are set to f2 = f3 = f4 and g′

2(p) = g′
2(n) = g′

2,
and in calculating the energy spectra the two dimensionless
parameters, f2 and g′

2, are varied slightly around the vicinity
of the predicted value, i.e., unity.

It was emphasized in Refs. [21,39] that a meaningful
BET should start from a fermion system described in terms
of Tamm–Dancoff (TD) representation or its equivalent. In
this work, as a choice of the collective coordinates, the
so-called adiabatic TD mode [24] is adopted. In Fig. 1 the two-
quasiparticle probabilities in the adiabatic collective TD mode
for the case of 128Ba are plotted against the two-quasiparticle
energies of protons (π ) and neutrons (ν). Possibilities of
different choices of the representation were investigated in Ref.
[24], and it was shown that the noncollective couplings play
crucial roles to stabilize the results of numerical calculations
and to remove the sensitive dependence on the particular
choice of the collective coordinates.

By use of the BET, the original fermion Hamiltonian
is mapped to the corresponding boson Hamiltonian and is
expanded up to fourth-order with respect to the collective
boson. Since the quasiparticle representation is used in the
present formalism of BET, it suffers from the spurious
particle-number excitations associated with particle-number
nonconservation. To remove such spurious modes, the pre-
scription developed in Ref. [23] is used. In the collective
Hamiltonian, coupling effects between the collective and the
noncollective modes are approximately included by using the
perturbation theory for a quasidegenerate system [30,40–43]
with the Feshbach formalism [44]. Then the resultant collective
Hamiltonian is diagonalized in the collective subspace of
the boson Hilbert space to obtain energy spectra as well as
boson wave functions for low-lying collective states. The basis
vectors of the collective subspace are expressed as |NvηIM),
where N is the boson number, v is the seniority number,
I is the spin with its projection M , and η is an additional
quantum number necessary for a complete labeling of the
basis vectors. In the present numerical calculations, states with
N � 18 have been taken, which amount to a diagonalization
space of slightly less than 100-dimensional matrices for each
spin I . In drawing potential-energy surfaces to visualize the
physical properties described by the collective Hamiltonian,
the collective quadrupole boson operators α

†
2μ and α2μ are

transformed into the momentum and conjugate coordinate
operators, π2μ and β2μ, as defined in Refs. [1,22] and an
equivalent expression of the collective Hamiltonian is derived
in terms of π and β. In the boson expansion approach, the
adiabatic assumption is not made and generally terms appear
that are higher power in π . Such terms give corrections to the
theories based on the adiabatic assumption.

III. RESULTS AND DISCUSSION

As stated earlier, there are two adjustable parameters f2

and g′
2 to fit energy spectra and, in studying electromagnetic

properties, a quadrupole effective charge eeff is introduced
as the only additional parameter in this paper to fit the
experimental data. It should be noted that some slightly
different sets of f2, g′

2 values may often be possible to
obtain nearly compatible fits [1]. The effects of varying these
interaction strengths on the low-lying collective states were
reported in Ref. [22] for the case of neutron-deficient doubly
even xenon isotopes. However, since the present purpose
is not to find the best parameter set just to fit a single
nucleus, in the following we will not play too much with these
parameters but would rather select one of the interesting and
acceptable cases of f2 = 1.03, g′

2 = 0.895, and eeff = 0.5e

for 128Ba and investigate level energies, structures of boson
wave functions, and electromagnetic properties of low-lying
collective states. In fact, as will be shown promptly, the case
corresponds to a typical situation of a γ -soft potential having
two axial minima with nearly equal depths. For comparison,
it is estimated for the QQ interaction that the RPA critical
strength is f RPA

2 (crit) = 0.848, while the strength to fit the
experimental 2+

1 energy within the RPA is f RPA
2 (2+

1 ) = 0.842.
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FIG. 2. Calculated potential-energy surface for 128Ba. The hor-
izontal dashed line at −3.75 MeV in the main figure indicates the
calculated ground-state energy. The inserted figure shows the contour
plot of the potential, where incremental contours (dashed lines) start
at −5 MeV stepping by 1 MeV, and there is a valley connecting the
prolate minimum (βP

min = 0.238, V P
min = −5.16 MeV) and the oblate

minimum (βO
min = −0.240, V O

min = −5.31 MeV).

Figure 2 illustrates the calculated potential-energy surface
as a function of quadrupole deformation β for 128Ba. This
potential surface has two axial minima, one on the prolate
side (βP

min = 0.238, V P
min = −5.16 MeV) and the other on the

oblate side (βO
min = −0.240, V O

min = −5.31 MeV). As shown
in the contour plot inserted in Fig. 2, the potential varies
monotonically with γ . The difference in depth on both sides,
V PO = V O

min − V P
min, is −0.15 MeV; the absolute value of it

is rather small compared to the energy of the zero-point
oscillation, 1.56 MeV, evaluated relative to the absolute
minimum of the potential. This feature of the potential surface
implies strong softness or instability for the γ deformation.

Theoretical energy levels are presented in Fig. 3 and
compared with experimental data. The energies of the ground-
state band and staggering of the quasi-γ band are qualitatively
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FIG. 3. (a) Calculated energy levels for 128Ba. All the resulting
states with Ex � 3.2 MeV and I � 8 are listed: the states in the
ground-state band, the quasi-γ band, or the 0+

2 band are separately
accumulated, while other states (short bars) are assembled in their
spin groups in columnar forms. For comparison, experimental levels
are plotted in panel (b).

reproduced, although the energy of the band head 2+ state of
the γ band is too low. It was reported in Ref. [17] for the
case of 124Ba that a small raise (about 1 MeV) of the single-
particle energy of πh11/2 orbit can remedy similar discrepancy;
however, in this work all the single-particle energies are
simply fixed. In neutron-deficient even-even barium isotopes,
bunching of experimental levels (3+

γ − 4+
γ , 5+

γ − 6+
γ , 7+

γ − 8+
γ )

is prominent. In 128Ba the spacings of these pair states become
narrowest and the orders of even- and odd-spin states invert
above the 7+

γ state. This unique feature of inversion is possibly
due to the coupling to the two-quasiparticle states which lie
closely to the collective states, and this feature is beyond the
scrutiny of this work.

It would be interesting and instructive to compare the
calculations of the present work with those of the general
collective model (GCM). In Ref. [4], Petkov et al. applied the
GCM to the Ba isotopes and obtained a good description of
level schemes and the staggering effect in the quasi-γ bands.
The kinetic part of the GCM Hamiltonian is comprised only
of second-order terms of π , while the potential part of it is
considered up to the sixth-order terms of β, and there are
eight adjustable coefficients in their total Hamiltonian. On the
other hand, in this work, since the mapped Hamiltonian is
expanded up to the fourth-order terms of the collective boson
operators, the kinetic part of the boson Hamiltonian contains up
to the fourth-order terms of π , although the potential part of it
contains at most fourth-order terms of β, and all the coefficients
in the total Hamiltonian are determined as functions of f2 and
g′

2, which are the only two adjustable parameters in the present
model Hamiltonian.

The potential surface of the GCM for 128Ba [4] seems
to possess the softness for the γ deformation, having an
absolute minimum at βP

min = 0.270, V P
min = −4.8 MeV with

a prolate-oblate energy difference of 1.6 MeV. While, as
already mentioned, the present potential also has the γ softness
but with a rather smaller prolate-oblate energy difference.
It should be noted here that a strong correlation between
the potential-energy surface and the energy spectrum holds
only under the condition that all the anharmonic terms in a
generalized kinetic part of a collective Hamiltonian, i.e., those
terms except the π2 term, are sufficiently small. If such a
condition is not met, to predict the energy spectrum only from
the shape of the potential surface can be dangerous [1,24].

In Table I, the theoretical B(E2) values and static
quadrupole moments of the low-lying states in 128Ba are
listed and are compared with experimental data and the
predictions of the GCM [4]. Here one sees impressive
similarities between the results of the GCM and those of
the present work for the intraband transitions, although there
are some sensible differences between the results of the two
theories for the static moments and interband transitions. For
the ground-state band (g.s.b.), the experimental intraband
transitions show relatively high B(E2 : 4+

1 → 2+
1 ) value and

the following drop, and both theories fail to explain this
feature. This experimental feature, which indicates that the
quadrupole collectivity of the g.s.b. of 128Ba is suppressed
and hits a ceiling at such a low-spin region, is outstandingly
unique. It reminds one of the finite-size effect of the interacting
boson model (IBM), and Petkov et al. [16] suggested that the
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TABLE I. Electromagnetic properties of 128Ba. The values given are B(E2) in (e b)2, except for those that have the same initial and final
states, and in that case they are static quadrupole moments in e b. An asterisk is attached to a B(E2) value of the present work (BET) if the sign
of the corresponding matrix element is negative. For comparison, the results of the general collective model (GCM) [4] are listed. Also, the
results of the IBM studied by Wolf et al. [15] are listed, where a sharp is attached to a B(E2) value if the corresponding transition is forbidden
in the pure O(6) limit.

Transition Ii If BET GCM Wolf Expt.a

g → g 2 0 0.285 0.276 0.27 0.275+0.026
−0.022

2 2 −0.111 −0.876
4 2 0.417 0.420 0.414+0.019

−0.018

4 4 −0.186 −1.047
6 4 0.502 0.495 0.383+0.040

−0.033

6 6 −0.243 −1.042
8 6 0.565 0.541 0.367+0.056

−0.043

8 8 −0.296 −0.917

γ → γ 2 2 0.077 0.770
3 2 0.344 0.364 0.30
3 3 0.5 × 10−7

4 2 0.257∗ 0.207 0.21 0.192+0.017
−0.014

4 3 0.003∗

4 4 −0.009 0.294
5 3 0.286 0.284
5 4 0.128∗

5 5 −0.111 0.400
6 4 0.375∗ 0.317 0.390+0.053

−0.041

6 5 0.003
6 6 −0.083 0.195
7 5 0.402 0.409
7 6 0.068
7 7 −0.173 0.507
8 6 0.451∗ 0.378 0.503+0.295

−0.136

8 7 0.003∗

8 8 −0.106 0.191

0+
2 → 0+

2 2 0 0.195∗ 0.175 0.14
2 2 −0.051 0.189
4 2 0.288 0.242 0.18
4 4 −0.089
6 4 0.360∗

6 6 −0.089

γ → g 2 0 0.3 × 10−4∗ 0.040# 0.012+0.002
−0.001

2 2 0.404∗ 0.152 0.37 0.131+0.015
−0.012

2 4 0.0008
3 2 0.0002 0.040#
3 4 0.132∗ 0.12
4 2 0.4 × 10−4∗ 0.029# 0.32+0.03

−0.02 × 10−2

4 4 0.226 0.19 0.061(6)b

5 4 0.0002
5 6 0.118∗

6 4 0.4 × 10−4∗ 0.33+0.05
−0.04 × 10−2

6 6 0.165∗

7 8 0.099∗

8 6 0.0001 0.41+0.24
−0.11 × 10−2

8 8 0.128

0+
2 → g 0 2 0.0054∗

2 0 0.0002 0.0#
2 2 0.1 × 10−5∗ 0.0#
2 4 0.003 0.011#
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TABLE I. (Continued.)

Transition Ii If BET GCM Wolf Expt.a

4 2 0.0003 0.0#
4 4 0.3 × 10−5∗ 0.0#
4 6 0.002
6 4 0.0004∗

6 6 0.3 × 10−5

6 8 0.003∗

0+
2 → γ 0 2 0.472∗ 0.337

2 2 0.001∗ 0.036#
2 3 0.235∗

2 4 0.087∗

4 2 0.1 × 10−6 0.0#
4 3 0.0001∗ 0.014#
4 4 0.0005 0.014#
4 5 0.173∗

6 7 0.147

others 03 21 0.061 0.082 0.0#
03 22 0.001∗ 0.047#
03 23 0.001 0.0#
04 21 0.7 × 10−8 0.7 × 10−4#
04 22 0.0009 0.0#
04 23 0.009 0.0054#
04 24 0.550 0.489
24 23 0.404∗ 0.381
24 24 0.041 −0.205
24 43 0.133∗

25 03 0.202∗

25 25 −0.226
32 24 0.309∗

32 44 0.171
43 21 0.8 × 10−7 0.0#
43 22 0.0001 0.032#
43 23 0.0004 0.0036#
43 31 0.280∗ 0.21
43 41 0.5 × 10−4 0.0036#
43 42 0.238∗ 0.222 0.18
43 43 0.095 0.338
43 61 0.005 0.0036
45 24 0.194∗

45 44 0.245
52 43 0.382
52 51 0.129
63 43 0.236
63 51 0.099∗

63 62 0.217
63 63 0.034
65 52 0.404∗

65 63 0.155
65 65 0.123
72 52 0.229∗

72 63 0.184∗

83 63 0.352
83 71 0.048∗

83 82 0.189∗

83 83 0.055

aExperimental data, except for 4γ → 4g transition, are taken from Ref. [16].
bReference [49].
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TABLE II. B(E2) ratios in 128Ba.

Ii If BET Expt.

02 22/21 88.1 <560a

03 22/21 0.021 <0.7a

<1b

03 23/21 0.017 <33b

22 01/21 0.8 × 10−4 0.12(1)b

0.11(3)c

23 01/02 0.0012 0.0025(5)b

23 22/02 0.52 <0.18b

23 41/02 0.014 0.03(1)b

31 21/22 0.0004 0.06(1)b

31 41/22 0.38 0.16(3)b

42 21/22 0.0002 0.019(3)b

0.015(3)c

42 31/22 0.012
42 41/22 0.88 0.28(5)b

0.26(5)c

43 22/23 0.41 0.5(3)b

43 42/31 0.85 1.1(2)b

44 22/41 0.044 <0.08b

51 42/31 0.45
51 41/42 0.0014
61 42/41 0.0010
62 41/42 0.0001 0.008(2)c

62 51/42 0.0082
81 62/61 0.0010
82 61/62 0.0002 0.008(6)c

aReference [14].
bReference [15].
cReference [49].

feature may be partly explained by the O(6) limiting case of
IBM or alternatively by rotationally induced changes in the
single-particle level structure at spins higher than Iπ = 4+.
However, still today, it remains an important challenge for
nuclear structure theories to explain it microscopically [45,46]
and warrants further theoretical and experimental studies.

For comparison, the results of the IBM studied by Wolf et al.
[15] are also listed in Table I. The present BET results show
rather small B(E2) values for most of the transitions which
are forbidden in the pure O(6), and results of the two boson
theories resemble each other at least for those allowed B(E2)
values where predictions of Ref. [15] are available. It should
be noted here, however, that the two boson theories not always
predict similar results since the origin of the boson description
of the present BET, which starts from the microscopic fermion
Hamiltonian, is rather different from that of the IBM.

In Table II, theoretical B(E2) ratios obtained in the present
BET calculation of 128Ba are listed and are compared with
experimental data. While most of the values presented are
qualitatively reproduced by the model, the calculated B(E2)
ratio of the 22 decay to 01/21 states differs with more than
three orders of magnitude to the experimental value. The
outstanding smallness of the theoretical ratio can be attributed
to the forbidden nature of the theoretical B(E2 : 2+

2 → 0+
1 )

transition (Table I). In fact, this transition is forbidden in both
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FIG. 4. Probability distributions of the boson numbers N and
the seniorities v in the theoretical wave functions for 0+

1 , 0+
2 , and

0+
3 states in 128Ba. Components of the same seniority are separately

accumulated and connected in the ascending order of N . The numbers
attached at some beginning or ending points represent the boson
numbers.

purely vibrational and purely γ -unstable models as well as
the O(6) limit, and the present theoretical situation seems to
posses the nature too strongly. Since for such a numerical
ratio deduced from prominently small B(E2) value(s), the
fluctuation of a calculated B(E2) ratio due to possible
ambiguities of parameters in the original fermion Hamiltonian
tends to become relatively large, this difficulty may be partly
remedied by a possible adjustment of the parameters.

Figure 4 illustrates the probability distributions of the boson
numbers N and the seniorities v in the theoretical wave
functions for 0+

1 , 0+
2 , and 0+

3 states, and Fig. 5 presents the
same illustration but for 2+

1 , 2+
2 , and 2+

3 states. First of all,
from these figures one can verify the selection rules [47] for
the possible values of v are satisfied. One can also clearly see in
these figures to what degree the boson wave functions converge
in terms of v and N in the present numerical calculations.
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FIG. 5. The same as in Fig. 4 but for 2+
1 , 2+

2 , and 2+
3 states in

128Ba.

In Fig. 4, the structure of the BET wave functions of the
lowest three 0+ states are compared with each other. As for
the seniority component, it is seen that, for the ground state,
and also for the 0+

3 state, the main contribution comes from
v = 0 followed by v = 3,6,9, . . ., while for the 0+

2 state that
comes from v = 3 followed by v = 0,6,9 and so on. Within the
v = 0 component of the ground state, with respect to the boson
number, the main contribution comes from N = 0 followed
by N = 4,2,6, . . ., thus the leading component of the ground
state is |N,v) = |0,0) followed by |4,0), |2,0), |6,0) and so
forth.

From Fig. 5 one sees that, in terms of the seniority com-
ponent, major contributions to the BET wave functions come
from v = 1,4,2,7, . . ., v = 2,5,1,8, . . ., and v = 4,1,7,5, . . .

for 2+
1 , 2+

2 , and 2+
3 states, respectively. Within the v = 1

component of the 2+
1 state, with respect to the boson number,

the main contribution comes from N = 1 followed by N =
5,7,3, . . ., thus the leading component of the 2+

1 state is
|N,v) = |1,1) followed by |5,1), |7,1), |3,1) and so forth.

TABLE III. Major components in distributions of the quantum
numbers v and N , characterizing theoretical wave functions, are listed
in descending order for 0+

1 , 0+
2 , 0+

3 , 2+
1 , 2+

2 , and 2+
3 states in 128Ba.

Results of the present work (BET) are compared with the predictions
of GCM [4].

BET GCM

0+
1 v 0,3,6,9, . . . 0,3,6,9, . . .

0+
1 N 0,4,2,6, . . . 2,0,4,5, . . .

0+
2 v 3,0,6,9, . . . 3,0,6,9, . . .

0+
2 N 3,5,7,2, . . . 3,6,2,4, . . .

0+
3 v 0,3,6,9, . . .

0+
3 N 2,0,4,8, . . .

2+
1 v 1,4,2,7, . . . 1,4,2,7, . . .

2+
1 N 1,5,7,3, . . . 3,1,4,5, . . .

2+
2 v 2,5,1,8, . . . 2,5,1,8, . . .

2+
2 N 2,4,8,10, . . . 2,4,5,3, . . .

2+
3 v 4,1,7,5, . . .

2+
3 N 4,6,8,10, . . .

In Table III, structures of collective wave functions are
summarized for 0+

1 , 0+
2 , 0+

3 , 2+
1 , 2+

2 , and 2+
3 states in terms

of the distributions of the quantum numbers v and N , and
are compared with the predictions of the GCM calculated by
Petkov et al. (Fig. 7 in Ref. [4]). As for the states where
the GCM wave functions are available, i.e., for 0+

1 , 0+
2 , 2+

1 ,
and 2+

2 states in 128Ba, the major components in distributions
of the seniorities v in the BET wave functions are in good
agreement with those in the GCM wave functions. One can
find differences, however, in the structure of the 0+

1 and 2+
1

states of the ground band: in the BET wave functions, as
already mentioned, the leading component of the 0+

1 state is
|N,v) = |0,0) and that of the 2+

1 state is |N,v) = |1,1), while
in the GCM wave function, the frequency distributions of their
quantum numbers ν and λ, which correspond to our N and v,
show maxima at ν = 2 and λ = 0 for the 0+

1 state and at ν = 3
and λ = 1 for the 2+

1 state.
Remarkable similarities between the two theories can be

found in the descriptions for the states in the quasi-γ band:
for the wave function of the 2+

2 state, in the distribution of
the seniority quantum number, four major contributions in
descending order are v = 2, 5, 1, 8, and in terms of the phonon
number the most important two components are N = 2, 4 in
both the GCM and the BET calculations, and as one can see in
Table I intraband B(E2 : I → I − 2) transitions in the quasi-γ
band have rather close values in both the theories and compare
well with experiment.

Concerning the nature of the low-lying 0+ states, in the
present results, the main contribution to the 0+

2 state of 128Ba
comes from the three-phonon component, and the two-phonon
component is rather dominant in the 0+

3 state. This result for
the 0+

2 state is compatible with the GCM calculations of Ref.
[4] where, although the structure of the 0+

3 state was not listed,
the most dominant component in the 0+

2 state of 128Ba was
reported to be the state with a phonon triplet coupled to zero
angular momentum.
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For the levels of the 0+
2 band, one sees in Tables I and II that

calculated B(E2) transition strengths to the g.s.b. are rather
small compared to those to the quasi-γ band, which implies
that it is difficult to interpret the 0+

2 state as a β bandhead.
This property of the calculated B(E2) can be understood as
follows: In terms of the α-boson representation, the main
component of the wave function of 0+

2 state of 128Ba is
expressed as |0+

2 ) ∼ (α†α†α†)|0), while that of the 2+
2 state

is |2+
2 ) ∼ [α†α†](2)|0), where (α†α†α†) = (α† · [α†α†](2)) and

|0) is the α-boson vacuum. Since the leading-order term of the
E2 transition operator in the BET is T (E2) ∼ (α† + α), the
transition from the 0+

2 state to the 2+
2 state becomes strong.

In the wave function of the 0+
2 state, we find a considerable

amount of such a component of a collective α-boson excitation
built on the 2+

2 state. In Ref. [48], Casten and von Brentano
proposed the interpretation that the lowest K = 0 intrinsic
excitation of deformed nuclei is not a β vibration but rather
a collective phonon built on the γ vibration. Although 128Ba
is a transitional nucleus and for deformed nuclei it must be
fair to investigate the precision of the proposal elsewhere
separately, in the present numerical results there seems to be
a possibility that the 0+

2 state of 128Ba possesses similarity to
the state discussed in Ref. [48]. In addition, the present BET
analyses seem to suggest for 128Ba a certain amount of the
β vibrational component may exist in the 0+

3 state. In fact, as
already discussed, the major component of the wave function
of the 0+

3 state is |2,0) and as one sees in Tables I and II the
0+

3 state shows an E2 transition to the ground band, although
the calculated energy of the 0+

3 state seems rather high.
However, at present, it is premature to interpret that

dominant component of the 0+
2 state of 128Ba is the double-γ

phonon, because the branching ratio R ≡ B(E2 : 0+
2 → 2+

2 )/
B(E2 : 0+

2 → 2+
1 ) has not been precisely determined yet [49],

although one can estimate its upper limit from the experimental
data of Ref. [14] as R < 560, and the theoretical value in this
work is R = 88.1. Moreover, since the α-boson wave functions
dress microscopic effects of mode-mode couplings, where
contributions of pairing-vibrational modes as well as those of
some noncollective quasiparticle excitations are included par-
tially, and it is often the case that pairing-vibrational character
is important to understand the nature of the low-lying 0+ states,
the above discussion for the major components of relevant
wave functions in terms of only the α-boson representation is
primitive, and further analyses to extract precise mixing ratios
of different modes of motions are necessary.

The low-lying 0+ states probably posses rather complex
characteristics. To understand their nature microscopically,
extensive investigations, including analyses of two-nucleon
transfer strengths [50], which provide more precise identifi-
cation of components of the wave functions in terms of the
β vibration, the pairing-vibration, and the (two-phonon) γ
vibration, among others, are called for. Results of our further
analyses will be reported in a separate presentation.

IV. SUMMARY AND CONCLUSIONS

The low-lying quadrupole collective states of 128Ba are
studied by means of the BET with self-consistent effective
interactions. The calculated potential surface has two minima,
one on the prolate side and the other on the oblate side with
rather small difference in depth compared to the energy of
the zero-point oscillation, which implies strong softness or
instability for the γ deformation.

The energies of the ground-state band and staggering of the
quasi-γ band are qualitatively reproduced, although the energy
of the band head 2+ state of the quasi-γ band is too low, and the
inversion of the orders of even- and odd-spin states above the
7+

γ state is not reproduced. Concerning the descriptions of the
electromagnetic properties, the intraband B(E2 : I →I −2)
transitions in the quasi-γ band are well described, but for the
ground-state band the features of relatively high B(E2 : 4+

1 →
2+

1 ) value and the following drop are not reproduced.
The descriptions of the structures of the collective wave

functions are investigated and compared to the results of the
GCM. For 0+

1 , 0+
2 , 2+

1 , and 2+
2 states in 128Ba, the major

components in distributions of the seniorities v in the present
BET wave functions are in good agreement with those in
the GCM wave functions. Remarkable similarities between the
two theories can be found in the descriptions for the states in the
quasi-γ band, while differences exist in the structure of the 0+

1
and 2+

1 states of the ground band. The present results indicate
that the main contribution to the 0+

2 state of 128Ba comes from
the three-phonon component, which is compatible with the
prediction of the GCM, while the two-phonon component is
rather dominant in the 0+

3 state.
In summary, the present investigation gives several useful

pieces of information about the structure of wave functions
of the low-lying collective states in 128Ba and provides an
important step towards the microscopic description of nuclei
in this mass region.
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